Cournot Equilibrium and Welfare with Heterogeneous Firms

Enrico De Monte*, Bertrand Koebel**

*ZEW. Mannheim

** BETA. Université de Strasbourg

EEA-ESEM Conference

Barcelona August, 29th 2023

General Framework

- ullet Consider an industry with N firms producing an homogeneous good and competing ullet la Cournot
- Firms are heterogeneous in both fixed and variable costs
 - · Heterogeneity is unobserved by the econometrician, but known by the firm
 - Heterogeneity in the fixed costs cannot generate heterogeneous firm size
 - Heterogeneity in the variable cost function is unable to explain why so many small firms make positive profits

Contributions of the paper

- (Re-)State theoretical results applying to Cournot equilibrium with heterogeneous firms:
 - existence and unicity
 - highlight the role played by firm size
- Develop a general but tractable empirical model that can
 - reproduce the observed distribution of firm sizes
 - identify the distribution of firms' fixed and variable costs
 - characterize technologies which allow firms to survive, to grow or force them to exit
 - · identify firms which contribute to increase efficiency in the economy

De Monte, Koebel 2 / 43 EEA-ESEM 2023 2 / 43

Related literature

- Theoretical literature:
 - Short-run: Novshek (1985), Gaudet and Salant (1991), Amir (1996), Salant and Shaffer (1999)
 - Long-run: Mankiw and Whinston (1986), Acemoglu and Jensen (2013), Amir et al. (2014), Okumura (2015)
- Empirical literature:

Hsieh and Klenow (2009), Koebel and Laisney (2016), Chen and Koebel (2017), Wooldridge (2019), Baqaee and Farhi (2020), De Loecker (2020), Peters (2020), etc.

De Monte, Koebel 3 / 43 EEA-ESEM 2023 3 / 43

Some stylized facts for France

Table: Number of active firms and employment by firm size, manufacturing, France and Germany, 2017

			Firm size			
		Total	0-9	10-49	50-249	>250
France	No. of Firms	193,609	162,955	23,468	5,658	1,522
	No. of Employees	2,832,458	259,459	488,990	601,247	1,482,624
Germany	No. of Firms	234,310	170,585	43,540	15,845	4,340
	No. of Employees	7,040,463	336,753	939,166	1,701,813	4,062,731

How to explain these gaps?

- Garicano (2016, AER): hampered firm growth as labor laws start to bind on firms with 50 or more employees
- We: imperfect competition and distribution of firms' fixed and variable cost efficiency

De Monte, Koebel 4/43 EEA-ESEM 2023 4/43

- On a given market, goods are homogeneous
- The inverse demand function to the market:

$$p = P(y_n + \sum_{j \neq n}^N y_j), \tag{1}$$

- p denotes the output price level
- y_n the production of firm n• $Y_{-n} \equiv \sum_{j \neq n}^N y_j$ the total output of firms' n competitors

• Firms are characterized by heterogeneous cost functions

$$c_{n}(w_{n}, y_{n}) = u_{n}(w_{n}) + v_{1n}(w_{n})y_{n} + \frac{1}{2}v_{2n}(w_{n})y_{n}^{2}$$

$$= \underbrace{\gamma_{n}^{u}u(w_{n})}_{\text{Fixed cost}} + \underbrace{\gamma_{1n}^{v}v_{1}(w_{n})y_{n} + \frac{1}{2}\gamma_{2n}^{v}v_{2}(w_{n})y_{n}^{2}}_{\text{Variable costs}}$$
(2)

- Input prices are denoted by w_n (labour, capital, intermediate inputs)
- The unobserved heterogeneity terms are stochastic, satisfying

$$E[\gamma_n^u] = E[\gamma_{1n}^v] = E[\gamma_{2n}^v] = 1.$$

The variable cost:

$$v_n(w_n, y_n) = \gamma_{1n}^v v_1(w_n) y_n + \frac{1}{2} \gamma_{2n}^v v_2(w_n) y_n^2$$

• The variable cost function v_n satisfies

$$v_n(w_n,0) = 0.$$

• We define variable cost heterogeneity γ^v_n as a weighted average of γ^v_{1n} and γ^v_{2n} as

$$\gamma_n^{\nu} = \frac{\gamma_{1n}^{\nu} v_1(w_n) y_n + \frac{1}{2} \gamma_{2n}^{\nu} v_2(w_n) y_n^2}{v(w_n, y_n)}$$
(3)

this allows to write equivalently:

$$c_n(w_n, y_n) = \gamma_n^{\underline{u}} u(w_n) + \gamma_{1n}^{\underline{v}} v_1(w_n) y_n + \frac{1}{2} \gamma_{2n}^{\underline{v}} v_2(w_n) y_n^2$$
 (4)

