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Introduction



Sponsored Search: example
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Sponsored Search: important?

• Online advertising is extremely big business

• Sponsored search ad is largest segment (2023: $252 bil USD)
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Sponsored Search Auction: GSP

• Search engines used to sell sponsored search ads through a generalized
second price auction (GSP)

• Advertisers bid for their ads with specific keywords

• Consumer submits search query, then auction is held for ads with relevant
keywords

• (untruthfulness) Bidders don’t reveal their value – bid shading
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Sponsored Search Auction: weighted bids

• Search ads are contingent objects (price only paid when ads get clicked)

• Therefore, in order to maximize revenue, not only bid but also probability of
being clicked should be considered

Modified scheme: weighted GSP (GSPw)

• Bids are multiplied by quality score (measuring advertiser’s clickability)

• Ad positions are allocated in decending order of weighted bids

• Advertisers who won k-th ad position pay (k + 1)-th highest bid divided by
their own quality score when the ad gets clicked
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Sponsored Search Auction: Example

Table 1: Example of a GSPw auction

Advertiser Bid Quality Score Weighted Bid Position Price per click
A 2 0.8 1.6 2nd 1.50
B 3 0.6 1.8 1st 2.67
C 1 0.9 0.9 X X
D 4 0.3 1.2 3rd 3.00
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This paper’s contribution

• Equilibrium analysis of weighted GSP auction under weaker assumptions
• incomplete information (IPV)
• general quality scoring rule
• correlation between value and quality

• Novel nonparametric identification and estimation of valuations and its
distribution

• only given observables and auction characteristics
• no tuning parameter, no density estimation of bids

• Empirically assess biding behaviours and auction heterogeneity (Yahoo!
data)

• Counterfactual: optimal score squashing
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• Identification of valuation in search ad auctions
• Case of complete information : Varian (2007), Edelman, Ostrovsky, and

Schwarz (2007)
• Case of uncertainty: Athey & Nekipelov (2011)
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• Methodology
• Nonparametric estimation in first-price auctions: Guerre, Perrigne, and

Vuong (2000), Li and Perrigne (2003), Hendricks, Pinkse and Porter (2003),
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• Impact of ad quality on auctioneer’s revenue
• Score squashing: S. Lahaie & D. Pennock. (2007), Charles, Devanur & Sivan.

(2016), Athey & Nekipelov (2011)
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Auction Model



Consumer side

• Consumer i has unit demand for product and puts search query

• Once search results displayed, consumer decides whether or not to click on
some ads

• Uij : Expected utility of consumer i from clicking on ad j

• Click decision

y∗
i,j =

{
1 consumer i clicks on ad j if Ui,j > 0
0 if Ui,j ≤ 0
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Consumer side: click probability

• Each result page displays K number of ads

• Click probability is computed using the consumer side information

• We assume click probability is product of advertiser effect sj and position
effect ck

probability of click = sj × ck

• Advertiser’s optimal response takes sj and ck as given
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Advertiser Side

• Advertiser j ∈ {1, · · · , N} puts ad on search engine

• vj : j’s value per click, vj ∼iid Fv [v, v̄ ]

• sj : j’s clickability, sj ∼iid Fs [s, s̄]

• qj : j’s quality score, generally a function of sj i.e. qj = q(sj)

• wj ≡ vj × qj : j’s weighted value, wj ∼iid Fw

• j’s type is defined by (vj , sj)
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Auction setup

• Single auction (weighted GSP) for each search query to sell K ad positions

• Bidding function: bj = b(vj , sj) (in symmetric equilibrium)

• Ad positions are allocated in descending order of weighted bid

bj,w = bj × qj

• b[k]
w : order statistic, k-th highest weighted bid

• j wins k-th position if bj,w = b[k]
w

• j pays pj,k = b[k+1]
w /qj if ad gets a click
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Assumptions

Assumption 1. (Incomplete information) (Incomplete information) Each
advertiser knows their type, (v , s), and the scoring rule, q, but does
not know the opponents’ bids, quality scores, and values. They only
know the weighted value distribution, Fw . The number of advertisers
(N), click rates across ad positions (C = (c1, · · · , cK )) and the number
of ads per page (K) are common knowledge.

Assumption 2. (monotonic bidding) The advertiser’s weighted bid in
the GSPw auction is strictly increasing in his weighted value.
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Profit Maximization

• Profit from k-th ad-position:

πk,j = (ck × sj)︸ ︷︷ ︸
Prob. of click
at position k

× (vj − pj,k)︸ ︷︷ ︸
Per click profit
at position k

(1)

• Expected profit from auction:

Π(bj ; vj , sj) =
K∑

k=1

Prob(bj,w = b[k]
w )︸ ︷︷ ︸

Prob. of winning ad-position k

× E(πk,j |bj,w , sj)︸ ︷︷ ︸
Profit from ad-position k
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Equilibrium Analysis

• Equilibrium bid b(vj , sj) = b̂ maximizes

K∑
k=1

Prob(b̂ · qj = b[k+1]
j,w )(ck × sj)

[
vj − E

(b[k+1]
w

qj

∣∣∣b[k]
w = b̂ · sj

)]
• 2D optimization, hard to deal with

• Symmetric equilibrium bid exists in GSP (no weight) auction

bGSP(vj)

shown by Gomes and Sweeney (2014)

