Market Structure and Adverse Selection

Dakang Huang¹ Christopher Sandmann² EEA-ESEM 2023, UPF, Barcelona

¹Toulouse School of Economics (TSE)

²London School of Economics and Political Science (LSE)

Classical Adverse Selection Models

Consider a competitive market plagued by adverse selection (e.g. Insurance)

 \rightarrow High- and Low-risk buyers: high-risk more eager to trade and more costly to insure

► Classical Adverse Selection Models

Consider a competitive market plagued by adverse selection (e.g. Insurance)

 \rightarrow High- and Low-risk buyers: high-risk more eager to trade and more costly to insure

O Exclusive competition (e.g. car insurance) \rightarrow Rothschild-Stiglitz 1976 (RS)

⊘ Nonexclusive competition (e.g. annuities) → Attar-Mariotti-Salanié 2014,2021,2022 (AMS).

► Classical Adverse Selection Models

Consider a competitive market plagued by adverse selection (e.g. Insurance)

- \rightarrow High- and Low-risk buyers: high-risk more eager to trade and more costly to insure
- **O** Exclusive competition (e.g. car insurance) \rightarrow Rothschild-Stiglitz 1976 (RS)
 - One buyer can trade with at most one seller
 - → Fully separating: different types purchase different contracts → Rationing on low types

⊘ Nonexclusive competition (e.g. annuities) → Attar-Mariotti-Salanié 2014,2021,2022 (AMS).

► Classical Adverse Selection Models

Consider a competitive market plagued by adverse selection (e.g. Insurance)

- \rightarrow High- and Low-risk buyers: high-risk more eager to trade and more costly to insure
- **O** Exclusive competition (e.g. car insurance) \rightarrow Rothschild-Stiglitz 1976 (RS)
 - One buyer can trade with at most one seller
 - \rightarrow Fully separating: different types purchase different contracts \rightarrow Rationing on low types
- **⊘** Nonexclusive competition (e.g. annuities) → Attar-Mariotti-Salanié 2014,2021,2022 (AMS).
 - One buyer can trade with many sellers
 - \rightarrow Partially pooling: pooling contracts + high type additional separation \rightarrow No separation for low types

► Classical Adverse Selection Models

Consider a competitive market plagued by adverse selection (e.g. Insurance)

- \rightarrow High- and Low-risk buyers: high-risk more eager to trade and more costly to insure
- **O** Exclusive competition (e.g. car insurance) \rightarrow Rothschild-Stiglitz 1976 (RS)
 - One buyer can trade with at most one seller
 - \rightarrow Fully separating: different types purchase different contracts \rightarrow Rationing on low types
- **2** Nonexclusive competition (e.g. annuities) → Attar-Mariotti-Salanié 2014,2021,2022 (AMS).
 - One buyer can trade with many sellers
 - \rightarrow Partially pooling: pooling contracts + high type additional separation \rightarrow No separation for low types

Observation: different restrictions on trade suggest different outcomes.

Normative point of view: Can we alleviate rationing and no separation?

Normative point of view: Can we alleviate rationing and no separation?

• Literature: yes, through mandates, taxes, costly verification (Strong intervention)

Normative point of view: Can we alleviate rationing and no separation?

- Literature: yes, through mandates, taxes, costly verification (Strong intervention)
- This paper: a rule stipulates sellers with whom a buyer can simultaneously trade (Weak intervention)

Normative point of view: Can we alleviate rationing and no separation?

- Literature: yes, through mandates, taxes, costly verification (Strong intervention)
- This paper: a rule stipulates sellers with whom a buyer can simultaneously trade (Weak intervention)

Positive point of view: many markets are neither exclusive nor nonexclusive

Normative point of view: Can we alleviate rationing and no separation?

- Literature: yes, through mandates, taxes, costly verification (Strong intervention)
- This paper: a rule stipulates sellers with whom a buyer can simultaneously trade (Weak intervention)

Positive point of view: many markets are neither exclusive nor nonexclusive

- Health Insurance in France: a basic coverage + an additional premium
- Senior Security: exclusively senior security (collateral) + other securities
- Bank lending in corporate finance: multiple but limited numbers of banks are the norm

Task for theorists: characterize equilibria that arise for different market structures

Definition (Market Structure)

A market structure \mathcal{M} is a (non-empty) collection of subsets of sellers ({1,...,K}) with whom a buyer can jointly trade: $\mathcal{M} \subseteq \mathcal{P}(\{1,...,K\}) \equiv \mathcal{P}(\{\text{all sellers}\})^{-1}$.

