Cournot Equilibrium and Welfare with Heterogeneous Firms

Enrico De Monte*, Bertrand Koebel**
* ZEW, Mannheim
** BETA, Université de Strasbourg
EEA-ESEM Conference

Barcelona August, $29^{\text {th }} 2023$

I. Introduction

General Framework

- Consider an industry with N firms producing an homogeneous good and competing à la Cournot
- Firms are heterogeneous in both fixed and variable costs
- Heterogeneity is unobserved by the econometrician, but known by the firm
- Heterogeneity in the fixed costs cannot generate heterogeneous firm size
- Heterogeneity in the variable cost function is unable to explain why so many small firms make positive profits

Contributions of the paper

- (Re-)State theoretical results applying to Cournot equilibrium with heterogeneous firms:
- existence and unicity
- highlight the role played by firm size
- Develop a general but tractable empirical model that can
- reproduce the observed distribution of firm sizes
- identify the distribution of firms' fixed and variable costs
- characterize technologies which allow firms to survive, to grow or force them to exit
- identify firms which contribute to increase efficiency in the economy

I. Introduction

Related literature

- Theoretical literature:
- Short-run: Novshek (1985), Gaudet and Salant (1991), Amir (1996), Salant and Shaffer (1999)
- Long-run: Mankiw and Whinston (1986), Acemoglu and Jensen (2013), Amir et al. (2014), Okumura (2015)
- Empirical literature:

Hsieh and Klenow (2009), Koebel and Laisney (2016), Chen and Koebel (2017), Wooldridge (2019), Baqaee and Farhi (2020), De Loecker (2020), Peters (2020), etc.

I. Introduction

Some stylized facts for France

Table: Number of active firms and employment by firm size, manufacturing, France and Germany, 2017

			Firm size			
		Total	$0-9$	$10-49$	$50-249$	>250
France	No. of Firms	193,609	162,955	23,468	5,658	1,522
	No. of Employees	$2,832,458$	259,459	488,990	601,247	$1,482,624$
	No. of Firms	234,310	170,585	43,540	15,845	4,340
	No. of Employees	$7,040,463$	336,753	939,166	$1,701,813$	$4,062,731$

How to explain these gaps?

- Garicano (2016, AER): hampered firm growth as labor laws start to bind on firms with 50 or more employees
- We: imperfect competition and distribution of firms' fixed and variable cost efficiency

II. Short-run Cournot equilibrium 1

- On a given market, goods are homogeneous
- The inverse demand function to the market:

$$
\begin{equation*}
p=P\left(y_{n}+\sum_{j \neq n}^{N} y_{j}\right), \tag{1}
\end{equation*}
$$

- p denotes the output price level
- y_{n} the production of firm n
- $Y_{-n} \equiv \sum_{j \neq n}^{N} y_{j}$ the total output of firms' n competitors

II. Short-run Cournot equilibrium 2

- Firms are characterized by heterogeneous cost functions

$$
\begin{align*}
c_{n}\left(w_{n}, y_{n}\right) & =u_{n}\left(w_{n}\right)+v_{1 n}\left(w_{n}\right) y_{n}+\frac{1}{2} v_{2 n}\left(w_{n}\right) y_{n}^{2} \tag{2}\\
& =\underbrace{\gamma_{n}^{u} u\left(w_{n}\right)}_{\text {Fixed cost }}+\underbrace{\gamma_{1 n}^{v} v_{1}\left(w_{n}\right) y_{n}+\frac{1}{2} \gamma_{2 n}^{v} v_{2}\left(w_{n}\right) y_{n}^{2}}_{\text {Variable costs }}
\end{align*}
$$

- Input prices are denoted by w_{n} (labour, capital, intermediate inputs)
- The unobserved heterogeneity terms are stochastic, satisfying

$$
E\left[\gamma_{n}^{u}\right]=E\left[\gamma_{1 n}^{v}\right]=E\left[\gamma_{2 n}^{v}\right]=1
$$

- The variable cost:

$$
v_{n}\left(w_{n}, y_{n}\right)=\gamma_{1 n}^{v} v_{1}\left(w_{n}\right) y_{n}+\frac{1}{2} \gamma_{2 n}^{v} v_{2}\left(w_{n}\right) y_{n}^{2}
$$

- The variable cost function v_{n} satisfies

$$
v_{n}\left(w_{n}, 0\right)=0
$$

II. Short-run Cournot equilibrium 3

- We define variable cost heterogeneity γ_{n}^{v} as a weighted average of $\gamma_{1 n}^{v}$ and $\gamma_{2 n}^{v}$ as

$$
\begin{equation*}
\gamma_{n}^{v}=\frac{\gamma_{1 n}^{v} v_{1}\left(w_{n}\right) y_{n}+\frac{1}{2} \gamma_{2 n}^{v} v_{2}\left(w_{n}\right) y_{n}^{2}}{v\left(w_{n}, y_{n}\right)} \tag{3}
\end{equation*}
$$