$$= \frac{\gamma_n^u}{u}(w_n) + \frac{\gamma_n^v}{v}(w_n, y_n) \tag{5}$$

Assumptions A1-A4

A 5: **(i)** The parameters $\gamma_n \equiv (\gamma_n^u, \gamma_{1n}^v, \gamma_{2n}^v)$ are stochastic and exogenous to the firm

f m Firms know γ_n before producing and competing ${\bf a}$ la Cournot

De Monte, Koebel 7 / 43 EEA-ESEM 2023 7 / 43

In the short run, with fixed number of firms, the Nash equilibrium is characterized by:

$$y_n^b(w_n, Y) = \frac{P(Y) - \gamma_{1n}^v v_1(w_n)}{\gamma_{2n}^v v_2(w_n) - P'(Y)},\tag{6}$$

$$Y^{N} = \sum_{n=1}^{N} y_{n}^{b}(w_{n}, Y^{N}).$$
 (7)

- Note: y_n^N , appearing as an "explanatory variable" in the cost function c, is negatively correlated with unobserved heterogeneity
- The quadratic specification allows to obtain an explicit solution for Cournot's equilibrium in terms of (nonnegative) individual and aggregate production levels

De Monte, Koebel 8 / 43 EEA-ESEM 2023 8 / 43

In the short run, with fixed number of firms, the Nash equilibrium is characterized by:

$$y_n^b(w_n, Y) = \frac{P(Y) - \gamma_{1n}^v v_1(w_n)}{\gamma_{2n}^v v_2(w_n) - P'(Y)},$$
(6)

$$Y^{N} = \sum_{n=1}^{N} y_{n}^{b}(w_{n}, Y^{N}).$$
 (7)

- Note: y_n^N , appearing as an "explanatory variable" in the cost function c, is negatively correlated with unobserved heterogeneity
- The quadratic specification allows to obtain an explicit solution for Cournot's equilibrium in terms of (nonnegative) individual and aggregate production levels
- Proposition 1 (exerpt) At Cournot equilibrium
 - the value of marginal cost of production decreases with firm size
 - the price markup increases with firm size
- Proposition 2 (exerpt) At Cournot equilibrium
 - firm i's individual production level decreases with γ_i^v
 - firm i's production level increases with γ_i^v

A 6: There is a decreasing relationship between γ^v and γ^u :

$$\gamma_n^v = e(\gamma_n^u) + \eta_n, \tag{8}$$

where η_n is an iid random term such that $E[\eta_n|\gamma_n^u] = 0$.

Implications:

- on average, technological progress is not transmitted through simultaneous reductions in both cost parameters γ^u_n and γ^v_n
- ullet there is a trade-off characterized by e.
- $cov(\gamma_n^u, \gamma_n^v) < 0$

A 6: There is a decreasing relationship between γ^v and γ^u :

$$\gamma_n^v = e(\gamma_n^u) + \eta_n, \tag{8}$$

where η_n is an iid random term such that $E[\eta_n|\gamma_n^u] = 0$.

Implications:

- on average, technological progress is not transmitted through simultaneous reductions in both cost parameters γ^u_n and γ^v_n
- there is a trade-off characterized by e.
- $cov(\gamma_n^u, \gamma_n^v) < 0$

Proposition 3 At Cournot equilibrium (and with identical input prices)

- firms' sizes $\{y_m^N\}_{m=1}^M$ are inversely ordered w.r.t $\{\gamma_m^v\}_{m=1}^M$: i.e. $y_i^N < y_i^N$ iff $\gamma_i^v > \gamma_i^v$
- the biggest firm a lower variable cost and, on average, a higher fixed costs

De Monte, Koebel 9 / 43 EEA-ESEM 2023 9 / 43

• Remember: $c_n(w_n, y_n) = \frac{\mathbf{v}_n^u}{\mathbf{v}_n^u} u(w_n) + \frac{\mathbf{v}_n^v}{\mathbf{v}_n^v} v(w_n, y_n)$

Figure: Five technological zones

De Monte, Koebel 10 / 43 EEA-ESEM 2023 10 / 43

III. Long-run Cournot equilibrium

- In the long run, the number of firms adjusts. How ?
- The literature investigated several tracks: Ericson and Pakes (1996), Amir and Lambson (2003)
- In the long run, the number of firms adjusts in order to satisfy:

$$E\left[P(Y^N)y_n^N - c_n(w_n, y_n^N)\right] \ge 0, (9)$$

$$E[P(Y^{N} + y_{m})y_{m} - c_{m}(w_{m}, y_{m})] \le 0,$$
(10)

The future technology is random, due to stochastic (Markovian) technological change.

