Does Public Information Help Social Learning? An Anti-Transparency Result

Min Zhang

University of St Andrews

30 August 2023

Min Zhang (U of St Andrews)

Anti-Transparency

EEA-ESEM 2023 1 / 13

- It is well known that social learning generates herds and/or information cascades
 - People herd when (bounded) private information is outweighed by public observations
 - Consequently no more private information is revealed and social learning stops
- *Bikhchandani et al. (1992)*: cascades/herds are nevertheless "fragile" as social learning stops
 - Extra public information might break cascades and reinstate learning
- It leads to a question on *public information policy* in such contexts
 - If extra information is indeed achievable (through external tests or experimentations), should it be revealed publicly?
 - e.g., schedule of public debates during presidential elections

- The question is modelled, in a " $2 \times 2 \times 2$ " social-learning model, as a planner's decision on information disclosure to improve social learning
 - A simple canonical setting with binary states, actions, and signals
- Main result *anti-transparency*: noisy public information hurts social learning and hence should not be revealed
- An "2 × 2 × ∞" extension with continuous private signals is considered to investigate the threshold on the informativeness of public information for anti-transparency
 - lower threshold than the average informativeness of private signals
 - no threshold under certain information structures of private signals

- Social learning: Banerjee (1992), Bikhchandani et al. (1992), Smith&Sørensen (2000), etc.
 - Conventional focus on whether learning is complete (long-run efficiency), or whether herding exists (behavior implication)
 - Based on a variety of settings: preferences, information structures, observation structures, *etc.*
 - We have a similar objective but consider the effect of public experimentation or information disclosure in such contexts
- Anti-transparent information policy: Morris&Shin (2002), Morris et al. (2006), Svenson (2006), etc.
 - Public information as a coordination device when payoffs have social-value terms
 - No payoff externality but information externality in social learning

- An infinite number of agents, t ∈ {1, 2, ...}, sequentially make a binary choice a_t ∈ {A, B}
- An underlying state of the world $\theta \in \{A, B\}$ with uniform prior
- Every agent *t* receives a conditionally i.i.d. signal *s*_t with commonly known precision *q*

•
$$\Pr(s_t = \theta | \theta) = q \in (\frac{1}{2}, 1)$$

- Every agent t makes his choice after receiving s_t and observing action history $\mathbf{h}_t = (a_1, a_2, \cdots, a_{t-1})$
 - Everyone is assumed to follow their own signal when indifferent
- Every agent t's payoff is $U_t(a_t; \theta) = \mathbb{1}_{\{a_t = \theta\}}$

- A social planner can choose a period *τ* ∈ {1, 2, ...} to run a public test or experiment, which generates an extra signal *s̃* ∈ {*A*, *B*}
 - \tilde{s} has commonly known precision $\tilde{q} \in (\frac{1}{2}, 1)$
 - Alternative interpretation: the planner knows \widetilde{s} and commits a calendar time τ to disclose it
- The social planner's objective is to improve social learning
 - As actions converge eventually, she wants to maximize $\Pr(\lim_{t \to \infty} a_t = \theta)$
 - In line with the common objective of long-run efficiency in the literature

• Utilitarian social welfare:
$$\lim_{T\to\infty} \frac{\sum_{t=1}^{T} U_t(a_t;\theta)}{T}$$

- Define 'relative precision' $\lambda \equiv \log_{\frac{q}{1-q}}(\frac{\widetilde{q}}{1-\widetilde{q}})$
 - The public signal is as powerful as λ private signals with the same realization, in terms of informativeness

• Let
$$V(\tau; \lambda) \equiv \Pr(\lim_{t \to \infty} a_t = \theta | \text{setting the test at } \tau)$$

•
$$V_0\equiv rac{q^2}{(1-q)^2+q^2}$$
 is the long-run efficiency without the test

Proposition (Anti-transparency)

1. $V(\tau; \lambda) < V_0$ for any $\tau \ge 1$ if and only if $\lambda < 1$. 2. $V(\tau + 1; \lambda) \ge v(\tau; \lambda)$ for any $\tau \ge 1$ and any $\lambda > 0$.