Definition (Market Structure)

A market structure \mathcal{M} is a (non-empty) collection of subsets of sellers ({1,...,K}) with whom a buyer can jointly trade: $\mathcal{M} \subseteq \mathcal{P}(\{1,...,K\}) \equiv \mathcal{P}(\{\text{all sellers}\})^{-1}$.

• Two polar examples in the literature:

• Exclusive competition (car insurance): $\mathcal{M} = \{\emptyset, \{1\}, \{2\}, ..., \{K\}\}$

Definition (Market Structure)

A market structure \mathcal{M} is a (non-empty) collection of subsets of sellers ({1,..., K}) with whom a buyer can jointly trade: $\mathcal{M} \subseteq \mathcal{P}(\{1,...,K\}) \equiv \mathcal{P}(\{\text{all sellers}\})^{-1}$.

- Two polar examples in the literature:
 - Exclusive competition (car insurance): $\mathcal{M} = \{\emptyset, \{1\}, \{2\}, ..., \{K\}\}$
 - **2** Nonexclusive competition (annuity market): $\mathcal{M} = \mathcal{P}(\{1, ..., K\})$

 $^{{}^{1}\}mathcal{P}$ is the power set

Partition competitive market structures into partially exclusive and never exclusive structures.

- Partial exclusive: exists seller can exclusively trade with the buyer.
- Never exclusive: does Not exist seller can exclusively trade with the buyer.

Partition competitive market structures into partially exclusive and never exclusive structures.

- Partial exclusive: exists seller can exclusively trade with the buyer.
- Never exclusive: does Not exist seller can exclusively trade with the buyer.

Unified results

- Any equilibrium allocation in **partially exclusive** structures is the equilibrium allocation in **Exclusive structure**.
- Any equilibrium allocation in **never exclusive** structures is an equilibrium allocation in "1+1" market structure

• Divide sellers into two groups

Key of This Paper ► The "1+1" Market Structure

- Divide sellers into two groups
- Trade **inside** each group is **exclusive**

Key of This Paper ► The "1+1" Market Structure

- Divide sellers into two groups
- Trade inside each group is exclusive
- Trade **between** groups is **nonexclusive**.

• "1+1": $\mathcal{M} = \{\emptyset, \{1\}, \{2\}, ..., \{K_1\}\} \times \{\emptyset, \{K_1+1\}, \{K_1+2\}, ..., \{K\}\}$

Subgroup 1 Exclusive Subgroup 2 Exclusive

Preview of Results

▶ 2, Equilibria Allocations in Never Exclusive Market Structures

- Equilibrium candidate (Theorem 1)
 - → Any equilibrium under a never exclusive competitive market structure is pooling + separating (or just pooling)

Preview of Results

> 2, Equilibria Allocations in Never Exclusive Market Structures

- Equilibrium candidate (Theorem 1)
 - → Any equilibrium under a never exclusive competitive market structure is pooling + separating (or just pooling)
- Equilibrium existence (Theorem 2)
 - → If an equilibrium exists under a never exclusive competitive market structure, it is also an equilibrium under the 1+1 market structure (requires latent contracts)
- Contribution: first time **pooling** + low type separation occurs in equilibrium

Preview of Results

> 2, Equilibria Allocations in Never Exclusive Market Structures

- Equilibrium candidate (Theorem 1)
 - → Any equilibrium under a never exclusive competitive market structure is pooling + separating (or just pooling)
- Equilibrium existence (Theorem 2)
 - → If an equilibrium exists under a never exclusive competitive market structure, it is also an equilibrium under the 1+1 market structure (requires latent contracts)
- Contribution: first time pooling + low type separation occurs in equilibrium
- Welfare comparison
 - If RS separation entails a lot of rationing, pooling + separation Pareto dominates
 - "1+1" sometimes implements the second-best allocation

- ► Insurance Economy: Buyers and Sellers
 - A contract specifies coverage q in exchange for a premium t

