

Existence and Uniqueness of Recursive Equilibria with Aggregate and Idiosyncratic Risk

Elisabeth Pröhl

EEA-ESEM Barcelona August 31, 2023

Introduction

- Models with a continuum of heterogeneous agents facing aggregate risk:
 - Ex post: Agents are exposed to idiosyncratic risk like labor income risk ⇒ Incompleteness

Do solutions exist?

How do we compute them?

• Existing literature:

Closed-form solutions

- Aggregate and idiosyncratic risk: Brumm et al. (2017), Cao (2020), Miao (2006), Cheridito and Sagredo (2016)
- Idiosyncratic risk only: Light (2020), Achdou et al. (2017), Acemoglu and Jensen (2015), Açikgöz (2018), Wang (2003), Toda (2017)

Contribution

- Open question: Recursive equilibrium with minimal state space $h\left(z,\varepsilon,x,\mu^{(\varepsilon,x)}\right)$
- Strategy:
 - Show that the recursive equilibrium which depends on the cross-sectional distribution can be written in terms of random variables
 - Simplify the continuum of Euler equations to finitely many equations using random variables
 - Apply results from convex analysis to ensure a solution to the simplified Euler and market clearing equations
 - Sufficiency and uniqueness follows from convexity property

The (Simplified) Monotonicity Argument

• Denote the equilibrium equation depending on $h = (h_c, h_x)$ by $\mathbf{T}[h]$

• Sufficient conditions for each example model allow for the two candidate policies

- Production economy: Implicit bound on discount factor which decreases with capital depreciation and risk aversion
- Exchange economy: Finite aggregate endowments

Outline of the Talk

Generic Model

- 2 Characterizing the Equilibrium
- Existence and Uniqueness
- Onvergent Iterative Procedure

5 Examples

- The Aiyagari-Bewley Model
- The Huggett Economy

Generic Model

Exogenous variables

 $(z_t)_{t \ge 0} \in \mathbb{R}$ $(\varepsilon_t | z_t)_{t \ge 0} \in \mathbb{R}$

Endogenous variables

 $\begin{array}{l} (c_t)_{t\geq 0} & \mbox{individual consumption} \\ (k_t)_{t\geq 0} & \mbox{individual capital holdings} \\ (b_t)_{t\geq 0} & \mbox{individual bond holdings} \\ \left(R_t^k\right)_{t\geq 0} & \mbox{rental rate of capital} \\ \left(R_t^k\right)_{t\geq 0} & \mbox{bond return} \end{array}$

• Individual problem:

$$\begin{split} \max_{\substack{\{c_t,k_t,b_t\}_{t\geq 0}}} & \mathbb{E}\left[\sum_{t=0}^{\infty} \beta^t \frac{c_t^{1-\gamma}-1}{1-\gamma}\right] \\ \text{s.t.} & k_t+b_t+c_t=e\left(z_t,\varepsilon_t\right)+W_t l\left(z_t,\varepsilon_t\right)+(1+R_t^k)k_{t-1}+(1+R_t^b)b_{t-1}, \\ & k_t\geq \bar{k}, \, b_t\geq \bar{b}\,\forall t\geq 0 \end{split}$$

• Aggregate variables:

$$L_t = \int \int \int l(z_t, \varepsilon) d\mu_t(\varepsilon, k, b)$$
$$W_t = \frac{\partial}{\partial L} F(L_t, K_t)$$
$$R_t = \frac{\partial}{\partial K} F(L_t, K_t) - \delta$$

• Market clearing:

$$K_t = \int \int \int k d\mu_t(\varepsilon, k, b)$$
$$0 = \int \int \int b d\mu_t(\varepsilon, k, b)$$

• **Recursive equilibrium:** The optimal individual quantities c', k', b' are given by functions $g_x(z', \varepsilon', k, b, \mu')$, whereas, the aggregate equilibrium quantities $R^{k'}, R^{b'}$ are given by functions $g_A(z', \mu')$.

Outline of the talk

Generic Model

Characterizing the Equilibrium

Existence and Uniqueness

Examples

- The Aiyagari-Bewley Model
- The Huggett Economy

From Distributions to Random Variables

- How do we solve convex optimization problem? \Rightarrow Take derivatives
- Derivatives of $f(\mu)$: Change in the function value f when the argument changes in a certain direction from μ^1 to mu^2
- But, no notion of direction: Difference of two c.d.f.s $\mu^2 \mu^1$ is not a c.d.f.
- Use two real valued random variables $m^1 \sim \mu^1$ and $m^1 \sim \mu^1$: m^2-m^1 is a real-valued random variable as well
- Rewriting $f(\mu)$ by f(m) with $m\sim \mu$ ensures that we can take derivatives!