- this allows to write equivalently:

$$
\begin{align*}
c_{n}\left(w_{n}, y_{n}\right) & =\gamma_{n}^{u} u\left(w_{n}\right)+\gamma_{1 n}^{v} v_{1}\left(w_{n}\right) y_{n}+\frac{1}{2} \gamma_{2 n}^{v} v_{2}\left(w_{n}\right) y_{n}^{2} \tag{4}\\
& =\gamma_{n}^{u} u\left(w_{n}\right)+\gamma_{n}^{v} v\left(w_{n}, y_{n}\right) \tag{5}
\end{align*}
$$

Assumptions A1-A4
A 5: 6 The parameters $\gamma_{n} \equiv\left(\gamma_{n}^{u}, \gamma_{1 n}^{v}, \gamma_{2 n}^{v}\right)$ are stochastic and exogenous to the firm
(1) Firms know γ_{n} before producing and competing à la Cournot

II. Short-run Cournot equilibrium 4

- In the short run, with fixed number of firms, the Nash equilibrium is characterized by:

$$
\begin{align*}
y_{n}^{b}\left(w_{n}, Y\right) & =\frac{P(Y)-\gamma_{1 n}^{v} v_{1}\left(w_{n}\right)}{\gamma_{2 n}^{v} v_{2}\left(w_{n}\right)-P^{\prime}(Y)} \tag{6}\\
Y^{N} & =\sum_{n=1}^{N} y_{n}^{b}\left(w_{n}, Y^{N}\right) \tag{7}
\end{align*}
$$

- Note: y_{n}^{N}, appearing as an "explanatory variable" in the cost function c, is negatively correlated with unobserved heterogeneity
- The quadratic specification allows to obtain an explicit solution for Cournot's equilibrium in terms of (nonnegative) individual and aggregate production levels

II. Short-run Cournot equilibrium 4

- In the short run, with fixed number of firms, the Nash equilibrium is characterized by:

$$
\begin{align*}
y_{n}^{b}\left(w_{n}, Y\right) & =\frac{P(Y)-\gamma_{1 n}^{v} v_{1}\left(w_{n}\right)}{\gamma_{2 n}^{v} v_{2}\left(w_{n}\right)-P^{\prime}(Y)} \tag{6}\\
Y^{N} & =\sum_{n=1}^{N} y_{n}^{b}\left(w_{n}, Y^{N}\right) \tag{7}
\end{align*}
$$

- Note: y_{n}^{N}, appearing as an "explanatory variable" in the cost function c, is negatively correlated with unobserved heterogeneity
- The quadratic specification allows to obtain an explicit solution for Cournot's equilibrium in terms of (nonnegative) individual and aggregate production levels

Proposition 1 (exerpt) At Cournot equilibrium

- the value of marginal cost of production decreases with firm size
- the price markup increases with firm size

Proposition 2 (exerpt) At Cournot equilibrium

- firm i 's individual production level decreases with γ_{i}^{v}
- firm i 's production level increases with γ_{j}^{v}

II. Short-run Cournot equilibrium 5

A 6: There is a decreasing relationship between γ^{v} and γ^{u} :

$$
\begin{equation*}
\gamma_{n}^{v}=e\left(\gamma_{n}^{u}\right)+\eta_{n}, \tag{8}
\end{equation*}
$$

where η_{n} is an iid random term such that $E\left[\eta_{n} \mid \gamma_{n}^{u}\right]=0$.

Implications:

- on average, technological progress is not transmitted through simultaneous reductions in both cost parameters γ_{n}^{u} and γ_{n}^{v}
- there is a trade-off characterized by e.
- $\operatorname{cov}\left(\gamma_{n}^{u}, \gamma_{n}^{v}\right)<0$

II. Short-run Cournot equilibrium 5

A 6: There is a decreasing relationship between γ^{v} and γ^{u} :

$$
\begin{equation*}
\gamma_{n}^{v}=e\left(\gamma_{n}^{u}\right)+\eta_{n}, \tag{8}
\end{equation*}
$$

where η_{n} is an iid random term such that $E\left[\eta_{n} \mid \gamma_{n}^{u}\right]=0$.

Implications:

- on average, technological progress is not transmitted through simultaneous reductions in both cost parameters γ_{n}^{u} and γ_{n}^{v}
- there is a trade-off characterized by e.
- $\operatorname{cov}\left(\gamma_{n}^{u}, \gamma_{n}^{v}\right)<0$
- Proposition 3 At Cournot equilibrium (and with identical input prices)
- firms' sizes $\left\{y_{m}^{N}\right\}_{m=1}^{M}$ are inversely ordered w.r.t $\left\{\gamma_{m}^{v}\right\}_{m=1}^{M}$:
ie. $y_{i}^{N}<y_{j}^{N}$ iff $\gamma_{i}^{v}>\gamma_{j}^{v}$
- the biggest firm a lower variable cost and, on average, a higher fixed costs

II. Short-run Cournot equilibrium 6

- Remember: $c_{n}\left(w_{n}, y_{n}\right)=\gamma_{n}^{u} u\left(w_{n}\right)+\gamma_{n}^{v} v\left(w_{n}, y_{n}\right)$

Figure: Five technological zones

III. Long-run Cournot equilibrium

- In the long run, the number of firms adjusts. How ?
- The literature investigated several tracks: Ericson and Pakes (1996), Amir and Lambson (2003)
- In the long run, the number of firms adjusts in order to satisfy:

$$
\begin{align*}
E\left[P\left(Y^{N}\right) y_{n}^{N}-c_{n}\left(w_{n}, y_{n}^{N}\right)\right] & \geq 0 \tag{9}\\
E\left[P\left(Y^{N}+y_{m}\right) y_{m}-c_{m}\left(w_{m}, y_{m}\right)\right] & \leq 0 \tag{10}
\end{align*}
$$

The future technology is random, due to stochastic (Markovian) technological change.

