A Quantitative Analysis of Trade Cooperation Over Three Decades

Marcos Ritel
September 2023

KLU Hamburg
Over the Last Three Decades, the Apex and the Slowdown of Trade Growth

Figure 1: Goods Imports
Tariffs Remain at Historically Low Levels, Despite Globalization Backlashes

Figure 2: Average MFN Tariffs
In this period the extent of global cooperation was not always clear.

- Some more systematic evidence of changes in global cooperation is so far missing.
In this period the extent of global cooperation was not always clear.

- Some more systematic evidence of changes in global cooperation is so far missing.

- Trade restrictions may impact markets in non-trivial ways due to \textbf{general equilibrium linkages across countries and sectors}.
In this period the extent of global cooperation was not always clear.

- Some more systematic evidence of changes in global cooperation is so far missing.

- Trade restrictions may impact markets in non-trivial ways due to general equilibrium linkages across countries and sectors.

- For instance, an increase in import tariffs may:
In this period the extent of global cooperation was not always clear.

- Some more systematic evidence of changes in global cooperation is so far missing.

- Trade restrictions may impact markets in non-trivial ways due to general equilibrium linkages across countries and sectors.

- For instance, an increase in import tariffs may:
 - Benefit all foreign exporters if it bids up domestic input prices (e.g. labor) and affects import competition in the rest of the economy.
- Some more systematic evidence of changes in global cooperation is so far missing.

- Trade restrictions may impact markets in non-trivial ways due to general equilibrium linkages across countries and sectors.

- For instance, an increase in import tariffs may:
 - Benefit all foreign exporters if it bids up domestic input prices (e.g. labor) and affects import competition in the rest of the economy.
 - Harm foreign producers that source domestic inputs via global supply chains.
This Paper

- Documents changes in three decades of trade cooperation inside the WTO.
This Paper

- Documents changes in three decades of trade cooperation inside the WTO.

- Builds on a modern quantitative trade policy model featuring input-output linkages, mark-up distortions and special interest politics.

\[G_i = \left(W_{pol_i} \right) \left(1 - \theta_i \right) \times \left(W_{pol_i} - \theta_i \right) \]

- A \(\theta > 0 \) induces governments to:
 i) discount unilateral terms-of-trade gains (Bagwell and Staiger, 1999).
 ii) shift profits to politically influential firms abroad (Ludema and Mayda, 2013).

- This approach can flexibly rationalize any equilibrium cooperative tariff.

- For each country and year, I recover welfare weights \(\theta_i \) that, given partners' trade policy, minimize the distance between \(t_i(\theta) \) and \(t_{MFN_i} \).

4
This Paper

- Documents changes in three decades of trade cooperation inside the WTO.

- Builds on a modern quantitative trade policy model featuring input-output linkages, mark-up distortions and special interest politics.

- How to measure cooperation? I propose a reduced form approach to trade negotiations.

\[
G_i = (W_{pol_i}) (1 - \theta_i) \times (W_{pol_i} - i) (\theta_i)
\]

- A \(\theta > 0 \) induces governments to:

 i) discount unilateral terms-of-trade gains (Bagwell and Staiger, 1999).

 ii) shift profits to politically influential firms abroad (Ludema and Mayda, 2013).

- This approach can flexibly rationalize any equilibrium cooperative tariff.

- For each country and year, I recover welfare weights \(\theta_i \) that, given partners' trade policy, minimize the distance between \(t_i(\theta_i) \) and \(t_{MFN_i} \).
This Paper

- Documents changes in three decades of trade cooperation inside the WTO.
- Builds on a modern quantitative trade policy model featuring input-output linkages, mark-up distortions and special interest politics.
- How to measure cooperation? I propose a reduced form approach to trade negotiations.
- Politically motivated governments choose tariffs according to:

\[G_i = (W_i^{pol})^{(1-\theta_i)} \times (W_{-i}^{pol})^{(\theta_i)} \]
- Documents changes in three decades of trade cooperation inside the WTO.
- Builds on a modern quantitative trade policy model featuring input-output linkages, mark-up distortions and special interest politics.
- How to measure cooperation? I propose a reduced form approach to trade negotiations
- Politically motivated governments choose tariffs according to:

\[G_i = (W_i^{pol})^{(1-\theta_i)} \times (W_{-i}^{pol})^{(\theta_i)} \]

- A \(\theta > 0 \) induces governments to:
- Documents changes in three decades of trade cooperation inside the WTO.