• Solution: solve everything with weighted bid and weighted value
(dimensional reduction)
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Equilibrium Analysis

Theorem 1. Under any scoring rule, every equilibrium weighted bid in
GSPw auction is typewise outcome equivalent to an equilibrium bid
function in a GSP auction, where the value is replaced by the weighted
value.

bGSPw
w (vj , sj) = bGSP(ωj), ∀j ∈ J

Corollary 1. The GSPw has a unique symmetric Bayesian Nash equilib-
rium, which is efficient if the quality score is equivalent to the advertiser-
specific click rate.
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Unique Symmetric Bayes-Nash Equilibrium (BNE)

Corollary 2. The unique symmetric Bayesian Nash equilibrium of the
weighted GSP auction is given by

bw (ω) = ω − Γ(ω) −
∞∑

n=1

∫ ω

0
Mn(ω, t)Γ(t)dt, ∀ω ∼ Fw (.), (2)

where

Γ(ω) =
∑K

k=1 ck
(N−2

k−1

)
(k − 1)(1 − Fw (ω))k−2 ∫ ω

0 F N−k
w (x)dx∑K

k=1 ck
(N−2

k−1

)
(1 − Fw (ω))k−1F N−k−1

w (ω)
,

M1(ω, t) =
∑K

k=1 ck
(N−2

k−1

)
(k − 1)(1 − Fw (ω))k−2F N−k−1

w (t)f (t)∑K
k=1 ck

(N−2
k−1

)
(1 − Fw (ω))k−1F N−k−1

w (ω)
,

Mn(ω, t) =
∫ ω

0
M1(ω, ε)Mn−1(ε, t)dε, for n ≥ 2.
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Identifying valuation

• Analytically inverting the BNE bidding function is impossible because:
• Distribution and density of wj never known to econometrician
• multiple layers of summations and integrals (no analytic representation)

• We instead derive alternative derivation using creative algebraic
manipulation

Theorem 2. Under incomplete information assumption, advertiser j’s
value is identified by:

vj = bj + Φ(Gw , bw,j , qj |C, K , N) (3)

where

Φ(Gw , b, q|C, K , N) =∑K
k=1

ck
(

N−1
k−1

)
(k − 1)(1 − Gw (bw ))k−2

∫ bw
0

Gw (u)N−k du

q
∑K

k=1
ck

(
N−1
k−1

)
Gw (bw )N−k−1(1 − Gw (bw ))k−2

[
(N − k)(1 − Gw (bw )) − (k − 1)Gw (bw )

]
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Data



Yahoo! Sponsored Search Auction data

• All search queries in Jan-Apr 2008

• 5 product categories: Cruise, Car Insurance, Laptop, Cable TV, Collectible
Coins

• 30GB data set, 78 million observations, data aggregated at
category-advertiser-day level

• Consumer side variables: # of clicks, # of ad displays for each
position-advertiser-keyword combination

• Advertiser side: bid, position won for each advertiser-keyword combination

• Keywords and advertiser ids are anonymized

• We focus on the top 10% most popular keywords to ensure common value
assumption
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Estimation



Equilibrium biding function and value distribution

Cruise (N=45)
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Equilibrium biding function and value distribution

Car insurance (N=403)
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Equilibrium biding function and value distribution

Laptop (N=124)
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Equilibrium biding function and value distribution

Cable TV (N=142)
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Equilibrium biding function and value distribution

Coins (N=55)
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Counterfactual Analysis



Score squashing

• Why weighted bid?
• To accommodate the impact of ad quality.
• Alternate practice: Score Squashing

• Score squashing is a way to change the relative importance of the quality
weights by raising the quality score by a parameter θ ∈ [0, 1].

• Scores: qj = sθ
j
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Counterfactual: results

0 0.1 0.25 0.5 0.75 1

3

0.45

0.46

0.47

0.48

0.49

0.5

0.51

re
ve

nu
e

Auction revenue

0 0.1 0.25 0.5 0.75 1

3

0.35

0.4

0.45

0.5

0.55

pr
of

it

Advertiser profit

0 0.1 0.25 0.5 0.75 1

3

0.35

0.4

0.45

0.5

qu
al

ity

Consumer welfare

0 0.1 0.25 0.5 0.75 1

3

0.8

0.85

0.9

0.95

1

1.05

re
ve

nu
e 

+
 p

ro
fit

Revenue + Profit

(a) Cruise

0 0.1 0.25 0.5 0.75 1

3

8

8.5

9

9.5

re
ve

nu
e

Auction revenue

0 0.1 0.25 0.5 0.75 1

3

5

5.5

6

6.5

7

7.5

8

pr
of

it

Advertiser profit

0 0.1 0.25 0.5 0.75 1

3

0.3

0.35

0.4

0.45

0.5

0.55

qu
al

ity

Consumer welfare

0 0.1 0.25 0.5 0.75 1

3

13

14

15

16

17

re
ve

nu
e 

+
 p

ro
fit

Revenue + Profit

(b) Car Insurance

26



Counterfactual: results
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(c) Laptop
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Counterfactual: results
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Conclusion



Conclusion

• Our nonparametric estimator for valuation works well and easy-to-use

• More competition in the market means less bid shading/more revenue

• Score squashing can enhance revenue at the cost of advertiser profit and
consumer welfare

• Further extensions in the paper: limited bid data, reserve price
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