- These equations define the LRCE as the quantities and number of firms:

$$
Y^{C}, N^{C},\left\{y_{n}^{C}\right\}_{n=1}^{N^{C}} .
$$

IV. Short-run optimal Welfare and LRCE 1

- We now investigate welfare at LRCE.
- In a setup with identical firms, see Mankiw and Whinston (1986) and Amir et al. (2014)
- Central planer (CP) has to consider technological differences when deciding which firm is allowed to produce and how much
- Assumption: CP knows γ_{n} of each firm
- The welfare function is similar to the one of Mankiw and Whinston (1986):
- The welfare optimizing individual and aggregate productions are denoted by y_{n}^{W} and Y^{W}.
- The welfare function is:

$$
\begin{align*}
W\left(y_{1}, \ldots, y_{M}\right) & =\int_{0}^{\sum_{m=1}^{M} y_{m}} P(s) d s-\sum_{m=1}^{M} c_{m}\left(w_{m}, y_{m}\right) \tag{11}\\
y_{m} & \geq 0
\end{align*}
$$

IV. Short-run optimal Welfare and LRCE 2

- The CP decides about firms' level of production y_{n}
- The values of technological parameters is given $\left\{\gamma_{n}\right\}_{n=1}^{M}$, i.e. no entry/exit
- A firm with $y_{n}=0$ bears the fixed cost u_{n},
- The CP is able to remove inefficiencies introduced by markups and imperfect competition
- Output levels are given such that:

$$
W^{S} \equiv \max _{\left\{y_{n}\right\}_{n=1}^{M}}\left\{W\left(y_{1}, \ldots, y_{M}\right):\left\{y_{n} \geq 0\right\}_{n=1}^{M}\right\}
$$

- The Short-Run Optimal Welfare (SROW) is characterized by the first order Kuhn and Tucker necessary conditions for an inner maximum for W :

$$
\begin{equation*}
P\left(\sum_{m=1}^{M} y_{m}\right)=\frac{\partial c_{n}}{\partial y_{n}}\left(w_{n}, y_{n}\right)-\lambda_{n}, \quad y_{n} \geq 0, \quad \lambda_{n} \geq 0, \quad \lambda_{n} y_{n}=0 \tag{12}
\end{equation*}
$$

for $n=1, \ldots, M$.

- The welfare optimizing individual and aggregate productions are denoted by y_{n}^{S} and Y^{S}.

IV. Short-run optimal Welfare and LRCE 3

C stands for LRCE - Long-run Cournot Equilibrium
S stands for SROW - Short-Run Optimal Welfare

- Proposition 4 (exerpt) At LRCE
- Welfare is too low: $W^{C} \leq W^{S}$,
- Profits are too high: $\pi_{n}^{C}>\pi_{n}^{S}$
- Big firms produce too little, $y_{n}^{C}<y_{n}^{S}$

Proposition 5 At LRCE

- $N^{S} \leq N^{C}$
- $H H^{S}>H H^{C}$
\rightarrow Implication: industrial policy should not try to minimize industry concentration at all costs, but the opposite policy would improve welfare in the case of Cournot competition.

V. Long-run optimal Welfare

- CP selects production technologies active at Long-Run Optimal Welfare (LROW)
- CP is able to replicate technologies
- Here, cost of inactivity bears no fixed cost, CP prevents entry of such a firm
- Formally,

$$
\begin{equation*}
W^{L} \equiv \max _{\left\{y_{n}, \gamma_{n}\right\}_{n=1}^{M}}\left\{W\left(\left\{y_{n}\right\}_{n=1}^{M},\left\{\gamma_{n}\right\}_{n=1}^{M}\right):\left\{y_{n} \geq 0\right\}_{n=1}^{M} \wedge\left\{\gamma_{n}\right\}_{n=1}^{M} \in \Gamma\right\} \tag{13}
\end{equation*}
$$

where the technological set $\Gamma \subset \mathbb{R}^{2}$ denotes the set of all technologies active at LRCE.