- Builds on a modern quantitative trade policy model featuring input-output linkages, mark-up distortions and special interest politics.

- How to measure cooperation? I propose a reduced form approach to trade negotiations

- Politically motivated governments choose tariffs according to:

\[G_i = (W_{i}^{pol})^{(1-\theta_i)} \times (W_{-i}^{pol})^{(\theta_i)} \]

- A \(\theta > 0 \) induces governments to:

i) discount unilateral terms-of-trade gains (Bagwell and Staiger, 1999).
This Paper

- Documents changes in three decades of trade cooperation inside the WTO.
- Builds on a modern quantitative trade policy model featuring input-output linkages, mark-up distortions and special interest politics.
- How to measure cooperation? I propose a reduced form approach to trade negotiations.
- Politically motivated governments choose tariffs according to:

\[G_i = (W_i^{pol})^{(1-\theta_i)} \times (W_{-i}^{pol})^{(\theta_i)} \]

- A \(\theta > 0 \) induces governments to:

 i) discount unilateral terms-of-trade gains (Bagwell and Staiger, 1999).
 ii) shift profits to politically influential firms abroad (Ludema and Mayda, 2013).
- Documents changes in three decades of trade cooperation inside the WTO.

- Builds on a modern quantitative trade policy model featuring input-output linkages, mark-up distortions and special interest politics.

- How to measure cooperation? I propose a reduced form approach to trade negotiations

- Politically motivated governments choose tariffs according to:

\[G_i = (W_{i}^{pol})^{(1-\theta_i)} \times (W_{-i}^{pol})^{(\theta_i)} \]

- A \(\theta > 0 \) induces governments to:
 i) discount unilateral terms-of-trade gains (Bagwell and Staiger, 1999).
 ii) shift profits to politically influential firms abroad (Ludema and Mayda, 2013).

- This approach can flexibly rationalize any equilibrium cooperative tariff.
This Paper

- Documents changes in three decades of trade cooperation inside the WTO.
- Builds on a modern quantitative trade policy model featuring input-output linkages, mark-up distortions and special interest politics.
- How to measure cooperation? I propose a reduced form approach to trade negotiations
- Politically motivated governments choose tariffs according to:

 \[G_i = (W_i^{pol})^{(1-\theta_i)} \times (W_{-i}^{pol})^{(\theta_i)} \]

- A \(\theta > 0 \) induces governments to:
 i) discount unilateral terms-of-trade gains (Bagwell and Staiger, 1999).
 ii) shift profits to politically influential firms abroad (Ludema and Mayda, 2013).
- This approach can flexibly rationalize any equilibrium cooperative tariff.
- For each country and year, I recover welfare weights \(\theta_i \) that, given partners' trade policy, minimize the distance between \(t_i(\theta) \) and \(t_i^{MFN} \).

- Quantitative trade policy with endogenous tariff setting: Lashkaripour and Beshkar (2020), Lashkaripour (2021), Ossa (2014), Bagwell et al. (2021), Lashkaripour and Lugovskyy (2023).

- Quantitative trade policy with endogenous tariff setting: Lashkaripour and Beshkar (2020), Lashkaripour (2021), Ossa (2014), Bagwell et al. (2021), Lashkaripour and Lugovskyy (2023).

Theoretical Framework
Theoretical Framework

Multi-country, multi-sector quantitative model of commercial policy.

- Cobb-Douglas-CES preferences.
Multi-country, multi-sector quantitative model of commercial policy.

- Cobb-Douglas-CES preferences.
- Monop. competition, homogeneous firms and no entry (Ossa, 2014, 2016).
Multi-country, multi-sector quantitative model of commercial policy.

