Taste for variety: An intertemporal choice model

David Puig Universidad de Navarra

EEA-ESEM 2023

August 29, 2023

David Pulg	_		_	
	- 1- 1	DV//d	$-\mathbf{P}_{11}$	110
		aviu		пg

э

David Puig

• Variety-seeking behavior refers to the tendency to alternate between different products to experience diversity or variety in consumption over time.

イロト 不得下 イヨト イヨト

э

- Variety-seeking behavior refers to the tendency to alternate between different products to experience diversity or variety in consumption over time.
 - It is a prominent and well-documented driver of individual decision-making.

- Variety-seeking behavior refers to the tendency to alternate between different products to experience diversity or variety in consumption over time.
 - It is a prominent and well-documented driver of individual decision-making.
 - It has been empirically confirmed in a wide array of product categories (Cosguner et al. 2018).

- Variety-seeking behavior refers to the tendency to alternate between different products to experience diversity or variety in consumption over time.
 - It is a prominent and well-documented driver of individual decision-making.
 - It has been empirically confirmed in a wide array of product categories (Cosguner et al. 2018).
- Neither the exponentially discounted utility (EDU) model, nor popular behavioral intertemporal choice models like the quasi-hyperbolic discounting model can accommodate such behavior.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

- Variety-seeking behavior refers to the tendency to alternate between different products to experience diversity or variety in consumption over time.
 - It is a prominent and well-documented driver of individual decision-making.
 - It has been empirically confirmed in a wide array of product categories (Cosguner et al. 2018).
- Neither the exponentially discounted utility (EDU) model, nor popular behavioral intertemporal choice models like the quasi-hyperbolic discounting model can accommodate such behavior.
- Time separability should be relaxed.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

David Puig

Main contribution: This paper is the first to develop and axiomatically characterize a new discrete intertemporal choice model of time-risk preferences consistent with variety-seeking behavior.

< ロ > < 同 > < 回 > < 回 >

David Puig

Main contribution: This paper is the first to develop and axiomatically characterize a new discrete intertemporal choice model of time-risk preferences consistent with variety-seeking behavior.

1 The dynamics of the model are captured by independent satiation and recovery processes.

Main contribution: This paper is the first to develop and axiomatically characterize a new discrete intertemporal choice model of time-risk preferences consistent with variety-seeking behavior.

- **1** The dynamics of the model are captured by independent satiation and recovery processes.
- 2 It can be (easily) estimated empirically.

Main contribution: This paper is the first to develop and axiomatically characterize a new discrete intertemporal choice model of time-risk preferences consistent with variety-seeking behavior.

- **1** The dynamics of the model are captured by independent satiation and recovery processes.
- 2 It can be (easily) estimated empirically.
- S That has a wide range of applicability, as I show with two applications.

Main contribution: This paper is the first to develop and axiomatically characterize a new discrete intertemporal choice model of time-risk preferences consistent with variety-seeking behavior.

- **1** The dynamics of the model are captured by independent satiation and recovery processes.
- 2 It can be (easily) estimated empirically.
- S That has a wide range of applicability, as I show with two applications.
- The model is easily extended to fit different applications, settings, and needs, as I show with the three extensions.

・ロト ・ 西ト ・ ヨト ・ ヨト

Main contribution: This paper is the first to develop and axiomatically characterize a new discrete intertemporal choice model of time-risk preferences consistent with variety-seeking behavior.

- **1** The dynamics of the model are captured by independent satiation and recovery processes.
- 2 It can be (easily) estimated empirically.
- S That has a wide range of applicability, as I show with two applications.
- The model is easily extended to fit different applications, settings, and needs, as I show with the three extensions.
- The axiomatization strategy allows to isolate the effects from time and history dependence.

Key idea: Variety-seeking behavior arises due to a satiation (λ) and recovery (β).

		AC
August 29, 2023	4	/ 25

- 10 A

1 E N 1 E N E NO 0 0

• $T \equiv \{0, 1, 2, \dots, T\}$, where $T \leq \infty$, denote *time* (e.g. days or weeks).

avid Puig	Taste for variety	August 29, 2023	5 / 25
			= *) < (*

- $\mathcal{T} \equiv \{0, 1, 2, \dots, T\}$, where $T \leq \infty$, denote *time* (e.g. days or weeks).
- \mathcal{A} be a finite set of alternatives, $a_1, a_2, a_3, \diamond \in \mathcal{A}$.