- the long-run technological parameters γ^{L} optimal and

$$
\begin{equation*}
c^{L}(w, y)=c\left(w, y, \gamma^{L}\right) \tag{14}
\end{equation*}
$$

\rightarrow Proposition 6 (exerpt)

- the LROW exists and is unique
- at LROW all firms have zero profit and local constant returns to scale
- $W^{L} \geq W^{S}$

VI. Output demand estimation 1

- Consider the output demand addressed to a manufacturing industry $i=1, \ldots, I$
- Estimate the elasticity of output demand wrt its price
- Aggregate prices and production data
- 22 2-digit industries $(I=22)$
- for $1994-2016(T=22)$ (loss of one period by differencing),
- Total of $I T=484$ observations

VI. Output demand estimation 1

- Consider the output demand addressed to a manufacturing industry $i=1, \ldots, I$
- Estimate the elasticity of output demand wrt its price
- Aggregate prices and production data
- 22 2-digit industries $(I=22)$
- for $1994-2016(T=22)$ (loss of one period by differencing),
- Total of $I T=484$ observations
- We consider the following parametric specification for the output demand (Laisney and Koebel, 2016)

$$
\begin{equation*}
\ln Y_{i t}=\alpha_{i}+\alpha_{Y} \ln Y_{i, t-1}+\alpha_{p} \ln P_{i t}+\alpha_{I M} \ln P_{i t}^{I M}+\epsilon_{i t}, \tag{15}
\end{equation*}
$$

assuming $E\left(\alpha_{i} \mid Y_{i, t-1}, P_{i t}, P_{i t}^{I M}\right) \neq 0$.

- Taking the first-difference eliminates the industry fixed-effects, yielding

$$
\begin{equation*}
\Delta \ln Y_{i t}=\alpha_{Y} \Delta \ln Y_{i, t-1}+\alpha_{p} \Delta \ln P_{i t}+\alpha_{I M} \Delta \ln P_{i t}^{I M}+\eta_{i t}, \tag{16}
\end{equation*}
$$

with $\eta_{i t}=\Delta \epsilon_{i t}$.

- Problem: by simultaneity, still $E\left(\eta_{i t} \mid \Delta \ln Y_{i, t-1}, \Delta \ln P_{i t}\right) \neq 0$

VI. Output demand estimation 2

- Use supply shifter as instruments to trace out the output demand
- The $(L \times 1)$ vector of instruments, $z_{i t}$, includes labor cost, price of intermediate products and export/imports, lagged values (up to lag 3) of endogenous variables

$$
z_{i t}=\left(w_{i t}, p_{i t}^{M}, p_{i t}^{X}, p_{i t}^{I M},\left\{Y_{i \tau}\right\}_{\tau=1}^{t-3},\left\{P_{i \tau}\right\}_{\tau=1}^{t-3}\right)
$$

- Total of 130 moment conditions

VI. Output demand estimation 2

- Use supply shifter as instruments to trace out the output demand
- The $(L \times 1)$ vector of instruments, $z_{i t}$, includes labor cost, price of intermediate products and export/imports, lagged values (up to lag 3) of endogenous variables

$$
z_{i t}=\left(w_{i t}, p_{i t}^{M}, p_{i t}^{X}, p_{i t}^{I M},\left\{Y_{i \tau}\right\}_{\tau=1}^{t-3},\left\{P_{i \tau}\right\}_{\tau=1}^{t-3}\right)
$$

- Total of 130 moment conditions
- Use linear 2-stage GMM, defined by

$$
\begin{equation*}
\left(\sum_{i=1}^{I} \sum_{t=1}^{T} \eta_{i t} z_{i t}^{\top}\right) \mathbf{W}\left(\sum_{i=1}^{I} \sum_{t=1}^{T} z_{i t} \eta_{i t}\right)=\eta^{\top} \mathbf{Z} \mathbf{W} \mathbf{Z}^{\top} \eta \tag{17}
\end{equation*}
$$

- assuming $E\left[\eta_{i t} z_{i t}\right]=0$
- Apply two-ways clustering to account for
- heteroskedasticity,
- contemporaneous dependence between residuals of different industries,
- temporal dependence within a given industry and consecutive time periods

VI. Output demand estimation 3

- Price and quantity data for $I=22$ 2-digit manufacturing industries and $T=22$ years
- $\ln Y_{i t}=\alpha_{i}+\alpha_{Y} \ln Y_{i, t-1}+\alpha_{p} \ln P_{i t}+\alpha_{I M} \ln P_{i t}^{I M}+\epsilon_{i t}$

Table: Output demand estimates

	FE	FD	FD-GMM
α_{Y}	0.92	0.05	0.76
	(0.02)	(0.05)	$(0.06),[0.03]$
α_{p}	-0.12	-0.67	-0.64
	(0.07)	(0.17)	$(0.18),[0.08]$
$\alpha_{I M}$	0.04	0.55	0.49
	(0.07)	(0.16)	$(0.18),[0.07]$
$O I T$	-	-	0.99

Notes: HAC robust standard errors are given in parenthesis, clustered standard errors are in brackets. OIT: p-value of the over-identification test, for the validity of the 130 orthogonality conditions.