- ► Insurance Economy: Buyers and Sellers
 - A contract specifies coverage q in exchange for a premium t
 - 2 type of **buyers**
 - high-risk \rightarrow *H* (frequency m_H)
 - low-risk $\rightarrow L$ (frequency m_L)

- ► Insurance Economy: Buyers and Sellers
 - A contract specifies coverage q in exchange for a premium t
 - 2 type of **buyers**
 - high-risk $\rightarrow H$ (frequency m_H)
 - low-risk $\rightarrow L$ (frequency m_L)
 - K seller, $k \in \{1, ..., K\}$
 - Seller k offers a single contract (q^k, t^k)
 - **Profit** when trading with type $heta \in \{H, L\}$: $t^k c_ heta \ q^k$

- ► Insurance Economy: Buyers and Sellers
 - A contract specifies coverage q in exchange for a premium t
 - 2 type of **buyers**
 - high-risk $\rightarrow H$ (frequency m_H)
 - low-risk $\rightarrow L$ (frequency m_L)
 - K seller, $k \in \{1, ..., K\}$
 - Seller k offers a single contract (q^k, t^k)
 - **Profit** when trading with type $\theta \in \{H, L\}$: $t^k c_\theta q^k$
 - Buyers trade with group of sellers $M \subseteq \{1, ..., K\} \rightarrow \text{Utility: } U_{\theta}(\sum_{k \in M} q^k, \sum_{k \in M} t^k)$
 - Utility function is twice differentiable and strict quasi-concave

► Additional Assumptions

- Single-Crossing:
 - \rightarrow High types have a greater propensity to consume:
 - For all (q, t) and (q', t') so that q' > q it holds that $U_L(q', t') \ge U_L(q, t) \implies U_H(q', t') > U_H(q, t)$

► Additional Assumptions

- Single-Crossing:
 - \rightarrow High types have a greater propensity to consume:
 - For all (q, t) and (q', t') so that q' > q it holds that $U_L(q', t') \ge U_L(q, t) \implies U_H(q', t') > U_H(q, t)$
- Adverse Selection:
 - High types are more costly to serve: $c_H > c_L$

Additional Assumptions

- Single-Crossing:
 - → High types have a greater propensity to consume:
 - For all (q, t) and (q', t') so that q' > q it holds that $U_L(q', t') \ge U_L(q, t) \implies U_H(q', t') > U_H(q, t)$
- Adverse Selection:
 - High types are more costly to serve: $c_H > c_L$
- Flatter Curvature:
 - Type H's indifference curve is 'flatter' than type L's indifference curve, e.g. CARA, Quadratic utility

► Timing and Equilibrium

► Timing and Equilibrium

Stage 1	Stage 2

► Timing and Equilibrium

► Timing and Equilibrium

Stage 1	Stage 2
• Each seller k proposes a contract $(q^k, t^k) \in \mathbb{R}^2_+$	 Each type θ buyer chooses some M ∈ M trades with sellers k ∈ M derives utility U_θ (∑_{k∈M} q^k, ∑_{k∈M} t^k)

► Timing and Equilibrium

• Timing: Fix a market structure $\mathcal{M} \subseteq \mathcal{P}(\{1, ..., K\})$

Stage 1	Stage 2
• Each seller k proposes a contract $(q^k, t^k) \in \mathbb{R}^2_+$	 Each type θ buyer chooses some M ∈ M trades with sellers k ∈ M derives utility U_θ (∑_{k∈M} q^k, ∑_{k∈M} t^k)

• Equilibrium: Sellers maximize expected profit, buyers maximize utility (PBE in pure strategies)

Market Outcomes for Two-Polar Structure

► Exclusive Competition: RS Allocation

- Zero-profit line when trading w/ Low (L) and High (H) risk type
- In equilibrium
 - The high-risk type purchases the efficient amount of quantity given that the unit price is c_H.→ full insurance
 - The low-risk type purchases less than the efficient amount of quantity given that the unit price is c_L : he is being **rationed**
- Relax Exclusivity
 - → RS allocation is not an equilibrium, a seller can propose a deviating contract to attract type H