- $\mathcal{T} \equiv \{0, 1, 2, \dots, T\}$, where $\mathcal{T} \leq \infty$, denote *time* (e.g. days or weeks).
- \mathcal{A} be a finite set of alternatives, $a_1, a_2, a_3, \diamond \in \mathcal{A}$.
- $\Delta(\mathcal{A})$ be the set of all probability distributions on \mathcal{A} .

3

・ロト ・ 国 ト ・ 国 ト ・ 国 ト

- $\mathcal{T} \equiv \{0, 1, 2, \dots, T\}$, where $\mathcal{T} \leq \infty$, denote *time* (e.g. days or weeks).
- \mathcal{A} be a finite set of alternatives, $a_1, a_2, a_3, \diamond \in \mathcal{A}$.
- $\Delta(\mathcal{A})$ be the set of all probability distributions on \mathcal{A} .
- $\bullet~\mathcal{A}$ is also interpreted as the set of all degenerate lotteries.

3

イロト イボト イヨト イヨト

- $\mathcal{T} \equiv \{0, 1, 2, \dots, T\}$, where $T \leq \infty$, denote *time* (e.g. days or weeks).
- \mathcal{A} be a finite set of alternatives, $a_1, a_2, a_3, \diamond \in \mathcal{A}$.
- $\Delta(\mathcal{A})$ be the set of all probability distributions on \mathcal{A} .
- $\bullet~\mathcal{A}$ is also interpreted as the set of all degenerate lotteries.
- \mathbb{R} as money amounts, $m, m', m'' \in \mathbb{R}$.

3

イロト イボト イヨト イヨト

- $\mathcal{T} \equiv \{0, 1, 2, \dots, T\}$, where $\mathcal{T} \leq \infty$, denote *time* (e.g. days or weeks).
- \mathcal{A} be a finite set of alternatives, $a_1, a_2, a_3, \diamond \in \mathcal{A}$.
- $\Delta(\mathcal{A})$ be the set of all probability distributions on \mathcal{A} .
- $\bullet~\mathcal{A}$ is also interpreted as the set of all degenerate lotteries.
- \mathbb{R} as money amounts, $m, m', m'' \in \mathbb{R}$.
- (x_t, m_t) ∈ Δ(A) × ℝ is, the ordered pair, consisting of a lottery and a monetary amount, that the DM chooses at time t.

• $\mathbf{x} = ((x_0, m_0), (x_1, m_1), \dots, (x_T, m_T)) \in (\Delta(\mathcal{A}) \times \mathbb{R})^{T+1}$ denotes an arbitrary *consumption* stream.

э

- $\mathbf{x} = ((x_0, m_0), (x_1, m_1), \dots, (x_T, m_T)) \in (\Delta(\mathcal{A}) \times \mathbb{R})^{T+1}$ denotes an arbitrary consumption stream.
- Preferences over consumption streams are denoted by ≿. As usual, ~ and ≻ denote the symmetric and the asymmetric part of ≿.

イロト 不得 トイヨト イヨト

3

- $\mathbf{x} = ((x_0, m_0), (x_1, m_1), \dots, (x_T, m_T)) \in (\Delta(\mathcal{A}) \times \mathbb{R})^{T+1}$ denotes an arbitrary consumption stream.
- Preferences over consumption streams are denoted by ≿. As usual, ~ and ≻ denote the symmetric and the asymmetric part of ≿.
- A history of length t > 0: $\boldsymbol{h}_t \equiv ((r_0, m_0), (r_1, m_1), \dots, (r_{t-1}, m_{t-1})) \in (\mathcal{A} \times \mathbb{R})^t$.

人口区 医静脉 医原体 医原体 医尿

- $\mathbf{x} = ((x_0, m_0), (x_1, m_1), \dots, (x_T, m_T)) \in (\Delta(\mathcal{A}) \times \mathbb{R})^{T+1}$ denotes an arbitrary consumption stream.
- Preferences over consumption streams are denoted by ≿. As usual, ~ and ≻ denote the symmetric and the asymmetric part of ≿.
- A history of length t > 0: $\boldsymbol{h}_t \equiv ((r_0, m_0), (r_1, m_1), \dots, (r_{t-1}, m_{t-1})) \in (\mathcal{A} \times \mathbb{R})^t$.
- The set of all histories is $\mathcal{H} = \bigcup_{t=1}^{T} H_t$.