• These equations define the LRCE as the quantities and number of firms:

$$Y^{C}, N^{C}, \left\{y_{n}^{C}\right\}_{n=1}^{N^{C}}.$$

IV. Short-run optimal Welfare and LRCE 1

- We now investigate welfare at LRCE.
- In a setup with identical firms, see Mankiw and Whinston (1986) and Amir et al. (2014)
- Central planer (CP) has to consider technological differences when deciding which firm is allowed to produce and how much
- Assumption: CP knows γ_n of each firm
- The welfare function is similar to the one of Mankiw and Whinston (1986):
- ullet The welfare optimizing individual and aggregate productions are denoted by y_n^W and Y^W .
- The welfare function is:

$$W(y_{1},...,y_{M}) = \int_{0}^{\sum_{m=1}^{M} y_{m}} P(s) ds - \sum_{m=1}^{M} c_{m}(w_{m},y_{m}), \qquad (11)$$

$$y_{m} \geq 0.$$

- The CP decides about firms' level of production y_n
- The values of technological parameters is given $\{\gamma_n\}_{n=1}^M$, i.e. no entry/exit
- A firm with $y_n = 0$ bears the fixed cost u_n ,
- The CP is able to remove inefficiencies introduced by markups and imperfect competition
- Output levels are given such that:

$$W^S \equiv \max_{\left\{y_n\right\}_{n=1}^M} \left\{W\left(y_1,\ldots,y_M\right) : \left\{y_n \geq 0\right\}_{n=1}^M\right\}.$$

• The Short-Run Optimal Welfare (SROW) is characterized by the first order Kuhn and Tucker necessary conditions for an inner maximum for W:

$$P\left(\sum_{m=1}^{M} y_m\right) = \frac{\partial c_n}{\partial y_n} (w_n, y_n) - \lambda_n, \qquad y_n \ge 0, \qquad \lambda_n \ge 0, \qquad \lambda_n y_n = 0, \tag{12}$$

for $n = 1, \ldots, M$.

ullet The welfare optimizing individual and aggregate productions are denoted by y_n^S and $Y^S.$

De Monte, Koebel 13 / 43 EEA-ESEM 2023 13 / 43

C stands for LRCE - Long-run Cournot Equilibrium S stands for SROW - Short-Run Optimal Welfare

- Proposition 4 (exerpt) At LRCE
 - Welfare is too low: W^C < W^S.
 - Profits are too high: $\pi_n^{\mathsf{C}} > \pi_n^{\mathsf{S}}$
 - Big firms produce too little, $y_n^{\mathsf{C}} < y_n^{\mathsf{S}}$
- ▶ Proposition 5 At LRCE
 - N⁵ < N^C
 - HH5 > HHC
 - → Implication: industrial policy should not try to minimize industry concentration at all costs, but the opposite policy would improve welfare in the case of Cournot competition.

De Monte, Koebel 14 / 43 FFA-FSFM 2023 14 / 43

V. Long-run optimal Welfare

- CP selects production technologies active at Long-Run Optimal Welfare (LROW)
- CP is able to replicate technologies
- Here, cost of inactivity bears no fixed cost, CP prevents entry of such a firm
- Formally,

$$W^{L} \equiv \max_{\{y_{n}, \gamma_{n}\}_{n=1}^{M}} \left\{ W\left(\{y_{n}\}_{n=1}^{M}, \{\gamma_{n}\}_{n=1}^{M}\right) : \{y_{n} \ge 0\}_{n=1}^{M} \wedge \{\gamma_{n}\}_{n=1}^{M} \in \Gamma \right\}, \tag{13}$$

where the technological set $\Gamma \subset \mathbb{R}^2$ denotes the set of all technologies active at LRCE.

ullet the long-run technological parameters γ^L optimal and

$$c^{L}(w,y) = c(w,y,\gamma^{L}), \tag{14}$$

Proposition 6 (exerpt)

- the LROW exists and is unique
- at LROW all firms have zero profit and local constant returns to scale
- W^L > W^S

De Monte, Koebel 15 / 43 FFA-FSFM 2023 15 / 43

- Consider the output demand addressed to a manufacturing industry $i = 1, \ldots, I$
- Estimate the elasticity of output demand wrt its price
- Aggregate prices and production data
 - 22 2-digit industries (I = 22)
 - for 1994 2016 (T = 22) (loss of one period by differencing),
 - Total of IT = 484 observations

De Monte, Koebel 16 / 43 EEA-ESEM 2023 16 / 43

- Consider the output demand addressed to a manufacturing industry $i = 1, \ldots, I$
- Estimate the elasticity of output demand wrt its price
- · Aggregate prices and production data
 - 22 2-digit industries (*I* = 22)
 - for 1994 2016 (T = 22) (loss of one period by differencing),
 - Total of IT = 484 observations
- We consider the following parametric specification for the output demand (Laisney and Koebel, 2016)

$$\ln Y_{it} = \alpha_i + \alpha_Y \ln Y_{i,t-1} + \frac{\alpha_p}{\rho} \ln P_{it} + \alpha_{IM} \ln P_{it}^{IM} + \epsilon_{it}, \tag{15}$$

assuming $E(\alpha_i|Y_{i,t-1},P_{it},P_{it}^{IM}) \neq 0$.

