Grants vs. Loans: the Role of Financial Aid in College Major Choice

Adriano de Falco Yannick Reichlin

European University Institute

Introduction

▷ Choice of college major is an important investment decision

- · Comparable to decision of whether to attend university at all
- Return heterog. across majors ≥ college premium (Patnaik et al., 2020, Kirkeboen et al., 2016)
- Two margins why student loan recipients might differ from grant holders:
 - 1 Concerns about repayment \implies choice of high return field

Preview of Talk and Findings

- $\triangleright\,$ We use quasi-random allocation of loans and grants in Chile
 - Test score threshold grants access: RD design
 - Estimate causal effect of being eligible for a grant as opposed to a loan
 - Combine the RDD with a discrete choice model to highlight mechanisms
- ▷ Being eligible for a grant as opposed to a loan:
 - Increases enrollment in higher education (mostly universities)
 - Increases STEM enrollment and graduation by up to 12.5%
 - Decreases worries about program-specific dropout probabilities and time to completion, but does not affect valuation of labor-market outcomes

Related Papers and Contribution

▷ Few papers on aid provision and college major choices List

- Mainly focus on merit aid and sets of US universities
- Lower STEM enrollment in response to more generous aid
- Hampole (2022): \Uparrow Aid \implies Low initial earnings, but steeper trajectory
- ▷ Key differences / contributions:
 - 1. Harmonized financial aid system across entire country
 - 2. Average students, not high-achievers
 - 3. Disentangling influence of several correlated program characteristics

Setting: Chilean Higher Education System

- $\triangleright~$ As in most of Europe: students enroll in institution $\times~$ major combination
- High tuition fees relative to median family income compared to rest of OECD
 - Median yearly tuition (family income): \$3,000 (\$5,600)
 - 10th percentile tuition: \$1,800
- State-backed financing of up to 90% of reference tuition (loan or grant)
- Access to financing determined as combination of:
 - (i) Family income (quintile bins)
 - (ii) Standardized Test taken after high school (*PSU*)

Data and Empirical Strategy

- Merge Information from two data sources:
 - Ministry of Educ.: adm. records on universe of students (2011 2014)
 - DEMRE: PSU results and socio-dem. info for all test takers

▷ Our estimand of interest is the standard Sharp RD parameter:

$$\tau_{SRD} = \lim_{z \to 0^+} \mathbb{E}[Y_i | PSU_i^* = z] - \lim_{z \to 0^-} \mathbb{E}[Y_i | PSU_i^* = z]$$

▷ In practice, we estimate weighted local linear regressions:

$$egin{aligned} &Y_i = eta_0 + eta_1 \mathbbm{1}\{PSU_i^* \geq 0\} \ &+ eta_2 \mathbbm{1}\{PSU_i^* \geq 0\} imes PSU_i^* + eta_3 PSU_i^* + X_i'\delta + arepsilon_i \end{aligned}$$

Grant Take-Up

McCrary Test

Balance Test

Effect of Being Eligible for Grants (Sharp RDD)

Table: Optimal Bandwidth

Figure: Non-parametric Evidence

	STEM (=1)	Engineering $(=1)$	Sciences (=1)
	(1)	(2)	(3)
RD Estimate	0.029***	0.023***	0.005**
	(0.007)	(0.007)	(0.002)
Baseline Mean	0.253	0.232	0.021
Bandwidth	41	44	46
Effective N	52,522	56,358	58,733

By Year - Quintile

By Institution type

By Sociodemographics

General Enrollment

Effect of Grant Eligibility on All Fields

Figure: Effect of Grants vs. Loans: all Fields

Hastings et al. (2013) estimate STEM, Social Sciences, and Health to be highest-return fields in Chile

Summary and Reason for a Model

▷ On average, grants increase enrollment in high return fields

- But: STEM fields also those with highest dropout rates
- Which characteristic interacts with aid is not clear from RDD
- Model allows us to consider narrower fields (up to data limitations)
 - Ideal: compare fields with comparable characteristics, expect for one dimension
 - I.e., consider variation within STEM degrees

Data from MiFuturo.cl

- Mifuturo: transparency initiative of Chilean Ministry of Education
 - Provides information on programs, drawn from past cohorts
 - We use 206 programs defined as major by institution type (university, vocational)
 - Information on: earnings for graduates in first five years, employment rates after graduation, earnings percentiles, dropout rates, formal and realized time to graduation
- No subjective expectations data, but reasonable anchor

Discrete Choice Model and Estimation

- ▷ Consider j = 1,..., J programs, with k = 1,2,..., K characteristics, and two groups g = {Loan, Grant}
 - Example for *j*: Chemistry at a University
 - Example for k: Expected Earnings for graduates of j
- Students maximize over j:

$$U_{ij}^{g} = \sum_{k} x_{j,k} (\tau_{k}^{g} + \beta_{k}^{g} PSU_{i}^{*}) + \varepsilon_{ij}$$