6 / 25

The History-Discounted Utility (HDU) Representation

Definition 1 (The History-Discounted Utility Representation)

$$\mathbf{x} \succeq \mathbf{y} \quad \Leftrightarrow \quad \sum_{t=0}^T \delta^t \Big[\hat{u}_{\mathbf{h}_t}(\mathbf{x}_t) + v(m_t) \Big] \geq \sum_{t=0}^T \delta^t \Big[\hat{u}_{\mathbf{h}_t}(y_t) + v(m_t') \Big]$$

where for all $z_t \in \Delta(\mathcal{A})$ and all t > 0 if $r_{t-1} = a_i$, then:

$$\sum_{\substack{i=1\\\hat{u}_{h_{t}}(z_{t})}}^{N} p_{z_{t}}(a_{i})u_{h_{t}}(a_{i}) = \underbrace{p_{z_{t}}(a_{i})(\lambda_{a_{i}}-1)u_{h_{t-1}}(a_{i})}_{\text{Satiation} \leq 0} + \underbrace{\sum_{\hat{u}_{h_{t}}(z_{t})}^{\hat{u}_{h_{t}}(z_{t})} \left[\min\left\{u_{0}(a_{j}), \frac{u_{h_{t-1}}(a_{j})}{\beta_{a_{j}}}\right\} - u_{h_{t-1}}(a_{j})\right]}_{\text{Recovery} \geq 0} + \underbrace{\sum_{i=1}^{N} p_{z_{t}}(a_{i})u_{h_{t-1}}(a_{i})}_{\hat{u}_{h_{t-1}}(z_{t})}$$

$$\delta \in (0,1), \quad \lambda_{a_i} \in (0,1], \quad ext{and} \quad eta_{a_j} \in (0,1]$$

HDU Representation: Degenerate Lotteries

Definition 2 (HDU Representation for Degenerate Lotteries)

If the decision maker can only choose from the set of degenerate lotteries \mathcal{A} , for any $\mathbf{x}, \mathbf{y} \in (\mathcal{A} \times \mathbb{R})^{T+1}$:

$$oldsymbol{x} \succeq oldsymbol{y} \quad \Leftrightarrow \quad \sum_{t=0}^T \delta^t \Big[\psi_t(x_t|x_{t-1}) u_0(x_t) + v(m_t) \Big] \geq \sum_{t=0}^T \delta^t \Big[\psi_t(y_t|y_{t-1}) u_0(y_t) + v(m_t') \Big]$$

where for all $z_t \in \mathcal{A}$, and for all t > 0

$$\psi_t(z_t|z_{t-1}) = \begin{cases} \lambda_{z_t} \cdot \psi_{t-1}(z_t|z_{t-2}) & \text{if } z_t = z_{t-1} \\ \min\left\{1, \frac{1}{\beta_{z_t}} \cdot \psi_{t-1}(z_t|z_{t-2})\right\} & \text{if } z_t \neq z_{t-1} \end{cases}$$

$$\psi_0(z_t|\boldsymbol{h}_0) = 1, \quad \delta \in (0, 1), \quad \lambda_{x_t} \in (0, 1], \quad \text{and} \quad \beta_{x_t} \in (0, 1]$$

Taste for variety	August 29, 2023	8 / 25
-------------------	-----------------	--------

Axioms

- Weak Order
- 2 Continuity
- Money Monotonicity
- Boundedness (Goods do not become bads + Goods can be compensate for)
- Separability (Coordinate independence + Thomsen condition)
- Independence (EU independence on the first coordinate)
- Satiation
- 8 Recovery
- **Indifference**
- Exponential Discounting

э

9/25

Representation Theorem

Theorem 3

A binary relation \succeq on $(\Delta(A) \times \mathbb{R})^{T+1}$ satisfies Axioms (1-10) if and only if it has an HDU representation.

avid Puig	Taste for variety	August 29, 2023	10 / 25

3

• Infections by drug-resistance pathogens are a major threat.