- Cobb-Douglas-CES preferences.
- Monop. competition, homogeneous firms and no entry (Ossa, 2014, 2016).
- I-O linkages (Caliendo and Parro, 2015).
Multi-country, multi-sector quantitative model of commercial policy.

- Cobb-Douglas-CES preferences.
- Monop. competition, homogeneous firms and no entry (Ossa, 2014, 2016).
- I-O linkages (Caliendo and Parro, 2015).
- Iceberg trade barriers and ad-valorem import tariffs (only policy instrument).
Theoretical Framework

Equilibrium:

- Utility maximization: firms face standard CES demands.
Equilibrium:

- Utility maximization: firms face standard CES demands.
- Firms charge a constant markup over marginal costs.
Equilibrium:

- Utility maximization: firms face standard CES demands.
- Firms charge a constant markup over marginal costs
- Profits account for a fixed share of industry revenues.
Equilibrium:

- Utility maximization: firms face standard CES demands.
- Firms charge a constant markup over marginal costs
- Profits account for a fixed share of industry revenues.
- The model yields a standard gravity equation.
Theoretical Framework

Partial Trade Cooperation

- Political Welfare (Ossa, 2014):

\[W_{i}^{pol} = \sum_{s} (\lambda_{i}^{s} \times W_{i}^{s}) \]
Partial Trade Cooperation

- Political Welfare (Ossa, 2014):

\[W_{i}^{pol} = \sum_{s} (\lambda_{i}^{s} \times W_{i}^{s}) \]

- Government’s objective function:

\[G_{i} = (W_{i}^{pol})^{(1-\theta_{i})} \left(\prod_{j \in WTO-i} W_{j}^{pol} \right)^{(\theta_{i})} \]
Theoretical Framework

Partial Trade Cooperation

- Political Welfare (Ossa, 2014):

\[W_{i}^{pol} = \sum_{s} (\lambda_{i}^{s} \times W_{i}^{s}) \]

- Government’s objective function:

\[G_{i} = (W_{i}^{pol})^{(1-\theta_{i})} \left(\prod_{j \in WTO-i} W_{j}^{pol} \right)^{\theta_{i}} \]

- How tariffs impact \(G_{i} \):

• Benefit the protectionist country through changes in wages and industry profits.
• An analogous, but opposite adjustment takes place in the economies of WTO partners.
• The larger \(\theta_{i} \), the more the negative impact abroad of tariffs will be relatively taken into account.
Partial Trade Cooperation

- Political Welfare (Ossa, 2014):

\[W_{i}^{pol} = \sum_{s} (\lambda_{i}^{s} \times W_{i}^{s}) \]

- Government's objective function:

\[G_{i} = (W_{i}^{pol})^{(1-\theta_{i})} \left(\prod_{j \in WTO-i} W_{j}^{pol} \right)^{(\theta_{i})} \]

- How tariffs impact \(G_{i} \):

 - Benefit the protectionist country through changes in wages and industry profits.
Theoretical Framework

Partial Trade Cooperation

- Political Welfare (Ossa, 2014):

\[W_{i}^{pol} = \sum_{s} (\lambda_{i}^{s} \times W_{i}^{s}) \]

- Government’s objective function:

\[G_{i} = (W_{i}^{pol})^{(1-\theta_{i})} \left(\prod_{j \in WTO-i} W_{j}^{pol} \right)^{\theta_{i}} \]

- How tariffs impact \(G_{i} \):

 - Benefit the protectionist country through changes in wages and industry profits.

 - An analogous, but opposite adjustment take place in the economies of WTO partners.
Theoretical Framework

Partial Trade Cooperation

- Political Welfare (Ossa, 2014):

\[W_{i}^{pol} = \sum_{s} (\lambda_{i}^{s} \times W_{i}^{s}) \]

- Government’s objective function:

\[G_{i} = (W_{i}^{pol})^{(1-\theta_{i})} (\prod_{j \in WTO_{i}} W_{j}^{pol})^{(\theta_{i})} \]

- How tariffs impact \(G_{i} \):

 - Benefit the protectionist country through changes in wages and industry profits.