A Consistent Law of Motion of μ_t

• Summarize
$$x = (k, b)$$
.

 $\begin{array}{c|c} \textbf{Distributions} \\ \text{Start with given c.d.f. } \mu\left(\varepsilon,x\right) \\ \downarrow \\ \textbf{End-of-period:} \\ \tilde{\mu}\left(\varepsilon,x\right) = \\ \int_{\zeta \leq \varepsilon} \int_{\chi \geq \bar{x}} \mathbbm{1}_{\{g_x(z,\zeta,\chi,\mu) \leq x\}} d\mu\left(\zeta,\chi\right) \\ \textbf{Beginning-of-next-period:} \\ \mu'\left(\varepsilon',x\right) = \int_{\varepsilon \in \mathcal{Z}^{id}} \tilde{\mu}\left(\varepsilon,x\right) \mathbb{P}\left(\varepsilon' | d\varepsilon,z,z'\right) \end{array} \qquad \begin{array}{c} \textbf{Random Variables} \\ \text{Start with given } (\varepsilon,\chi) \sim \mu \\ \downarrow \\ \textbf{End-of-period:} \\ \tilde{\chi} = \\ g_x\left(z,\varepsilon,\chi,\mu\right) \\ \downarrow \\ \textbf{Beginning-of-next-period:} \\ (\varepsilon',\tilde{\chi}) = \left(\varepsilon',g_x\left(z,\varepsilon,\chi,\mu\right)\right) \end{array}$

• It follows by induction that $(\varepsilon_t, \chi_{t-1}) = (\varepsilon_t, f(z^{t-1}, \varepsilon^{t-1}, \chi_{-1}))$ with $f = g_x \circ \ldots \circ g_x$

- There exists a filtered probability space $L(\mathbf{P}, \Sigma_{\mathbf{P}}, \mathbb{P})$ containing the random variables (ε', χ) .
- Identify agent-specific quantities with $\omega \in \mathbf{P}$, i.e., $\varepsilon' = \varepsilon(\omega)$ and $x = \chi(\omega)$
- Rewrite recursive equilibrium:

$$h_x(z',\omega,m') = g_x(z',\varepsilon(\omega),\chi(\omega),\mu')$$

where $m' = (\varepsilon', \chi) \sim \mu'$

• Policies are now random fields (generalized stochastic processes) with the index $m' \Rightarrow$ Hilbert space C

• Simplifying the continuum of Euler equations with the Euler equation operator ${\bf T}:C\to C$ with

$$\begin{aligned} \mathbf{T}^{j}[h] &= -c'[h]^{-\gamma} + \mathbb{E}^{(z'',\varepsilon''|z',\varepsilon')} \left[\beta(1+R^{j}[h])c''[h]^{-\gamma}\right] \\ c'[h] &= e' + \frac{\partial}{\partial L} F(L', \mathbb{E}[\chi^{k}])l' + (1+h_{R^{k}})\chi^{k} + (1+h_{R^{b}})\chi^{b} - h_{k} - h_{b} \\ h_{R^{k}} &= \frac{\partial}{\partial K} F(L', \mathbb{E}[\chi^{k}]) - \delta \\ c''[h] &= e'' + \frac{\partial}{\partial L} F(L'', \mathbb{E}[h_{k}])l'' + (1+R^{k}[h])h_{k} + (1+R^{b}[h])h_{b} \\ &- h_{k} \circ h_{x} - h_{b} \circ h_{x} \end{aligned}$$
$$R^{j}[h] &= h_{R^{j}} \circ h_{x} \end{aligned}$$

$$\mathbf{B}[h] = -\int h_b d\mathbb{P}(\omega)$$

• Simplifying the continuum of Euler equations with the Euler equation operator ${\bf T}:C\to C$ with

$$\begin{split} \mathbf{T}^{j}[h] &= -c'[h]^{-\gamma} + \mathbb{E}^{(z'',\varepsilon''|z',\varepsilon')} \left[\beta(1+R^{j}[h])c''[h]^{-\gamma}\right] \\ c'[h] &= c' + \frac{\partial}{\partial L}F(L',\mathbb{E}[\chi^{k}])l' + (1+h_{R^{k}})\chi^{k} + (1+h_{R^{b}})\chi^{b} - h_{k} - h_{b} \\ h_{R^{k}} &= \frac{\partial}{\partial K}F(L',\mathbb{E}[\chi^{k}]) - \delta \\ c''[h] &= c'' + \frac{\partial}{\partial L}F(L'',\mathbb{E}[h_{k}])l'' + (1+R^{k}[h])h_{k} + (1+R^{b}[h])h_{b} \\ &- h_{k} \circ h_{x} - h_{b} \circ h_{x} \\ R^{j}[h] &= h_{R^{j}} \circ h_{x} \end{split}$$