· Taking the first-difference eliminates the industry fixed-effects, yielding

$$\Delta \ln Y_{it} = \alpha_Y \Delta \ln Y_{i,t-1} + \frac{\alpha_p}{\Delta} \Delta \ln P_{it} + \alpha_{IM} \Delta \ln P_{it}^{IM} + \eta_{it}, \tag{16}$$

with $\eta_{it} = \Delta \epsilon_{it}$.

• Problem: by simultaneity, still $E(\eta_{it}|\Delta \ln Y_{i,t-1}, \Delta \ln P_{it}) \neq 0$

De Monte, Koebel 16 / 43 EEA-ESEM 2023 16 / 43

- Use supply shifter as instruments to trace out the output demand
- The $(L \times 1)$ vector of instruments, z_{it} , includes labor cost, price of intermediate products and export/imports, lagged values (up to lag 3) of endogenous variables

$$z_{it} = \left(w_{it}, p_{it}^{M}, p_{it}^{X}, p_{it}^{IM}, \{Y_{i\tau}\}_{\tau=1}^{t-3}, \{P_{i\tau}\}_{\tau=1}^{t-3}\right)$$

Total of 130 moment conditions

De Monte, Koebel 17 / 43 EEA-ESEM 2023 17 / 43

- Use supply shifter as instruments to trace out the output demand
- The $(L \times 1)$ vector of instruments, z_{it} , includes labor cost, price of intermediate products and export/imports, lagged values (up to lag 3) of endogenous variables

$$z_{it} = \left(w_{it}, p_{it}^{M}, p_{it}^{X}, p_{it}^{IM}, \{Y_{i\tau}\}_{\tau=1}^{t-3}, \{P_{i\tau}\}_{\tau=1}^{t-3}\right)$$

- Total of 130 moment conditions
- Use linear 2-stage GMM, defined by

$$\left(\sum_{i=1}^{I}\sum_{t=1}^{T}\eta_{it}z_{it}^{\mathsf{T}}\right)\mathbf{W}\left(\sum_{i=1}^{I}\sum_{t=1}^{T}z_{it}\eta_{it}\right) = \eta^{\mathsf{T}}\mathbf{Z}\mathbf{W}\mathbf{Z}^{\mathsf{T}}\eta,\tag{17}$$

- assuming $E[\eta_{it}z_{it}] = 0$
- · Apply two-ways clustering to account for
 - heteroskedasticity.
 - contemporaneous dependence between residuals of different industries,
 - temporal dependence within a given industry and consecutive time periods

De Monte, Koebel 17 / 43 EEA-ESEM 2023 17 / 43

- Price and quantity data for I = 22 2-digit manufacturing industries and T = 22 years
- $\ln Y_{it} = \alpha_i + \alpha_Y \ln Y_{i,t-1} + \frac{\alpha_p}{\rho} \ln P_{it} + \alpha_{IM} \ln P_{it}^{IM} + \epsilon_{it}$

Table: Output demand estimates

	FE	FD	FD-GMM
α_Y	0.92 (0.02)	0.05 (0.05)	0.76 (0.06), [0.03]
$lpha_p$	-0.12 (0.07)	-0.67 (0.17)	-0.64 (0.18), [0.08]
α_{IM}	0.04 (0.07)	0.55 (0.16)	0.49 (0.18), [0.07]
OIT	-	-	0.99

Notes: HAC robust standard errors are given in parenthesis, clustered standard errors are in brackets. OIT: p-value of the over-identification test, for the validity of the 130 orthogonality conditions.