David Puig	Taste for variety	August 29, 2023	11 / 25
		▲□▶ ▲圖▶ ▲圖▶ ▲圖▶	$\equiv \mathcal{O} \land \mathcal{O}$

- Infections by drug-resistance pathogens are a major threat.
- 10 million deaths per year by and a cumulative cost of 100 trillion USD (O'Neill 2015).

- Infections by drug-resistance pathogens are a major threat.
- 10 million deaths per year by and a cumulative cost of 100 trillion USD (O'Neill 2015).
- Antibiotic resistance can arise naturally but has also been linked to overuse and misuse of antibiotics (Ventola C. L. 2015).

(1日) (1日) (1日)

- Infections by drug-resistance pathogens are a major threat.
- 10 million deaths per year by and a cumulative cost of 100 trillion USD (O'Neill 2015).
- Antibiotic resistance can arise naturally but has also been linked to overuse and misuse of antibiotics (Ventola C. L. 2015).
- It is crucial to optimally design treatment plans.

< 回 > < 回 > < 回 >

- Infections by drug-resistance pathogens are a major threat.
- 10 million deaths per year by and a cumulative cost of 100 trillion USD (O'Neill 2015).
- Antibiotic resistance can arise naturally but has also been linked to overuse and misuse of antibiotics (Ventola C. L. 2015).
- It is crucial to optimally design treatment plans.
- Treatment plans: *single-drug therapy, combination-drug therapy,* and *alternating-drug therapy*.

・ 何 ト ・ ヨ ト ・ ヨ ト

Alternating-drug therapy:

- Reduces the possibility of resistance while avoiding the toxicity of the *combination-drug therapy*.
- Slows the rate of increase in resistance compared with single-drug treatments (Kim et. al. 2014).
- Elimination of the bacterial infection can be achieved at antibiotic dosages so low that the equivalent two-drug combination treatments are ineffective (Fuentes-Hernandez et. al. 2015).
- Which alternating sequence of antibiotics should be prescribed to a patience in order to achieve bacterium clearance while minimizing antibiotic resistance?

Antibiotic Resistance: Setting

We reinterpret the model's parameters to answer that question:

- *A*: set of antibiotics.
- $u_0(a_i)$: pre-treatment measure of the sensitivity (susceptibility) of bacteria to antibiotic $a_i \in \mathcal{A}$.
- $v(p_t^{a_i})$: dis-utility generated by paying the price (cost) of antibiotic a_i .
- λ_{a_i} : resistance rate of antibiotic a_i , the rate at which sensitivity of bacteria to antibiotic a_i decreases
- $\frac{1}{\beta_{i}}$: recovery rate, the rate at which sensitivity of bacteria to antibiotic a_i is regained.
- δ : time discount rate.

13/25

Antibiotic Resistance: Maximization Problem

It turns out that the answer to our question of interest is the solution to the following maximization problem:

$$\max_{\{x_t\}_0^T} \sum_{t=0}^T \delta^t \Big[\psi_t(x_t | x_{t-1}) u_0(x_t) - v(p_t^{x_t}) \Big]$$

where for all $x_t \in \mathcal{A}$, and for all t > 0

$$\psi_t(x_t|x_{t-1}) = \begin{cases} \lambda_{x_t} \cdot \psi_{t-1}(x_t|x_{t-2}) & \text{if } x_t = x_{t-1} \\ \min\left\{1, \frac{1}{\beta_{x_t}} \cdot \psi_{t-1}(x_t|x_{t-2})\right\} & \text{if } x_t \neq x_{t-1} \end{cases}$$
$$\psi_0(x_t|\boldsymbol{h}_0) = 1, \quad \lambda_{x_t} \in (0, 1], \quad \text{and} \quad \beta_{x_t} \in (0, 1]$$

э

14 / 25

• The HDU model is able to rationalize variety seeking behavior.

David Puig	Taste for variety	August 29, 2023	15 / 25
			≣ *) ⊄ (*

- The HDU model is able to rationalize variety seeking behavior.
- The dynamics of the HDU model are governed by the satiation and recovery processes.

< ロ > < 同 > < 回 > < 回 >

- The HDU model is able to rationalize variety seeking behavior.
- The dynamics of the HDU model are governed by the satiation and recovery processes.
- The HDU model has a wide range of applicability and it is easily extended.