- PSU^{*}_i is individual i's test score, normalized by grant cut-off
- $\varepsilon_{i,j}$ is i.i.d. Extreme Value Taste Shock
- Estimate $\{\tau_k^g,\beta_k^g\}_{g,k}$ by maximum-likelihood within a narrow bandwidth

$$\implies$$
 Our target is $\Delta_k = au_k^{Grant} - au_k^{Loan}$

Difference in Valuation of Characteristics across Aid Types

Table:	Difference i	n V	aluation	of	Characteristics	across Aid	Types:	Δ_k
--------	--------------	-----	----------	----	-----------------	------------	--------	------------

	(1)	(2)	(3)
Excess Study Time	0.05	0.055*	0.054**
	(0.035)	(0.03)	(0.027)
Share Dropout	1.83**	1.269*	0.907
	(0.824)	(0.714)	(0.638)
Earnings, year 1	-0.035	-0.023	-0.018
	(0.033)	(0.028)	(0.024)
Earnings Growth, year 1 to 5	0.364	0.407	0.339
	(0.358)	(0.309)	(0.276)
Earnings Pct.90/Pct.10	-0.047	-0.036	-0.023
	(0.081)	(0.070)	(0.062)
Share Employed	-0.014	-0.619	-0.767
	(2.000)	(1.715)	(1.525)
Ν	15,114	20,298	25,293
Bandwidth	15	20	25

This does not translate into higher realized dropout rates and time spent at college Graduation results

Discussion

- ▷ Type of Financial Aid affects Students' Major Choices
 - Suggest uncertainty about degree completion as channel
- ▷ We estimate local treatment effects around PSU cut-off
 - Considered students are of average academic preparedness (contrast to e.g., Sjoquist and Winters, 2015)
- Chilean aid system is highly transparent; students are well informed
 - Previous research: uncertainty about aid eligibility impacts effectiveness (Bettinger et al., 2012; Dynarski et al., 2021)

Thank you

References

- Cornwell, Christopher, David B Mustard, and Deepa J Sridhar. 2006. "The enrollment effects of merit-based financial aid: Evidence from Georgia's HOPE program." Journal of Labor Economics, 24(4): 761–786.
- Hampole, Menaka. 2022. "Financial Frictions and Human Capital Investments." mimeo.
- Rothstein, Jesse, and Cecilia Elena Rouse. 2011. "Constrained after college: Student loans and early-career occupational choices." Journal of Public Economics, 95(1-2): 149–163.
- Sjoquist, David L, and John V Winters. 2015a. "The effect of Georgia's HOPE scholarship on college major: a focus on STEM." IZA Journal of Labor Economics, 4(1): 1–29.
- Sjoquist, David L, and John V Winters. 2015b. "State merit aid programs and college major: A focus on STEM." Journal of Labor Economics, 33(4): 973–1006.
- Stater, Mark. 2011. "Financial aid, student background, and the choice of first-year college major." Eastern Economic Journal, 37(3): 321–343.

Prueba de Selección Universitaria (PSU)

- Back
- Administered yearly in early December by DEMRE (part of UChile) in country-wide testing centers
- Nationally standardized multiple choice test:
 - Two mandatory components: *Mathematics* and *Language*
 - At least one of: *Science* or *History, Geography, and Social Science*
 - Results are standardized ($\mu=500,\ \sigma=110,\ {\sf Range:}\ 150{-}850$)
- > Only average of mandatory fields used for grant eligibility

Eligibility Criteria for Grants

why excluding 500?

Table: PSU Threshold for Grant Eligibility

Bicentennial and Juan Gomez Millas (JGM)						
	2012	2013	2014	2015		
Quintile 1	550	500	500	500		
Quintile 2	550	525	525	500		
Quintile 3	550	550	550	500		
> Quintile 3	N.E.	N.E.	N.E.	N.E. / 500		

Note: Displayed are the minimum test score averages of math and language that grant eligibility to either of the two scholarships, by year and family income quintile. N.E.: not eligible. Bicentennial and JGM grants are received conditional on enrolling in CRUCH and accredited universities, respectively.

First Stage: Take-Up of Grants around Cut-off

Figure: Take-up of any grant in 1.25 PSU point bins

Identification: No Sorting

Figure: McCrary Test for Discontinuity in Running Variable

Identification: Continuity Potential Outcomes

Back

Table: Covariate Balance around Grant Eligibility Cut-off

	Baseline (β_0)	RD Estimate (β_1)	SE $(\hat{\beta}_1)$
High School GPA	5.725	0.002	0.008
# Working Family Members	1.159	-0.001	0.011
# Studying Family Members	0.100	-0.004	0.005
Female	0.540	0.004	0.007
Single Mother HH	0.188	-0.004	0.004
Academic Parents	0.445	-0.015**	0.009
Took Science Test	0.667	0.002	0.009
Municipal School	0.271	-0.007	0.004
Subsidized School	0.673	-0.010**	0.004
Academic School	0.809	-0.006	0.006
**	- 0 0F * - 0 10)	