The inverse demand elasticity is obtained by

$$\varepsilon\left(P^{d},Y\right) = \frac{1}{\varepsilon\left(Y^{d},p\right)}\tag{18}$$

• Setting $Y_{i,t-1} = Y_{i,t}$ we obtain the long-run demand elasticities wrt price

Table: Industry short- and long-run elasticities of output demand

	Shor	t-run	Long-run		
	$arepsilon\left(Y^d,p ight) = arepsilon\left(P^d,Y ight)$		$\varepsilon(Y^d,p)$	$\varepsilon(P^d,Y)$	
Estimate	-0.64	-1.56	-2.67	-0.37	
s.e.	0.18	0.44	0.87	0.12	

• Investigate the relationship between the markup μ_{nt} , and the market share y_{nt}/Y_t , parameterized by the inverse demand elasticity:

$$\frac{p_{nt}}{\partial c/\partial y_{nt}(w_{nt}, y_{nt})} = \frac{1}{1 + \varepsilon (P^d, Y_t) y_{nt}/Y_t}$$
(19)

De Monte, Koebel 19 / 43 FFA-FSFM 2023 19 / 43

Figure: The estimated relationship between firms' market share and markup

- The markup is monotonically increasing in market share
- Short-run: substantial markup of 1.45 1.88 to firms with biggest market share
- Long-run: markup falls to the interval 1.08 1.12

VII. Data for cost function estimation 1

 French firm-level data 1994-2016 (FICUS/FARE): 176,640 firms, 1,455,383 observations, 184 4-digit manufacturing industries

Table: Statistics by firm size in a typical 4-digit manufacturing industry^a

Firm size ^b	# of firms	Share of firms	Share of employees	Share of production
1	50	14.71	0.40	0.28
2-4	82	24.12	1.86	1.05
5-9	73	21.47	3.93	2.19
10-19	52	15.29	5.67	3.56
20-49	49	14.41	12.29	9.14
50-99	16	4.71	8.83	6.91
100-199	9	2.65	10.76	9.28
200-499	6	1.76	14.83	14.47
500+	3	0.88	41.43	53.11
Total	340	100.00	100.00	100.00

 $^{^{\}rm a}$ All figures represent averages over all 4-digit industries and years (1994-2016). Shares are given in %.

Included industries

De Monte, Koebel 21 / 43 EEA-ESEM 2023 21 / 43

^b Firm sizes are measured by the number of employees.

Figure: The profit rates: $(py_{nt} - c_{nt})/c_{nt}$

De Monte, Koebel 22 / 43 EEA-ESEM 2023 22 / 43

VII. Data for cost function estimation 3

Figure: Production density

23 / 43

Figure: Log(Production) density

De Monte, Koebel 24 / 43 EEA-ESEM 2023 24 / 43

De Monte, Koebel 25 / 43 EEA-ESEM 2023 25 / 43

• Consider the the cost and marginal cost functions:

$$c_{nt} = u_{nt}(w_{nt}, t; \theta^{u}) + v_{1,nt}(w_{nt}, t; \theta^{v_{1}})y_{nt} + \frac{1}{2}v_{2,nt}(w_{nt}, t; \theta^{v_{2}})y_{nt}^{2} + \varepsilon_{nt}^{c}$$

$$p_{nt}\left(1 + \varepsilon\left(P^{d}, Y_{t}\right)y_{nt}/Y_{t}\right) = v_{1,nt}\left(w_{nt}, t; \theta^{v_{1}}\right) + v_{2,nt}\left(w_{nt}, t; \theta^{v_{2}}\right)y_{nt} + \varepsilon_{nt}^{p}$$

- For p_{nt} we use an output price index, available at the 2-digit industry level
- ullet The cost function components $u,\,v_1$, and v_2 are FFF in prices w_{nt} and time index t
- The fixed cost cannot take negative values, so that we specify:

$$u_{nt}(w_{nt},t) = \max\left\{\gamma_{nt}^{u}u(w_{nt},t) + \eta_{nt}^{u}, 0\right\}$$
(20)

• For i = c, p and $j = u, v_1, v_2$, we specify:

$$v_{j,nt}(w_{nt},t) = \gamma_{nt}^{v_j} v_j(w_{nt},t) + \eta_{nt}^{v_j}, \quad j = 1, 2.$$
 (21)

 We rely on a correlated random coefficient approach to account for unobserved heterogeneity (Wooldridge, 2019)

De Monte, Koebel 26 / 43 EEA-ESEM 2023 26 / 43

• Assumption 9. The unobserved technological random terms satisfy:

$$\begin{split} E[\gamma_{nt}^{j}|w_{nt},t,y_{nt}] &= E[\gamma_{nt}^{j}|w_{nt},t,z_{nt}], \\ E[\eta_{nt}^{j}|w_{nt},t,y_{nt}] &= E[\eta_{nt}^{j}|w_{nt},t,z_{nt}], \\ E[\gamma_{nt}^{j}|w_{nt},t,z_{nt}] &= E[\gamma_{nt}^{j}|z_{nt}] &= \gamma^{j}(z_{nt}) = 1 + (z_{nt} - \overline{z})^{\mathsf{T}} \beta^{j}, \\ E[\eta_{nt}^{j}|w_{nt},t,z_{nt}] &= E[\eta_{nt}^{j}|z_{nt}] &= \eta^{j}(z_{nt}) = (z_{nt} - \overline{z})^{\mathsf{T}} \delta^{j}, \qquad j = u, v_{1}, v_{2}. \end{split}$$