- The HDU model is able to rationalize variety seeking behavior.
- The dynamics of the HDU model are governed by the satiation and recovery processes.
- The HDU model has a wide range of applicability and it is easily extended.
- The axiomatic characterization allows disentangling time discounting from history dependence.

(1日) (1日) (1日)

- The HDU model is able to rationalize variety seeking behavior.
- The dynamics of the HDU model are governed by the satiation and recovery processes.
- The HDU model has a wide range of applicability and it is easily extended.
- The axiomatic characterization allows disentangling time discounting from history dependence.
- The model can also be applied to risky settings.

15/25

< 同 > < 回 > < 回 >

Thank you very much.

э

16 / 25

Conclusion

Basic Axioms

Axiom 1 (Weak Order): The binary relation \succeq on $(\Delta(\mathcal{A}) \times \mathbb{R})^{T+1}$ is:

- i) Complete: for all $x, y \in (\Delta(\mathcal{A}) \times \mathbb{R})^{T+1}$, either $x \succeq y$ or $y \succeq x$.
- ii) Transitive: for all $x, y, z \in (\Delta(\mathcal{A}) \times \mathbb{R})^{T+1}$, if $x \succeq y$ and $y \succeq z$, then $x \succeq z$.

Axiom 2 (*Continuity*): For all $x \in (\Delta(\mathcal{A}) \times \mathbb{R})^{T+1}$, the following sets are closed:

$$B(\mathbf{x}) = \{\mathbf{y} \in (\Delta(\mathcal{A}) \times \mathbb{R})^{T+1} : \mathbf{y} \succeq \mathbf{x}\}$$
$$W(\mathbf{x}) = \{\mathbf{y} \in (\Delta(\mathcal{A}) \times \mathbb{R})^{T+1} : \mathbf{x} \succeq \mathbf{y}\}$$

Axiom 3 (Money Monotonicity): For all $\mathbf{x} = ((x_0, m_0), \dots, (x_t, m_t), \dots, (x_T, m_T)) \in (\Delta(\mathcal{A}) \times \mathbb{R})^{T+1}$ and all $t \in \mathcal{T}$,

$$((x_0, m_0), \ldots, (x_t, m_t), \ldots, (x_T, m_T)) \succ ((x_0, m_0), \ldots, (x_t, m_t), \ldots, (x_T, m_T))$$

if and only if $m_t > m'_t$.

Static Axioms (I)

Definition 1: We define DM's preferences at time t given a history of past consumption \succeq_{h_t} by:

 $(x_t, m_t) \succeq_{h_t} (y_t, m'_t)$

whenever $\exists x, y \in (\Delta(\mathcal{A}) \times \mathbb{R})^{T+1}$

 $\boldsymbol{x} = (\boldsymbol{h}_t, (\boldsymbol{x}_t, \boldsymbol{m}_t), (\diamond, \boldsymbol{m}_{t+1}''), \dots, (\diamond, \boldsymbol{m}_T'')) \succsim (\boldsymbol{h}_t, (\boldsymbol{y}_t, \boldsymbol{m}_t'), (\diamond, \boldsymbol{m}_{t+1}''), \dots, (\diamond, \boldsymbol{m}_T'')) = \boldsymbol{y}$

for any $m_{t+i}'' \in \mathbb{R}$, $i \in \{1, \cdots, T-t\}$.

Axiom 4 (Boundedness): For all $h_t \in \mathcal{H}$, and for all $(x, m) \in \Delta(\mathcal{A}) \times \mathbb{R}$:

- i) Bounded below: If $x \neq \diamond$, then $(x, m) \succ_{h_t} (\diamond, m)$.
- ii) Bounded above: There exists $c \in \mathbb{R}_{++}$, such that $(\diamond, m + c) \succ_{h_t} (x, m)$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ○ ○ ○

Static Axioms (II)

Axiom 5 (Separability):

- i) Coordinate Independence: For all $h_t \in \mathcal{H}$, $(x, m) \succeq_{h_t} (y, m)$, if and only if, $(x, m') \succeq_{h_t} (y, m')$.
- ii) Thomsen Condition: For all $h_t \in \mathcal{H}$, if $(x, m) \sim_{h_t} (y, m')$ and $(y, m'') \sim_{h_t} (z, m)$, then $(x, m'') \sim_{h_t} (z, m')$.