 - An analogous, but opposite adjustment take place in the economies of WTO partners.

 - The larger \(\theta_{i} \), the more the negative impact abroad of tariffs will be relatively taken into account.
‘Hat Algebra’ (Dekle et al, 2008)

- Equilibrium in terms of changes in tariffs and endogenous variables.
Theoretical Framework

‘Hat Algebra’ (Dekle et al, 2008)

- Equilibrium in terms of changes in tariffs and endogenous variables.
- Model perfectly matches global production and trade in the baseline.
‘Hat Algebra’ (Dekle et al, 2008)

- Equilibrium in terms of changes in tariffs and endogenous variables.
- Model perfectly matches global production and trade in the baseline.

Solving for Counterfactual Tariffs

- \(\hat{\ell}_i^c \) maximize \(\hat{G}_i(\theta_i) \) s.t. equilibrium conditions in changes.
Theoretical Framework

‘Hat Algebra’ (Dekle et al, 2008)

- Equilibrium in terms of changes in tariffs and endogenous variables.
- Model perfectly matches global production and trade in the baseline.

Solving for Counterfactual Tariffs

- \hat{t}_i^c maximize $\hat{G}_i(\theta_i)$ s.t. equilibrium conditions in changes.
- Enforce duty-free treatment to PTA partners.
Data and Calibration
Data and Calibration

Australia, Brazil, Canada, China, the European Union, India, Japan, Korea, Mexico, the USA and a Rest of the World.

Production, Trade and I-O structure

- WIOD and WITS

Trade Policy

- MFN Tariffs: WITS
- PTAs: Baier and Bergstrand database

Estimation of the trade elasticity:

- Model-implied gravity equation (Fontagné et al., 2022):

\[X_{ijt}^s = \exp \left[-\sigma_s \ln(1 + t_{ijt}^s) + \nu_{jt}^s + \nu_{it}^s + \nu_{ij}^s \right] + \epsilon_{ijt}^s \]

- List of sectors and elasticities of substitution
Political Economy Weights

- The cross-sector distribution of tariffs reflect the action of lobbies (Ossa, 2014).
- To identify political economy weights, I calibrate λ^s_i such that non-cooperative tariffs match cross-sector tariff data after controlling for its mean.

Figure 3: Example: Brazil in 2020
Data and Calibration

Cooperation Parameters

- Pick θ_i that moves countries from a political noncooperative equilibrium to one that approximate the empirical distribution of tariffs.

![Figure 4: Model Fit - mean tariffs](image)

- At the sector-level, 80% correlation between predicted tariffs and the data.
Results
Figure 5: Global Trade Cooperation (1988 - 2020)
Cooperation Increased Everywhere

- Even among developed countries, which already adopted low import tariffs in 1988.
Results

Cooperation Increased Everywhere

- Even among developed countries, which already adopted low import tariffs in 1988.

- Larger cooperation growth in developing countries.
Cooperation Increased Everywhere

- Even among developed countries, which already adopted low import tariffs in 1988.
- Larger cooperation growth in developing countries.
- No widespread decrease in cooperation, but this is visible in some countries.
Results

What drives variation?

- Expansion in cooperation consistent with changes in trade and tariffs.
What drives variation?

- Expansion in cooperation consistent with changes in trade and tariffs.
- Higher trade flows and lower tariffs imply a higher internalization of the trade externality.
Results

What drives variation?

- Expansion in cooperation consistent with changes in trade and tariffs.
- Higher trade flows and lower tariffs imply a higher internalization of the trade externality.
- Other salient features of the world economy included are also quantitatively important.
What drives variation?

- Expansion in cooperation consistent with changes in trade and tariffs.
- Higher trade flows and lower tariffs imply a higher internalization of the trade externality.
- Other salient features of the world economy included are also quantitatively important.
- Main conclusions are robust to changes in particular elements of the model.
Results

What drives variation?

- Expansion in cooperation consistent with changes in trade and tariffs.
- Higher trade flows and lower tariffs imply a higher internalization of the trade externality.
- Other salient features of the world economy included are also quantitatively important.
- Main conclusions are robust to changes in particular elements of the model.