• Conditionally to w_{nt}, t, z_{nt} our two equations system becomes:

$$\begin{split} y_{nt} &= y^{s}(p_{t}, w_{nt}, t, z_{nt}) + \varepsilon_{nt}^{y} \\ &= \frac{p_{t} - \gamma^{v_{1}}(z_{nt})v_{1}(w_{nt}, t) - \eta^{v_{1}}(z_{nt})}{\gamma^{v_{2}}(z_{nt})v_{2}(w_{nt}, t) + \eta^{v_{2}}(z_{nt}) + \varepsilon \frac{p_{t}}{Y_{t}}} + \varepsilon_{nt}^{y}, \end{split}$$

$$c_{nt} = \gamma^{u}(z_{nt})u(w_{nt}, t) + \eta^{u}(z_{nt}) + \gamma^{v_{1}}(z_{nt})v_{1}(w_{nt}, t)y_{nt}^{s} + \eta^{v_{1}}(z_{nt})y_{nt}^{s} + \frac{1}{2}\gamma^{v_{2}}(z_{nt})v_{2}(w_{nt}, t)((y^{s})^{2} + \sigma_{y}^{2}) + \frac{1}{2}\eta^{v_{2}}(z_{nt})((y^{s})^{2} + \sigma_{y}^{2}) + \varepsilon_{nt}^{c}.$$

De Monte, Koebel 27 / 43 EEA-ESEM 2023 27 / 43

We evaluate in turn:

- the distribution of unobserved heterogeneity γ^u and γ^v
- the size of fixed costs

$$\frac{u_{nt}}{c_{nt}}(w_{nt},t,y_{nt}),$$

• the rate of Returns To Scale (RTS)

$$\frac{\partial \ln c}{\partial \ln y}(w,t,y),$$

• the Rate of Technological Change (RTC)

$$\frac{\partial \ln c}{\partial t}(w,t,y).$$

Figure: Unobserved heterogeneity fixed and variable costs

De Monte, Koebel 29 / 43 EEA-ESEM 2023 29 / 43

Table: Fixed costs by firm $size^{a,b}$

Firm size	Share $u_{nt} = 0$	$Q_{25}(u/c)$	$Q_{50}(u/c)$	$Q_{75}(u/c)$	$Q_{50}(\gamma^u)$	$Q_{50}(\gamma^v)$
	(1)	(2)	(3)	(4)	(5)	(6)
1	81.35	0.00	0.00	0.00	0.00	0.99
2-4	78.37	0.00	0.00	0.00	0.00	0.98
5-9	70.76	0.00	0.00	0.12	0.00	0.97
10-19	57.08	0.00	0.00	0.47	0.00	0.98
20-49	41.55	0.00	0.18	0.69	0.22	1.00
50-99	31.21	0.00	0.37	0.79	0.79	0.99
100-199	22.19	0.10	0.48	0.83	2.09	0.97
200-499	12.47	0.34	0.61	0.90	6.44	0.90
500+	2.63	0.55	0.85	1.15	32.46	0.88

^a Firm sizes are measured by the number of employees.

De Monte, Koebel 30 / 43 EEA-ESEM 2023 30 / 43

 $^{^{\}bf b}$ Column (1) reports the share of firms with zero fixed; Q_p reports the $p^{th}\%$ quantile of the distribution of the variable in parentheses.

Table: RTS and RTC by firm $\operatorname{size}^{a,b}$

Firm		Returns To Scale		Rate of Technological Change		
size	$Q_{25}(e(c;y))$	$Q_{50}(e(c;y))$	$Q_{75}(e(c;y))$	$Q_{25}(e(c;t))$	$Q_{50}(e(c;t))$	$Q_{75}(e(c;t))$
1	0.79	0.99	1.09	-0.26	-0.01	0.15
2-4	0.86	1.00	1.07	-0.10	-0.01	0.06
5-9	0.90	1.00	1.07	-0.07	-0.01	0.03
10-19	0.91	1.00	1.06	-0.06	-0.01	0.02
20-49	0.90	1.00	1.05	-0.05	-0.01	0.03
50-99	0.88	0.98	1.04	-0.05	-0.01	0.03
100-199	0.86	0.96	1.03	-0.04	-0.01	0.02
200-499	0.82	0.94	1.02	-0.06	-0.02	0.01
500+	0.75	0.90	1.00	-0.40	-0.02	0.01

^a Firm sizes are measured by the number of employees.