- Anti-transparency: a public experiment generating noisy information is suboptimal
 - No reinstatement cannot not break cascades
 - Crowding out leads to a worse cascade with higher probability than a private signal
- Patience: the planner should aim to postpone a public experiment
 - The planner does not have time preference (utilitarian objective)
 - The benefit of information disclosure is at largest when a cascade starts
 - The probability of a cascade is (weakly) increasing over time

Contingent Disclosure

• Suppose now that the social planner's decision is contingent on the realization of \tilde{s} and the existing history

$$g_t = g(\mathbf{h}_t, \widetilde{s}) \in \{Y, N\}$$

• Refinement on off-equilibrium beliefs by the agents - "non-excessive"

- When the planner is supposed to reveal \tilde{s} unconditionally at a certain period but did not reveal anything after all, the agents do not make any inference about \tilde{s}
- The social planner's objective is to maximize $\widehat{V}(g; \lambda)$

Proposition (Contingent disclosure)

Under non-excessive beliefs, contingent disclosure does not do better than simple calendar timing: $\max_{\tau} V(\tau; \lambda) = \max_{g} \widehat{V}(g; \lambda)$. In particular, anti-transparency still holds.

Continuous Signals

- Suppose now that every agent t receives a signal $s_t \in [-1,1] \subset \mathbb{R}$
 - Conditional on heta, s_t is i.i.d. $\sim F_{ heta}$
 - Interpretation: heterogeneous informativeness among the population
- $F_{ heta}$ is twice differentiable with strictly positive density $f_{ heta}$ on [-1,1]
 - MLR: $\frac{f_B(s)}{f_A(s)}$ is (strictly) increasing on [-1, 1]
 - Symmetry (not crucial): $f_B(s) = f_A(-s)$
- Consider the private belief generated by signal s_t : $\mu(s_t) = \ln \frac{f_B(s_t)}{f_A(s_t)}$

• Average informativeness:
$$\overline{\mu} = \frac{\int_0^1 \mu(s) f_B(s) d(s)}{\int_0^1 f_B(s) d(s)} \left(= \frac{\int_{-1}^0 \mu(s) f_A(s) d(s)}{\int_{-1}^0 f_A(s) d(s)}\right)$$

• Extra signal $\tilde{s} \in \{A, B\}$ has informativeness $\lambda = \ln \frac{\Pr(\tilde{s}=\theta|\theta)}{\Pr(\tilde{s}\neq\theta|\theta)} > 0$

- Restrict attention on the case of calendar timing: $\widetilde{\textit{V}}(\tau;\lambda)$
 - \widetilde{V}_0 denotes the planner's payoff without any disclosure

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

No Anti-Transparency

 The signal distributions satisfy (strictly) increasing hazard ratio (IHR) property if

$$H(s) \equiv \frac{1 - F_A(s)}{1 - F_B(s)} \frac{f_B(s)}{f_A(s)} \text{ is (strictly) increasing on } (-1, 1)$$

- Identified by Horner&Herrera (2013) for no information cascades
- Refined by *Smith et. al. (2021)* as **(strictly) log-concave** density of the distribution of log-likelihood ratio

Proposition (No Anti-transparency)

1. If strictly IHR property holds, $\forall \lambda > 0$, $\exists \tau \ge 1$ s. t. $\widetilde{V}(\tau; \lambda) > \widetilde{V}_0$. 2. If $\exists \widehat{\lambda}$ s. t. $\forall \tau \ge 1$, $\forall \lambda < \widehat{\lambda}$, $\widetilde{V}(\tau; \lambda) \le \widetilde{V}_0$, then $\widehat{\lambda} < \overline{\mu}$.

- No anti-transparency under IHR (Log-concavity)
 - No cascades \implies No anti-transparency
- The threshold for anti-transparency is lower than the average informativeness of the population

Min Zhang (U of St Andrews)

Anti-Transparency

Concluding Remarks

- This paper studies the effect of public information disclosure in the context of social learning
- It is not necessarily true that "more information is better"
 - Noisy public information is bad for social learning and should be banned
 - Unless private signals are continuous and exhibit IHR property
- It is not true either that "sooner is better"
 - Postponing information disclosure is good for social learning
 - Unless time preference exists or action space becomes richer
- Possible extensions:
 - Multiple pieces of information
 - Should not affect any asymptotic result
 - Information disclosure by a biased planner

THANK YOU!

э