• Bond market clearing operator $\mathbf{B}: C \to C$ with

$$\mathbf{B}[h] = -\int h_b d\mathbb{P}(\omega)$$

• Simplifying the continuum of Euler equations with the Euler equation operator ${\bf T}:C\to C$ with

$$\begin{split} \mathbf{T}^{j}[h] &= -c'[h]^{-\gamma} + \mathbb{E}^{(z'',\varepsilon''|z',\varepsilon')} \left[\beta(1+R^{j}[h])c''[h]^{-\gamma}\right] \\ c'[h] &= c' + \frac{\partial}{\partial L}F(L',\mathbb{E}[\chi^{k}])l' + (1+h_{R^{k}})\chi^{k} + (1+h_{R^{b}})\chi^{b} - h_{k} - h_{b} \\ h_{R^{k}} &= \frac{\partial}{\partial K}F(L',\mathbb{E}[\chi^{k}]) - \delta \\ c''[h] &= c'' + \frac{\partial}{\partial L}F(L'',\mathbb{E}[h_{k}])l'' + (1+R^{k}[h])h_{k} + (1+R^{b}[h])h_{b} \\ &- h_{k} \circ h_{x} - h_{b} \circ h_{x} \\ R^{j}[h] &= h_{R^{j}} \circ h_{x} \end{split}$$

$$\mathbf{B}[h] = -\int h_b d\mathbb{P}(\omega)$$

• Simplifying the continuum of Euler equations with the Euler equation operator ${\bf T}:C\to C$ with

$$\begin{split} \mathbf{T}^{j}[h] &= -c'[h]^{-\gamma} + \mathbb{E}^{(z'',\varepsilon''|z',\varepsilon')} \left[\beta(1+R^{j}[h])c''[h]^{-\gamma}\right] \\ c'[h] &= c' + \frac{\partial}{\partial L}F(L',\mathbb{E}[\chi^{k}])l' + (1+h_{R^{k}})\chi^{k} + (1+h_{R^{b}})\chi^{b} - h_{k} - h_{b} \\ h_{R^{k}} &= \frac{\partial}{\partial K}F(L',\mathbb{E}[\chi^{k}]) - \delta \\ c''[h] &= c'' + \frac{\partial}{\partial L}F(L'',\mathbb{E}[h_{k}])l'' + (1+R^{k}[h])h_{k} + (1+R^{b}[h])h_{b} \\ &- h_{k} \circ h_{x} - h_{b} \circ h_{x} \\ R^{j}[h] &= h_{R^{j}} \circ h_{x} \end{split}$$

$$\mathbf{B}[h] = -\int h_b d\mathbb{P}(\omega)$$

• Simplifying the continuum of Euler equations with the Euler equation operator ${\bf T}:C\to C$ with

$$\begin{split} \mathbf{T}^{j}[h] &= -c'[h]^{-\gamma} + \mathbb{E}^{(z'',\varepsilon''|z',\varepsilon')} \left[\beta(1+R^{j}[h])c''[h]^{-\gamma}\right] \\ c'[h] &= e' + \frac{\partial}{\partial L}F(L',\mathbb{E}[\chi^{k}])l' + (1+h_{R^{k}})\chi^{k} + (1+h_{R^{b}})\chi^{b} - h_{k} - h_{b} \\ h_{R^{k}} &= \frac{\partial}{\partial K}F(L',\mathbb{E}[\chi^{k}]) - \delta \\ c''[h] &= e'' + \frac{\partial}{\partial L}F(L'',\mathbb{E}[h_{k}])l'' + (1+R^{k}[h])h_{k} + (1+R^{b}[h])h_{b} \\ &- h_{k} \circ h_{x} - h_{b} \circ h_{x} \\ R^{j}[h] &= h_{R^{j}} \circ h_{x} \end{split}$$

$$\mathbf{B}[h] = -\int h_b d\mathbb{P}(\omega)$$

Outline of the talk

Generic Model

Characterizing the Equilibrium

Existence and Uniqueness

Convergent Iterative Procedure

Examples

- The Aiyagari-Bewley Model
- The Huggett Economy

Existence and Uniqueness

• Main idea: Use a theorem for existence of a root

Rockafellar (1969): If **M** is a maximal monotone operator and there exists a subset $B \subset D(\mathbf{M})$ such that $0 \in int(conv(\mathbf{M}(B)))$, then there exists a $c \in C$ such that $0 \in \mathbf{M}(c)$.