De Monte, Koebel 31 / 43 EEA-ESEM 2023 31 / 43

 $^{^{\}mathbf{b}}\,Q_{p}$ reports the $p^{th}\%$ quantile of the distribution of the variable in parentheses.

Figure: Firms' size distributions, observed and predicted

De Monte, Koebel 32 / 43 EEA-ESEM 2023 32 / 43

Summary

- We proposed a framework for Cournot competition with heterogeneous firms
- and adapted some results obtained for homogeneous firms and/or symmetric equilibrium
- We found some interesting theoretical results regarding market power and firm size
- Still ongoing:
 - · Empirical investigation for the general cost function
 - Which firm shall be shut down or be started-up to increase welfare?

Empirical challenge

Table: Number of active firms and employment by firm size, manufacturing, France and Germany, 2017

			Firm size			
		Total	0-9	10-49	50-249	>250
France	No. of Firms	193,609	162,955	23,468	5,658	1,522
	No. of Employees	2,832,458	259,459	488,990	601,247	1,482,624
SROW	No. of Firms					
	No. of Employees					
Germany	No. of Firms	234,310	170,585	43,540	15,845	4,340
	No. of Employees	7,040,463	336,753	939,166	1,701,813	4,062,731

Welfare gain decomposition:

$$W^{S} - W^{C} = \int_{Y^{C}}^{Y^{S}} P(s) ds + (N^{C} - N^{S}) c^{C} + \left(N^{S} c^{C} - \sum_{m \in \mathcal{N}^{S}} c(w_{m}, y_{m}, \gamma_{m})\right)$$

De Monte, Koebel 33 / 43 EEA-ESEM 2023 33 / 43

Thank you for your attention, suggestions, and comments!

koebel@unistra.fr enrico.demonte@zew.de

Short-run Cournot model: Assumptions A1 - A4

· Firms behave as profit maximizers,

$$P(Y) + P'(Y)y_n = \frac{\partial c_n}{\partial y_n}(w_n, y_n) = \frac{\partial v_n}{\partial y_n}(w_n, y_n)$$
 (22)

- A 1: The inverse demand function P is nonnegative, continuous, differentiable and decreasing in Y.
- A 2: The cost function is continuous in w_n and y_n , nonnegative, differentiable and increasing in w_n and y_n
- A 3: There exist firm-level and aggregate production levels \overline{y} and \overline{Y} such that:
 - (i) the marginal revenue is lower than the marginal cost:

$$P(Y) + P'(Y) y < \partial c_n / \partial y_n (w_n, y),$$
(23)

for any $y > \overline{y}$ and $Y > \overline{Y}$, and any firm n = 1, ..., N;

(ii) the cost function is not too concave:

$$P'(Y) < \partial^{2} c_{n} / \partial y_{n}^{2} \left(w_{n}, y \right), \tag{24}$$

for any $u < \overline{u}$ and $Y < \overline{Y}$, and any firm $n = 1, \dots, N$.

A 4: The marginal revenue function satisfies:

$$P'(Y) + y_n P''(Y) \le 0, (25)$$

for any value of $y_n \le Y < N\overline{y}$.

This is Novshek (1985) sufficient condition for existence of Cournot equilibrium.

- ullet Under A1-A4, for given N, the Cournot equilibrium exists and is unique
- The backward reaction functions:

$$y_n^b(w_n, Y)$$
, and $Y = \sum_{n=1}^N y_n^b(w_n, Y)$. (26)

• the Cournot equilibrium is characterized by Y^N and $y_n^N = y_n^b(w_n, Y^N)$.

Proposition 1

Under A1-A4, at the Cournot equilibrium with fixed number of N firms:

- **1** The elasticity of inverse demand $\epsilon(P,Y)$ satisfies $-N < \epsilon(P,Y) < 0$
- \bullet Firm's n market share satisfies $y_n^N/Y^N < -1/\epsilon(P,Y)$
- $\ensuremath{\mathfrak{g}}$ The value of the marginal cost of production decreases with firm size
- The price markup increases with firm size
- \bullet For a subset of N' < N active firms, ${Y^N}' < {Y^N}$ and ${y_n^N}' > {y_n^N}$.

$$P'(Y^N)(y_n^N - y_m^N) = \frac{\partial c_n}{\partial y}(w_n, y_n^N) - \frac{\partial c_m}{\partial y}(w_m, y_m^N)$$
 (27)