VI. Output demand estimation 4

- The inverse demand elasticity is obtained by

$$
\begin{equation*}
\varepsilon\left(P^{d}, Y\right)=\frac{1}{\varepsilon\left(Y^{d}, p\right)} \tag{18}
\end{equation*}
$$

- Setting $Y_{i, t-1}=Y_{i, t}$ we obtain the long-run demand elasticities wrt price

Table: Industry short- and long-run elasticities of output demand

	Short-run		Long-run	
	$\varepsilon\left(Y^{d}, p\right)$	$\varepsilon\left(P^{d}, Y\right)$	$\varepsilon\left(Y^{d}, p\right)$	$\varepsilon\left(P^{d}, Y\right)$
Estimate	-0.64	-1.56	-2.67	-0.37
s.e.	0.18	0.44	0.87	0.12

- Investigate the relationship between the markup $\mu_{n t}$, and the market share $y_{n t} / Y_{t}$, parameterized by the inverse demand elasticity:

$$
\begin{equation*}
\frac{p_{n t}}{\partial c / \partial y_{n t}\left(w_{n t}, y_{n t}\right)}=\frac{1}{1+\varepsilon\left(P^{d}, Y_{t}\right) y_{n t} / Y_{t}} \tag{19}
\end{equation*}
$$

VI. Output demand estimation 5

Figure: The estimated relationship between firms' market share and markup

- The markup is monotonically increasing in market share
- Short-run: substantial markup of $1.45-1.88$ to firms with biggest market share
- Long-run: markup falls to the interval 1.08-1.12

VII. Data for cost function estimation 1

- French firm-level data 1994-2016 (FICUS/FARE): 176,640 firms, 1,455,383 observations, 184 4-digit manufacturing industries

Table: Statistics by firm size in a typical 4-digit manufacturing industry ${ }^{a}$

Firm size ${ }^{b}$	\# of firms	Share of firms	Share of employees	Share of production
1	50	14.71	0.40	0.28
$2-4$	82	24.12	1.86	1.05
$5-9$	73	21.47	3.93	2.19
$10-19$	52	15.29	5.67	3.56
$20-49$	49	14.41	12.29	9.14
$50-99$	16	4.71	8.83	6.91
$100-199$	9	2.65	10.76	9.28
$200-499$	6	1.76	14.83	14.47
$500+$	3	0.88	41.43	53.11
Total	340	100.00	100.00	100.00

[^0]
VII. Data for cost function estimation 2

Figure: The profit rates: $\left(p y_{n t}-c_{n t}\right) / c_{n t}$

VII. Data for cost function estimation 3

Figure: Production density

VII. Data for cost function estimation 4

Figure: \log (Production) density

VII. Data for cost function estimation 5

Figure: Average cost: for the total manufacturing and for Screw, Nut and Bolt Manufacturing

VIII. Cost function estimation 1

- Consider the the cost and marginal cost functions:

$$
\begin{gathered}
c_{n t}=u_{n t}\left(w_{n t}, t ; \theta^{u}\right)+v_{1, n t}\left(w_{n t}, t ; \theta^{v_{1}}\right) y_{n t}+\frac{1}{2} v_{2, n t}\left(w_{n t}, t ; \theta^{v_{2}}\right) y_{n t}^{2}+\varepsilon_{n t}^{c} \\
p_{n t}\left(1+\varepsilon\left(P^{d}, Y_{t}\right) y_{n t} / Y_{t}\right)=v_{1, n t}\left(w_{n t}, t ; \theta^{v_{1}}\right)+v_{2, n t}\left(w_{n t}, t ; \theta^{v_{2}}\right) y_{n t}+\varepsilon_{n t}^{p}
\end{gathered}
$$

- For $p_{n t}$ we use an output price index, available at the 2-digit industry level
- The cost function components u, v_{1}, and v_{2} are FFF in prices $w_{n t}$ and time index t
- The fixed cost cannot take negative values, so that we specify:

$$
\begin{equation*}
u_{n t}\left(w_{n t}, t\right)=\max \left\{\gamma_{n t}^{u} u\left(w_{n t}, t\right)+\eta_{n t}^{u}, 0\right\} \tag{20}
\end{equation*}
$$

- For $i=c, p$ and $j=u, v_{1}, v_{2}$, we specify:

$$
\begin{equation*}
v_{j, n t}\left(w_{n t}, t\right)=\gamma_{n t}^{v_{j}} v_{j}\left(w_{n t}, t\right)+\eta_{n t}^{v_{j}}, \quad j=1,2 . \tag{21}
\end{equation*}
$$

- We rely on a correlated random coefficient approach to account for unobserved heterogeneity (Wooldridge, 2019)

VIII. Cost function estimation 2

- Assumption 9. The unobserved technological random terms satisfy:

$$
\begin{aligned}
& E\left[\gamma_{n t}^{j} \mid w_{n t}, t, y_{n t}\right]=E\left[\gamma_{n t}^{j} \mid w_{n t}, t, z_{n t}\right], \\
& E\left[\eta_{n t}^{j} \mid w_{n t}, t, y_{n t}\right]=E\left[\eta_{n t}^{j} \mid w_{n t}, t, z_{n t}\right], \\
& E\left[\gamma_{n t}^{j} \mid w_{n t}, t, z_{n t}\right]=E\left[\gamma_{n t}^{j} \mid z_{n t}\right]=\gamma^{j}\left(z_{n t}\right)=1+\left(z_{n t}-\bar{z}\right)^{\top} \beta^{j}, \\
& E\left[\eta_{n t}^{j} \mid w_{n t}, t, z_{n t}\right]=E\left[\eta_{n t}^{j} \mid z_{n t}\right]=\eta^{j}\left(z_{n t}\right)=\left(z_{n t}-\bar{z}\right)^{\top} \delta^{j}, \quad j=u, v_{1}, v_{2} .
\end{aligned}
$$