Axiom 6 (Independence): For all $h_t \in H$, and for all $(x, m), (y, m) \in \Delta(A) \times \mathbb{R}$, $z \in \Delta(A)$, and $\theta \in (0, 1]$:

$$(x,m) \succeq_{h_t} (y,m) \Leftrightarrow (\theta x + (1-\theta)z,m) \succeq_{h_t} (\theta y + (1-\theta)z,m)$$

Lemma 4

If axioms A1-A4 are satisfied, then for all $\mathbf{h}_t \in \mathcal{H}$, and for all $(x, m) \in \Delta(\mathcal{A}) \times \mathbb{R}$, there exist a unique compensation $c_{\mathbf{h}_t}(x, m) \in \mathbb{R}_+$, such that $(\diamond, m + c_{\mathbf{h}_t}(x, m)) \sim_{\mathbf{h}_t} (x, m)$. Moreover, $c_{\mathbf{h}_t}(\diamond, m) = 0$ for all $\mathbf{h}_t \in \mathcal{H}$, and for all $m \in \mathbb{R}$.

			= .040
David Puig	Taste for variety	August 29, 2023	19 / 25

Dynamic Axioms

Axiom 7 (Satiation): For every $t, t' \in \mathcal{T}$, and every $(a_i, m) \in \mathcal{A} \times \mathbb{R}$: i) If $(r_{t-1}, m_{t-1}) = (a_i, m)$, then $(\diamond, m + c_{h_{t-1}}(a_i, m)) \succeq_{h_t} (\diamond, m + c_{h_t}(a_i, m))$.

Axiom 8 (Recovery): For every $t, t' \in \mathcal{T}$, and every $(a_i, m) \in \mathcal{A} \times \mathbb{R}$: i) If $(r_{t-1}, m_{t-1}) \neq (a_i, m)$, then $(\diamond, m + c_{h_0}(a_i, m)) \succeq_{h_t} (\diamond, m + c_{h_t}(a_i, m)) \succeq_{h_t} (\diamond, m + c_{h_{t-1}}(a_i, m))$.

Dynamic Axioms

Axiom 7 (Satiation): For every $t, t' \in \mathcal{T}$, and every $(a_i, m) \in \mathcal{A} \times \mathbb{R}$:

i) If $(r_{t-1}, m_{t-1}) = (a_i, m)$, then $(\diamond, m + c_{h_{t-1}}(a_i, m)) \succeq_{h_t} (\diamond, m + c_{h_t}(a_i, m))$.

ii) If
$$(r_{t-1}, m_{t-1}) = (r_{t'-1}, m_{t'-1}) = (a_i, m)$$
 and $(ka_i + (1-k)\diamond, m) \sim_{h_{t-1}} (\diamond, m + c_{h_{t'-1}}(a_i, m))$ for $k \in (0, 1]$, then $(ka_i + (1-k)\diamond, m) \sim_{h_t} (\diamond, m + c_{h_{t'}}(a_i, m))$.

Axiom 8 (*Recovery*): For every $t, t' \in \mathcal{T}$, and every $(a_i, m) \in \mathcal{A} \times \mathbb{R}$:

i) If
$$(r_{t-1}, m_{t-1}) \neq (a_i, m)$$
, then $(\diamond, m + c_{h_0}(a_i, m)) \succeq_{h_t} (\diamond, m + c_{h_t}(a_i, m)) \succeq_{h_t} (\diamond, m + c_{h_{t-1}}(a_i, m))$.

ii) If
$$(r_{t-1}, m_{t-1}) \neq (a_i, m)$$
, $(r_{t'-1}, m_{t'-1}) \neq (a_i, m)$, $(\diamond, m + c_{h_0}(a_i, m)) \succ_{h_t} (\diamond, m + c_{h_t}(a_i, m))$ and $(ka_i + (1-k)\diamond, m) \sim_{h_{t-1}} (\diamond, m + c_{h_{t'-1}}(a_i, m))$ for $k \in (0, 1]$, then $(ka_i + (1-k)\diamond, m) \sim_{h_t} (\diamond, m + c_{h_{t'}}(a_i, m))$.

< □ > < □ > < □ > < ⊇ > < ⊇ >
August 29, 2023

э.