- Generalizes the intermediate value theorem: There exists a root of a continuous real function f if there are two points $b_1, b_2 \in \mathbb{R}$ with $f(b_1) > 0$ and $f(b_2) < 0$.
- Uniqueness: follows from strict monotonicity
- Strategy: Show maximal (strict) monotonicity of

$$\mathbf{M}[h, y] = \left\{ \begin{bmatrix} \mathbf{T}[h] + y \\ \mathbf{B}[h] \end{bmatrix}, \ (h_x - \bar{x}) \perp y \ge 0 \right\}$$

First: Model without Borrowing Constraints

- Unconstrained case: Maximal monotonicity of M requires various assumptions:
- $oldsymbol{0}$ square-integrability of exogenous shocks, e, l, the index set m'
- **2** Admissible set $h \in \mathcal{H}$:
 - positive consumption and returns
 - consumption increases on average with higher cash on hand
 - bond return decreases with higher aggregate bond demand
 - ${\, \bullet \, }$ continuity and differentiability in the index m'
 - $\, \bullet \,$ concavity of consumption and convexity of bond return in m'
 - transversality condition

Second: Attaching the Borrowing Constraints

 $\bullet\,$ There exists an objective function which is optimized at the root of the maximal monotone operator ${\bf M}\,$

$$L_{\mathbf{M}}(h) = \sup_{g \in \mathcal{H}} \langle \mathbf{M}[g], h - g \rangle$$

• Attaching the borrowing constraint

$$L(h,y) = L_{\mathbf{M}}(h) + \langle \bar{x} - h, y \rangle$$

preserves maximal monotonicity for the first-order condition.

• Interpretation of the Lagrangian: Benevolent social planner

Outline of the talk

Generic Model

- 2 Characterizing the Equilibrium
- 3 Existence and Uniqueness

Examples

- The Aiyagari-Bewley Model
- The Huggett Economy

The Iterative Algorithm

- We want a policy updating rule $h^n = F(h^{n-1})$ such that $h^n \xrightarrow{n \to \infty} h$ with $\mathbf{M}[h] = 0$, where \mathbf{M} denotes the equilibrium equation
- Standard value function iteration is not guaranteed to converge
- Monotonicity guarantees convergence of a modified iteration:

 $\mathbf{M}[h] = 0 \Leftrightarrow \mathbf{M}[h] + h = h \Leftrightarrow (\mathbf{M} + \mathbf{Id})[h] = h \Leftrightarrow h = (\mathbf{M} + \mathbf{Id})^{-1}[h],$

- ⇒ Iterating on the resolvent is equivalent to damped fixed-point iteration and thus, $h^{n+1} = (\mathbf{M} + \mathbf{Id})^{-1} [h^n]$ converges.
 - The resolvent can be computed by maximizing the Lagrangian augmented by some regularization terms

Outline of the talk

- Generic Model
- 2 Characterizing the Equilibrium
- 3 Existence and Uniqueness
- 4 Convergent Iterative Procedure

5 Examples

- The Aiyagari-Bewley Model
- The Huggett Economy

Capital Only: The Aiyagari-Bewley Model

• Model specifics:

- Aggregate risk affects productivity, idiosyncratic risk the employment status
- Wage and rental rate follow from a Cobb-Douglas production function
- Exogenous labor supply features unemployment insurance

$$l(z,\varepsilon) = \varepsilon \pi (1-\tau) + (1-\varepsilon)\nu$$

• Borrowing constraint $k\geq 0$

• Sufficient conditions:

- (i) $\gamma \ge 1$ and $\beta(1-\delta)^{1-\gamma} < 1$, OR,
- (ii) $\gamma < 1$, minimum productivity such that

$$\frac{F\left(z_{\min}'',1\right)}{\max_{z'}\mathbb{E}^{(z''|z')}F\left(z'',1\right)} > \alpha \frac{\delta\beta^{\frac{1}{1-\gamma}}}{\delta\beta^{\frac{1}{1-\gamma}} + \left(1-\beta^{\frac{1}{1-\gamma}}\right)}.$$

and minimum initial capital $K_0 > K_{\min}$ with K_{\min} given by

$$\left(1 + \max_{z'} \mathbb{E}^{(z''|z')} R\left(z'', K_{\min}\right)\right)^{1-\gamma} = \frac{1}{\beta}$$

Existence and Uniqueness

Bonds Only: The Huggett Economy

Model specifics:

- No firm/capital, only exogenous endowments
- Aggregate and idiosyncratic risk affect the endowments
- Borrowing constraint $b \geq \overline{b}$

• Sufficient conditions: Minimum and maximum average endowment

$$0 \le \min_{z} \mathbb{E}\left[e(\varepsilon, z) | z\right] \le \max_{z} \mathbb{E}\left[e(\varepsilon, z) | z\right] < \infty$$

Conclusions

- Describe the cross-sectional distribution and its law of motion in terms of random variables
- Reduce the continuum of Euler equation to an operator by substituting the individual security holdings with the corresponding random variable
- Use results from convex analysis to derive existence and uniqueness

Thank you for your attention!