***p* < 0.05, **p* < 0.10.

Effect on STEM: by year and family income quintile

		Year 2012	Year 2013	Year 2014
	PD Ectimate	0.034*		
Quintilo 1		(0.018)		
Quintile 1				
	Baseline	0.243		
	PSU Cut-off	550		
	N	11,654		
	PD Ectimate	0.013	0.042**	0.032**
Quintila 2	ND Estimate	(0.024)	(0.017)	(0.014)
Quintile 2				
	Baseline	0.251	0.261	0.263
	PSU Cut-Off	550	525	525
	N	7,669	11,263	11,368
	PD Ectimate	0.037*	0.027	0.006
Outatile 2	ND Estimate	(0.021)	(0.019)	(0.020)
Quintile 5				
	Baseline	0.211	0.262	0.270
	PSU Cut-off	550	550	550
	N	5,777	7,772	7,911

Back

Effect on STEM: by year and family income quintile

Table: Effect of Grants vs. Loans on Enrollment in STEM, by Institution Types

		STEM in	
	CRUCH	Private Uni	Vocational
$RD_{-}Estimate$	0.020***	0.007**	0.001
	(0.005)	(0.003)	(0.004)
Baseline Mean	0.140	0.043	0.070
Bandwidth	50	50	50
Effective N	62,668	62,668	62,668
*:	* <i>p</i> < 0.05, *	** <i>p</i> < 0.01.	

Heterogeneity: Effect on STEM by Subgroups

		Gender	
	Male	Female	Δ of Coefficients
RD_Estimate	0.042***	0.020**	-0.022
	(0.013)	(0.008)	(0.015)
Baseline Mean	0.398	0.130	
Effective N	28,167	27,210	
		Parental Educa	tion
	Second-Gen	First-Gen	Δ of Coefficients
RD_Estimate	0.025***	0.033***	0.008
	(0.009)	(0.010)	(0.013)
Baseline Mean	0.251	0.252	
Effective N	28,202	28,344	
		Parental Inco	ne
	Quintile 2+3	First Quintile	Δ of Coefficients
RD_Estimate	0.028***	0.034**	0.006
	(0.008)	(0.017)	(0.019)
Baseline Mean	0.255	0.243	
Effective N	42,475	12,969	

Back

Placebo Test: RD Estimate on Non-Eligible Population

RD Estimates for Various Bandwidths

Figure: Effect on STEM Enrollment

Bandwidth

RD Estimates on General Enrollment

Back

Table: Effect of Grants vs. Loans on Enrollment in Different Institution Types

	Enrolled in					
	Any Institution	CRUCH	Private Uni	Vocational		
RD_Estimate	0.032***	0.029***	0.009	-0.005		
	(0.006)	(0.007)	(0.008)	(0.006)		
Baseline Mean	0.797	0.357	0.295	0.146		
Bandwidth	50	50	50	50		
Effective N	62,668	62,668	62,668	62,668		
		م بادیادیاد				

** *p* < 0.05, *** *p* < 0.01.

Effect of Grant Eligibility on All Fields: Rescaled

Back

Figure: Effect of Grants vs. Loans: Coeff. rescaled by Baseline Enrollment

Financial Aid and STEM Subfields

Table: Results for STEM subfields: Engineering and Natural Sciences

	Engineer	ing $(=1)$	Natural Sciences (=1)		
RD Estimate	0.022**	0.021*	0.005**	0.006*	
	(0.009)	(0.011)	(0.002)	(0.003)	
Baseline Mean	0.234	0.238	0.021	0.021	
Bandwidth	43.3	25	49.9	25	
Effective N	59,634	34,875	67,788	34,875	

Back

Back

Ingreso Promedio Tramos de Ingreso Evolución Ingreso Empleabilidad Evolución Empleabilidad Titulados Matrícula y Retención Establecimiento de Origen
--

Matemáticas y/o Estadísticas

Ingresos brutos mensuales (en pesos a septiembre de 2021)

Más Información

Number of Programs as a function of PSU

Increase Risk Taking and Graduation

Table: Effect of Grants vs. Loans on Graduation Conditional on Enrollment

	Graduated in		Years to Completion in			
	Any	STEM	Any	Any	STEM	STEM
	(1)	(2)	(3)	(4)	(5)	(6)
RD Estimate	0.008	-0.004	0.071**	0.040	0.152**	0.075
	(0.010)	(0.013)	(0.035)	(0.026)	(0.068)	(0.057)
Baseline Mean	0.607	0.464	5.823	5.823	5.623	5.623
Bandwidth	63	79	38	47	62	67
Effective N	62,061	24,961	24,358	29,736	9,503	10,247
# Semester Req.			No	Yes	No	Yes

Note: * p < 0.1, ** p < 0.05, *** p < 0.01.