Time Preference Axioms

Definition 2: For any sequence of choices $\mathbf{x} = ((x_0, m_0), (x_1, m_1), \dots, (x_T, m_T)) \in (\Delta(\mathcal{A}) \times \mathbb{R})^{T+1}$ define $\Diamond(\mathbf{x})$ as,

$$\Diamond(\mathbf{x}) \equiv \left(\left(\diamond, m_0 + c_{\mathbf{h}_0}(x_0, m_0)\right), \left(\diamond, m_1 + c_{\mathbf{h}_1}(x_1, m_1)\right), \dots, \left(\diamond, m_T + c_{\mathbf{h}_T}(x_T, m_T)\right) \right)$$

where h_t is the history generated by x and $c_{h_t}(x_t, m_t)$ are the unique compensations such that $(x_t, m_t) \sim_{h_t} (\diamond, m_t + c_{h_t}(x_t, m_t))$, for every $t \in \mathcal{T}$.

Axiom 9 (Indifference): For any consumption plan $x \in (\Delta(\mathcal{A}) \times \mathbb{R})^{T+1}$, $x \sim \Diamond(x)$.

Axiom 10 (*Exponential Discounting*):

- i) (Separability): All $E \subseteq \mathcal{T}$ are separable.
- ii) (Impatience): For all $a, b \in \mathbb{R}$ if $a \succ^* b$, then for all $x \in \mathbb{R}^{T+1}$, $(a, b, x_2, x_3, \dots, x_T) \succ^* (b, a, x_2, x_3, \dots, x_T)$.

iii) (Stationarity): For all $d \in \mathbb{R}$ and $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{T+1}$ we have $(d, x_0, \cdots, x_{T-1}) \succeq^* (d, y_0, \cdots, y_{T-1})$, if and only if, $(x_0, \cdots, x_{T-1}, d) \succeq^* (y_0, \cdots, y_{T-1}, d)$.

Multiproduct Monopolist: Introduction

I characterize monopolist's optimal dynamic pricing behavior in intertemporal discrete choice settings facing variety-seeking consumers.

- Optimal pricing is one of the most fundamental questions any profit-maximizing firm should address.
- Static pricing strategies that ignore the repeated interaction nature of most customer-seller relationships are often inefficient.
- In contrast, dynamic pricing strategies have proven effective tools to increase revenue in such environments.
- However, most of the dynamic pricing literature does not account for variety-seeking behavior so far.

Multiproduct Monopolist: Setting

Consider a game \mathcal{G} in which a multiproduct profit-maximizing monopolist and a variety-seeking consumer whose preferences are consistent with the HDU model meet in the market for infinitely many periods:

< 同 > < 回 > < 回 >

Multiproduct Monopolist: Profit Maximization

• The monopolist's profit function takes the following form:

$$\pi_m \equiv \sum_{t=0}^{\infty} \sum_{a_j \in \mathcal{A}_{N_m}} \delta_m^t \rho_t^{a_j} \mathbb{1}_{(c_t = a_j)}$$
(1)

• Now, consider a particular consumption stream $c = (c_1, c_2, ...)$ and the following dynamic pricing strategy:

$$\sigma_m(\boldsymbol{c}) = \begin{cases} p_t^{a_i} = u_{\boldsymbol{h}_t}(a_i) + \epsilon & \text{for all} & a_i \neq c_t \\ p_t^{c_t} = u_{\boldsymbol{h}_t}(c_t) - \epsilon & \text{if} & c_t \neq \diamond \end{cases}$$

for an arbitrarily small $\epsilon > 0$.

э

24 / 25

Multiproduct Monopolist: Results

Proposition 1

Suppose the monopolist follows strategy $\sigma_m(\mathbf{c})$ for some consumption stream \mathbf{c} . Then, choosing c_t at period t for all $t \in \mathbb{N}$ is a best response for the consumer. Moreover, $\sigma_m(\mathbf{c})$ is the profit-maximizing (cheapest) way to induce \mathbf{c} .

Proposition 2

The monopolist's problem is equivalent to that of a fully forward-looking consumer with utility parameters $(\lambda, \beta, \delta_m)$ who chooses her preferred consumption stream over the set of alternatives \mathcal{A}_{N_m} .

David Puig	August 29, 2023	25 / 25