- Conditionally to $w_{n t}, t, z_{n t}$ our two equations system becomes:

$$
\begin{gathered}
y_{n t}=y^{s}\left(p_{t}, w_{n t}, t, z_{n t}\right)+\varepsilon_{n t}^{y} \\
=\frac{p_{t}-\gamma^{v_{1}}\left(z_{n t}\right) v_{1}\left(w_{n t}, t\right)-\eta^{v_{1}}\left(z_{n t}\right)}{\gamma^{v_{2}}\left(z_{n t}\right) v_{2}\left(w_{n t}, t\right)+\eta^{v_{2}}\left(z_{n t}\right)+\varepsilon \frac{p_{t}}{Y_{t}}}+\varepsilon_{n t}^{y} \\
c_{n t}=\gamma^{u}\left(z_{n t}\right) u\left(w_{n t}, t\right)+\eta^{u}\left(z_{n t}\right)+\gamma^{v_{1}}\left(z_{n t}\right) v_{1}\left(w_{n t}, t\right) y_{n t}^{s}+\eta^{v_{1}}\left(z_{n t}\right) y_{n t}^{s} \\
+\frac{1}{2} \gamma^{v_{2}}\left(z_{n t}\right) v_{2}\left(w_{n t}, t\right)\left(\left(y^{s}\right)^{2}+\sigma_{y}^{2}\right)+\frac{1}{2} \eta^{v_{2}}\left(z_{n t}\right)\left(\left(y^{s}\right)^{2}+\sigma_{y}^{2}\right)+\varepsilon_{n t}^{c}
\end{gathered}
$$

IX. Empirical results 1

We evaluate in turn:

- the distribution of unobserved heterogeneity γ^{u} and γ^{v}
- the size of fixed costs

$$
\frac{u_{n t}}{c_{n t}}\left(w_{n t}, t, y_{n t}\right),
$$

- the rate of Returns To Scale (RTS)

$$
\frac{\partial \ln c}{\partial \ln y}(w, t, y)
$$

- the Rate of Technological Change (RTC)

$$
\frac{\partial \ln c}{\partial t}(w, t, y)
$$

IX. Empirical results 2

Figure: Unobserved heterogeneity fixed and variable costs

IX. Empirical results 3

Table: Fixed costs by firm size ${ }^{a, b}$

Firm size	Share $u_{n t}=0$ (1)	$Q_{25}(u / c)$ (2)	$Q_{50}(u / c)$ (3)	$Q_{75}(u / c)$ (4)	$Q_{50}\left(\gamma^{u}\right)$	$Q_{50}\left(\gamma^{v}\right)$
	81.35	0.00	0.00	0.00	0.00	(6)
1	78.37	0.00	0.00	0.00	0.00	0.99
$2-4$	70.76	0.00	0.00	0.12	0.00	0.97
$5-9$	57.08	0.00	0.00	0.47	0.00	0.98
$10-19$	41.55	0.00	0.18	0.69	0.22	1.00
$20-49$	31.21	0.00	0.37	0.79	0.79	0.99
$50-99$	22.19	0.10	0.48	0.83	2.99	0.97
$100-199$	12.47	0.34	0.61	0.90	6.44	0.90
$200-499$	2.63	0.55	0.85	1.15	32.46	0.88
$500+$						

${ }^{\text {a }}$ Firm sizes are measured by the number of employees.
${ }^{\text {b }}$ Column (1) reports the share of firms with zero fixed; Q_{p} reports the $p^{t h} \%$ quantile of the distribution of the variable in parentheses.

IX. Empirical results 4

Table: RTS and RTC by firm size ${ }^{a, b}$

Firm size	$Q_{25}(e(c ; y))$	$Q_{50}(e(c ; y))$	$Q_{75}(e(c ; y))$	Returns To Scale of Technological Change		
$Q_{25}(e(c ; t))$	$Q_{50}(e(c ; t))$	$Q_{75}(e(c ; t))$				
1	0.79	0.99	1.09	-0.26	-0.01	0.15
$2-4$	0.86	1.00	1.07	-0.10	-0.01	0.06
$5-9$	0.90	1.00	1.07	-0.07	-0.01	0.03
$10-19$	0.91	1.00	1.06	-0.06	-0.01	0.02
$20-49$	0.90	0.00	1.05	-0.05	-0.01	0.03
$50-99$	0.88	0.86	1.04	-0.05	-0.01	0.03
$100-199$	0.86	0.94	1.03	-0.04	-0.01	0.02
$200-499$	0.82	0.90	1.02	-0.06	-0.02	0.01
$500+$	0.75	1.00	-0.40	-0.02	0.01	

${ }^{\text {a }}$ Firm sizes are measured by the number of employees.
${ }^{\text {b }} Q_{p}$ reports the $p^{t h} \%$ quantile of the distribution of the variable in parentheses.