36 / 43

Under A1-A5, at the short-run Cournot equilibrium with fixed number of firms,

- $oldsymbol{\mathfrak{f}}$ firm n individual production level decreases with γ_n^v
- \bullet firm n production level increases with γ_m^v
- lacktriangledown the aggregate equilibrium level of production decreases with γ_n^v
- lacktriangledown individual and aggregate production levels are unaffected by a change in γ_n^u
- ${\color{red} \bullet}$ firm n profit decreases with γ_n^v and γ_n^u
- $\ensuremath{\mathfrak{g}}$ firm n profit increases with γ_m^v

1 Back

De Monte, Koebel 37 / 43 EEA-ESEM 2023 37 / 43

Under A1-A7, we consider two firms at Cournot equilibrium, both with similar input prices w. Assume that the cost functions are convex. The Nash equilibrium production levels of firms m and n satisfy $y_n^N < y_n^N$ iff

- (i) the biggest firm is more productive: $\gamma_m^v > \gamma_n^v$
- (ii) the biggest firm has a lower variable cost for each unit produced:
- $v_m(w, y_m^N)/y_m^N > v_n(w, y_n^N)/y_n^N$
- (iii) on average, bigger firms have higher fixed costs: $\mathrm{E}\left[\gamma_m^u\right]$ < $\mathrm{E}\left[\gamma_n^u\right]$ and
- $E[u_m(w)] < E[u_n(w)];$
- (iv) on average, bigger firms have a larger efficient scale of production.

◆ Back

De Monte, Koebel 38 / 43 EEA-ESEM 2023 38 / 43

We assume A1-A4. In comparison to the LRWM, the LRCE is characterized by

- (i) a lower aggregate production and a higher price: $Y^C < Y^W$ and $P(Y^C) > P(Y^W)$
- (ii) profits which are too high: $\pi_n^C > \pi_n^W$
- (iii) big firms which produce too little, $y_n^C < y_n^W$
- (iv) small firms with global decreasing returns which produce too much: $y_n^C > y_n^W$ and some of them which should be shut down
- (v) small firms with increasing returns which either produce too little, or should be shut down
- (vi) only a subset of the firms active at LRCE is still active at the LRWM.

◆ Back

De Monte, Koebel 39 / 43 EEA-ESEM 2023 39 / 43

Proposition 5

Under A1-A7, we consider firms with similar input prices \boldsymbol{w} at Cournot equilibrium. Assume that the cost functions are convex. Then:

- (i) $N^W \leq N^C$
- (ii) the Hirschman-Herfindahl index of concentration is higher at the LRWP than at LRCE.

◆ Back

Under A1-A8, we consider firms with similar input prices w, and ignore the integer constraint on N. Then

- (i) the LROW exists and is unique;
- (ii) at LROW all firms have zero profit and local constant returns to scale;
- (iii) $W^L > W^S$:
- (iv) the fixed cost is zero at LROW if $e'(\gamma^{uL}) < u(w)/v(w, y^L)$;
- (v) It is equivalent to maximize the central planer problem W^L or decentralized profits wrt (y_n,γ_n) , for given price level p, which clears the product market with free entry;

◆ Back

De Monte, Koebel 41 / 43 EEA-ESEM 2023 41 / 43

Figure: Identifying industry demand

De Monte, Koebel 42 / 43 EEA-ESEM 2023 42 / 43

Included industries

Table: Description of two-digit industries

$Industry^a$	Description	$\# Firms^b$	# Obs. ^c
11	Beverages	3,031	26,049
13	Manufacture of tobacco products	7,012	59,299
14	Manufacture of wearing apparel	15,658	82,221
15	Manufacture of leather and related products	3,054	22,220
16	Manufacture of wood and of products of wood	13,220	109,643
17	Manufacture of paper and paper products	2,825	28,447
18	Printing and reproduction of recorded media	21,799	174,024
20	Manufacture of chemicals and chemical products	5,204	47,581
21	Manufacture of basic pharm. products and pharm. preparations	979	8,522
22	Manufacture of rubber and plastic products	8,801	86,595
23	Manufacture of other non-metallic mineral products	11,668	95,613
24	Manufacture of basic metals	2,042	18,767
25	Manufacture of fabricated metal products	34,397	326,264
26	Manufacture of computer, electronic and optical products	7,388	57,119
27	Manufacture of electrical equipment	5,033	42,623
28	Manufacture of machinery and equipment	13,362	111,735
29	Manufacture of motor vehicles, trailers and semi-trailers	4,013	35,857
30	Manufacture of other transport equipment	1,799	12,852
31	Manufacture of furniture	15,355	109,952
	Total	176,640	1,455,383

a) Statistical classification of economic activities in the European Community, Rev. 2 (2008)

c) # Obs. describes the total number of observations.

43 / 43

b) # Firms describes the number of firms which were active over the period (it is computed as the total number of different firms identifiers).