Market Outcomes for Two-Polar Structure

▶ Nonexclusive Competition: Jaynes-Hellwig-Glosten(JHG) Allocation

- Zero profit lines for
 - serving both types (pooling
 - $c = m_H c_H + m_L c_L)$
 - serving for high types
- In equilibrium
 - the pooling quantity is the efficient quantity for the low type if the unit price is the zero-profit pooling price *c*
 - the top-up quantity is the efficient quantity for the high type if the unit price is c_{H} . \rightarrow **cross-subsidy from low to high types**
 - It is impossible for low types to purchase a separating contract

- Focus on "1+1" market structure \rightarrow Divide sellers into two disjoint subgroups 1 and 2
 - \rightarrow buyers can trade with at most one seller from each group

- Focus on "1+1" market structure → Divide sellers into two disjoint subgroups 1 and 2
 - $\rightarrow\,$ buyers can trade with at most one seller from each group
- Characterization: Identify 4 necessary conditions that pin down candidates for equilibrium
 - **1** Global Incentive Compatibility
 - **2** Competitive Pricing
 - **Oconditional Efficiency** (MRS=marginal cost)
 - **4** Large Pooling

- Focus on "1+1" market structure \rightarrow Divide sellers into two disjoint subgroups 1 and 2
 - $\rightarrow\,$ buyers can trade with at most one seller from each group
- Characterization: Identify 4 necessary conditions that pin down candidates for equilibrium
 - **1** Global Incentive Compatibility
 - **2** Competitive Pricing
 - **Oconditional Efficiency** (MRS=marginal cost)
 - **4** Large Pooling
- Sufficient condition:
 - Latent contract blocks the cream-skimming deviations

► Necessary Conditions and Forms of Equilibrium

- Competitive Pricing
 - Pooling trade with break-even unit price c
 - High type separating with unit price c_H
 - Low type separating with unit price $[c_L, c]$

► Necessary Conditions and Forms of Equilibrium

- Competitive Pricing
 - Pooling trade with break-even unit price c
 - High type separating with unit price c_H
 - Low type separating with unit price $[c_L, c]$
- Conditional efficiency: $MRS_H = c_H$, $MRS_L = c$

► Necessary Conditions and Forms of Equilibrium

- Competitive Pricing
 - Pooling trade with break-even unit price c
 - High type separating with unit price c_H
 - Low type separating with unit price $[c_L, c]$
- Conditional efficiency: $MRS_H = c_H, MRS_L = c$
- Large Pooling: the pooling should be large to deter pivoting deviation (at most two trade)

Theorem:

Given an allocation (Q_L, T_L) and (Q_H, T_H) that satisfies the four necessary conditions,

Moreover, aggregate active trades are

- incentive compatible,
- competitively priced,
- conditionally efficient,
- **4** large pooling .

there exist finitely latent contracts that sustain this allocation as an equilibrium under the "1+1" market structure.

Note: this theorem requires the flatter curvature assumption to block cream-skimming deviations (i.e. type L no longer buys the pooling contract).

One Example of Flatter Curvature: $U_{\theta} = A_{\theta}Q - BQ^2 + C_{\theta} - T$

Welfare Comparison

▶ "1+1" VS "Exclusive Competition"

• The "Pooling+Separating" allocation in "1+1" Market structure

Welfare Comparison

▶ "1+1" VS "Exclusive Competition"

- The "Pooling+Separating" allocation in "1+1" Market structure
- RS allocation in exclusive market structure
 - High types are always better off with "1+1"

Welfare Comparison

▶ "1+1" VS "Exclusive Competition"

- The "Pooling+Separating" allocation in "1+1" Market structure
- RS allocation in exclusive market structure
 - High types are always better off with " $1{+}1$ "
 - Low types are better off with "1+1" in some cases

"1+1" market structure \rightarrow Divide sellers into two disjoint groups, buyers can trade with at most one seller from each group but can nonexclusively trade between groups

Unified result:

Any equilibrium allocation in a never exclusive structure (No seller can exclusively trade with buyers) is an equilibrium allocation in "1+1" market structure

Novel result:

New equilibria with "Pooling + Separating" form

Sustain some competitive positive profit equilibria

Desirable result:

Pareto Dominates Rothschild-Stiglitz allocation when rationing is severe

Sometimes sustain Second-best allocation

Weak Mandates: buyers should purchase enough quantity in group 1

- All the equilibria can still be equilibrium in the new setting
- New Pareto-efficient allocations exist: can Pareto Dominates JHG allocation