IX. Empirical results 5

Figure: Firms' size distributions, observed and predicted

X. Conclusion

Summary

- We proposed a framework for Cournot competition with heterogeneous firms
- and adapted some results obtained for homogeneous firms and/or symmetric equilibrium
- We found some interesting theoretical results regarding market power and firm size
- Still ongoing:
- Empirical investigation for the general cost function
- Which firm shall be shut down or be started-up to increase welfare?

Empirical challenge

Table: Number of active firms and employment by firm size, manufacturing, France and Germany, 2017

		Total	Firm size				
		0-9	10-49	50-249	>250		
France	No. of Firms		193,609	162,955	23,468	5,658	1,522
	No. of Employees	2,832,458	259,459	488,990	601,247	1,482,624	
SROW	No. of Firms No. of Employees						
Germany	No. of Firms	234,310	170,585	43,540	15,845	4,340	
	No. of Employees	7,040,463	336,753	939,166	1,701,813	4,062,731	

Welfare gain decomposition:

$$
W^{S}-W^{C}=\int_{Y^{C}}^{Y^{S}} P(s) d s+\left(N^{C}-N^{S}\right) c^{C}+\left(N^{S} c^{C}-\sum_{m \in \mathcal{N}^{S}} c\left(w_{m}, y_{m}, \gamma_{m}\right)\right)
$$

Thank you for your attention, suggestions, and comments!
koebel@unistra.fr enrico.demonte@zew.de

Short-run Cournot model: Assumptions A1-A4

- Firms behave as profit maximizers,

$$
\begin{equation*}
P(Y)+P^{\prime}(Y) y_{n}=\frac{\partial c_{n}}{\partial y_{n}}\left(w_{n}, y_{n}\right)=\frac{\partial v_{n}}{\partial y_{n}}\left(w_{n}, y_{n}\right) \tag{22}
\end{equation*}
$$

A 1: The inverse demand function P is nonnegative, continuous, differentiable and decreasing in Y.
A 2: The cost function is continuous in w_{n} and y_{n}, nonnegative, differentiable and increasing in w_{n} and y_{n}
A 3: There exist firm-level and aggregate production levels \bar{y} and \bar{Y} such that:
(i) the marginal revenue is lower than the marginal cost:

$$
\begin{equation*}
P(Y)+P^{\prime}(Y) y<\partial c_{n} / \partial y_{n}\left(w_{n}, y\right), \tag{23}
\end{equation*}
$$

for any $y>\bar{y}$ and $Y>\bar{Y}$, and any firm $n=1, \ldots, N$;
(ii) the cost function is not too concave:

$$
\begin{equation*}
P^{\prime}(Y)<\partial^{2} c_{n} / \partial y_{n}^{2}\left(w_{n}, y\right), \tag{24}
\end{equation*}
$$

for any $y<\bar{y}$ and $Y<\bar{Y}$, and any firm $n=1, \ldots, N$.
A 4: The marginal revenue function satisfies:

$$
\begin{equation*}
P^{\prime}(Y)+y_{n} P^{\prime \prime}(Y) \leq 0, \tag{25}
\end{equation*}
$$

for any value of $y_{n} \leq Y<N \bar{y}$.
This is Novshek (1985) sufficient condition for existence of Cournot equilibrium.

Proposition 1

- Under A1-A4, for given N, the Cournot equilibrium exists and is unique
- The backward reaction functions:

$$
\begin{equation*}
y_{n}^{b}\left(w_{n}, Y\right), \quad \text { and } \quad Y=\sum_{n=1}^{N} y_{n}^{b}\left(w_{n}, Y\right) . \tag{26}
\end{equation*}
$$

- the Cournot equilibrium is characterized by Y^{N} and $y_{n}^{N}=y_{n}^{b}\left(w_{n}, Y^{N}\right)$.

Proposition 1

Under A1-A4, at the Cournot equilibrium with fixed number of N firms:
0 The elasticity of inverse demand $\epsilon(P, Y)$ satisfies $-N<\epsilon(P, Y)<0$
© Firm's n market share satisfies $y_{n}^{N} / Y^{N}<-1 / \epsilon(P, Y)$
© The value of the marginal cost of production decreases with firm size
(1) The price markup increases with firm size

- For a subset of $N^{\prime}<N$ active firms, $Y^{N^{\prime}}<Y^{N}$ and $y_{n}^{N^{\prime}}>y_{n}^{N}$.

$$
\begin{equation*}
P^{\prime}\left(Y^{N}\right)\left(y_{n}^{N}-y_{m}^{N}\right)=\frac{\partial c_{n}}{\partial y}\left(w_{n}, y_{n}^{N}\right)-\frac{\partial c_{m}}{\partial y}\left(w_{m}, y_{m}^{N}\right) \tag{27}
\end{equation*}
$$