- No I-O linkages, Perfect Competition, No Lobbying, No PTAs, Fixed Trade Deficits, Scaling of the Trade Elasticity.
- **This paper**: A first comprehensive account of changes in global trade cooperation using a modern trade policy framework.
- **This paper**: A first comprehensive account of changes in global trade cooperation using a modern trade policy framework.

- **Main finding**: after years of rapid growth in multilateral cooperation in the 1990s and early 2000s, cooperation levels stalled in the last decade and even reversed in some places.
- **This paper**: A first comprehensive account of changes in global trade cooperation using a modern trade policy framework.

- **Main finding**: after years of rapid growth in multilateral cooperation in the 1990s and early 2000s, cooperation levels stalled in the last decade and even reversed in some places.

- Results speak to the end of the hyper-globalization period and the lack of progress in the WTO liberalization agenda.
- **This paper**: A first comprehensive account of changes in global trade cooperation using a modern trade policy framework.

- **Main finding**: after years of rapid growth in multilateral cooperation in the 1990s and early 2000s, cooperation levels stalled in the last decade and even reversed in some places.

- Results speak to the end of the hyper-globalization period and the lack of progress in the WTO liberalization agenda.

- But they are also consistent with the idea that much of the value of the trading system lies in sustaining current cooperation levels.
Thank you!
List of sectors and elasticity of substitution (σ_s)

<table>
<thead>
<tr>
<th>#</th>
<th>Sector</th>
<th>$-\sigma$</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Agriculture, Hunting, Forestry and Fishing</td>
<td>-10.06</td>
<td>[-14.53 ; -5.59]</td>
</tr>
<tr>
<td>2</td>
<td>Mining and Quarrying</td>
<td>-4.42</td>
<td>[-7.63 ; -1.21]</td>
</tr>
<tr>
<td>3</td>
<td>Food, Beverages and Tobacco</td>
<td>-1.28</td>
<td>[-3.87 ; 1.30]</td>
</tr>
<tr>
<td>4</td>
<td>Textiles, Leather and Footwear</td>
<td>-2.73</td>
<td>[-4.15 ; -1.30]</td>
</tr>
<tr>
<td>5</td>
<td>Pulp, Paper, Printing and Publishing</td>
<td>-6.24</td>
<td>[-9.42 ; -3.05]</td>
</tr>
<tr>
<td>6</td>
<td>Coke, Refined Petroleum and Nuclear Fuel</td>
<td>-14.57</td>
<td>[-18.85 ; -10.29]</td>
</tr>
<tr>
<td>7</td>
<td>Chemicals and Chemical Products</td>
<td>-7.87</td>
<td>[-9.75 ; -5.99]</td>
</tr>
<tr>
<td>8</td>
<td>Rubber and Plastics</td>
<td>-6.46</td>
<td>[-8.92 ; -3.99]</td>
</tr>
<tr>
<td>9</td>
<td>Other Non-Metallic Mineral</td>
<td>-7.96</td>
<td>[-11.77 ; -4.14]</td>
</tr>
<tr>
<td>10</td>
<td>Basic Metals and Fabricated Metal</td>
<td>-7.01</td>
<td>[-8.84 ; -5.18]</td>
</tr>
<tr>
<td>11</td>
<td>Machinery (not elsewhere classified)</td>
<td>-7.85</td>
<td>[-13.03 ; -2.68]</td>
</tr>
<tr>
<td>12</td>
<td>Electrical and Optical Equipment</td>
<td>-9.67</td>
<td>[-12.17 ; -7.17]</td>
</tr>
<tr>
<td>13</td>
<td>Transport Equipment</td>
<td>-9.15</td>
<td>[-12.35 ; -5.95]</td>
</tr>
<tr>
<td>14</td>
<td>Manufacturing (not elsewhere classified); Recycling</td>
<td>-3.79</td>
<td>[-6.92 ; -0.65]</td>
</tr>
</tbody>
</table>

Data description