Proposition 2

Proposition 2

Under A1-A5, at the short-run Cournot equilibrium with fixed number of firms, 0 firm n individual production level decreases with γ_{n}^{v}
\oplus firm n production level increases with γ_{m}^{v}
© the aggregate equilibrium level of production decreases with γ_{n}^{v}
(1) individual and aggregate production levels are unaffected by a change in γ_{n}^{u}

- firm n profit decreases with γ_{n}^{v} and γ_{n}^{u}
(3) firm n profit increases with γ_{m}^{v}

Proposition 3

Proposition 3

Under A1-A7, we consider two firms at Cournot equilibrium, both with similar input prices w. Assume that the cost functions are convex. The Nash equilibrium production levels of firms m and n satisfy $y_{m}^{N}<y_{n}^{N}$ iff
(i) the biggest firm is more productive: $\gamma_{m}^{v}>\gamma_{n}^{v}$
(ii) the biggest firm has a lower variable cost for each unit produced:
$v_{m}\left(w, y_{m}^{N}\right) / y_{m}^{N}>v_{n}\left(w, y_{n}^{N}\right) / y_{n}^{N}$
(iii) on average, bigger firms have higher fixed costs: $\mathrm{E}\left[\gamma_{m}^{u}\right]<\mathrm{E}\left[\gamma_{n}^{u}\right]$ and
$\mathrm{E}\left[u_{m}(w)\right]<\mathrm{E}\left[u_{n}(w)\right]$;
(iv) on average, bigger firms have a larger efficient scale of production.

Proposition 4

Proposition 4

We assume A1-A4. In comparison to the LRWM, the LRCE is characterized by (i) a lower aggregate production and a higher price: $Y^{C}<Y^{W}$ and $P\left(Y^{C}\right)>P\left(Y^{W}\right)$
(ii) profits which are too high: $\pi_{n}^{C}>\pi_{n}^{W}$
(iii) big firms which produce too little, $y_{n}^{C}<y_{n}^{W}$
(iv) small firms with global decreasing returns which produce too much: $y_{n}^{C}>y_{n}^{W}$ and some of them which should be shut down
(v) small firms with increasing returns which either produce too little, or should be shut down (vi) only a subset of the firms active at LRCE is still active at the LRWM.

Proposition 5

Proposition 5

Under A1-A7, we consider firms with similar input prices w at Cournot equilibrium. Assume that the cost functions are convex. Then:
(i) $N^{W} \leq N^{C}$
(ii) the Hirschman-Herfindahl index of concentration is higher at the LRWP than at LRCE.

Proposition 6

Proposition 6

Under A1-A8, we consider firms with similar input prices w, and ignore the integer constraint on N. Then
(i) the LROW exists and is unique;
(ii) at LROW all firms have zero profit and local constant returns to scale;
(iii) $W^{L} \geq W^{S}$;
(iv) the fixed cost is zero at LROW if $e^{\prime}\left(\gamma^{u L}\right)<u(w) / v\left(w, y^{L}\right)$;
(v) It is equivalent to maximize the central planer problem W^{L} or decentralized profits wrt (y_{n}, γ_{n}), for given price level p, which clears the product market with free entry;

Industry output demand and simultaneity

Figure: Identifying industry demand

Included industries

Table: Description of two-digit industries

Industry a	Description	\# Firms ${ }^{b}$	\# Obs. ${ }^{\text {c }}$
11	Beverages	3,031	26,049
13	Manufacture of tobacco products	7,012	59,299
14	Manufacture of wearing apparel	15,658	82,221
15	Manufacture of leather and related products	3,054	22,220
16	Manufacture of wood and of products of wood	13,200	109,643
17	Manufacture of paper and paper products	2,825	28,447
18	Printing and reproduction of recorded media	21,799	174,024
20	Manufacture of chemicals and chemical products	5,204	47,581
21	Manufacture of basic pharm. products and pharm. preparations	979	8,522
22	Manufacture of rubber and plastic products	8,801	86,595
23	Manufacture of other non-metallic mineral products	11,668	95,613
24	Manufacture of basic metals	2,042	18,767
25	Manufacture of fabricated metal products	34,397	326,264
26	Manufacture of computer, electronic and optical products	7,388	57,119
27	Manufacture of electrical equipment	5,033	42,623
28	Manufacture of machinery and equipment	13,362	111,735
29	Manufacture of motor vehicles, trailers and semi-trailers	4,013	35,857
30	Manufacture of other transport equipment	1,799	12,852
31	Manufacture of furniture	15,355	109,952
	Total	176,640	$1,455,383$

${ }^{\text {a) }}$ Statistical classification of economic activities in the European Community, Rev. 2 (2008)
b) \# Firms describes the number of firms which were active over the period (it is computed as the total number of different firms identifiers).
c) \# Obs. describes the total number of observations.

[^0]: ${ }^{\text {a }}$ All figures represent averages over all 4-digit industries and years (1994-2016). Shares are given in \%.
 ${ }^{\mathrm{b}}$ Firm sizes are measured by the number of employees.

