Labor Market Recoveries Across the Wealth Distribution

Daniele Caratelli
Office of Financial Research, US Department of Treasury
EEA

August 2023

The views expressed are my own and do not necessarily reflect those of the OFR or the Department of Treasury.

Motivation

1. Different workers experience different labor market outcomes over the cycle

* well-documented for standard controls such as race, sex, education, age, industry

Motivation

1. Different workers experience different labor market outcomes over the cycle * well-documented for standard controls such as race, sex, education, age, industry
2. Even accounting for these, there persist large differences by wealth

* Fact 1: Low-wealth workers' earnings fall more and recover more slowly

Motivation

1. Different workers experience different labor market outcomes over the cycle

* well-documented for standard controls such as race, sex, education, age, industry

2. Even accounting for these, there persist large differences by wealth

* Facts 2 \& 3: EE and EU rates more volatile for low-wealth workers

EE falls and EU rises by more in recession for low-wealth

	Standard Deviation of cyclical component		
	all workers	low wealth	high wealth
	5.54	5.04	6.06
UE (job-finding)	0.99	1.20	0.81
EE (job-switching)	1.49	1.81	1.21
EU (job-losing)	1.89		

This Paper

- Build a model to account for these facts by integrating three key ingredients
(1) risk aversion
(2) incomplete markets
(3) risky job-switches
* job-loss prob. decreasing in tenure \Rightarrow switching jobs implies higher job-loss prob.

This Paper

- Build a model to account for these facts by integrating three key ingredients
(1) risk aversion
(2) incomplete markets
(3) risky job-switches
* job-loss prob. decreasing in tenure \Rightarrow switching jobs implies higher job-loss prob.
- Two forces rationalize worse labor market outcomes for low-wealth workers
* Precautionary Job-Keeping Motive
\rightarrow low-wealth workers don't switch jobs to avoid extra risk of job loss
* Tenure-Wealth Correlation
\rightarrow low-wealth workers more exposed to job-loss bc tend to be in low-tenure jobs

This Paper

- Build a model to account for these facts by integrating three key ingredients
(1) risk aversion
(2) incomplete markets
(3) risky job-switches
* job-loss prob. decreasing in tenure \Rightarrow switching jobs implies higher job-loss prob.
- Two forces rationalize worse labor market outcomes for low-wealth workers
* Precautionary Job-Keeping Motive
(causal)
\rightarrow low-wealth workers don't switch jobs to avoid extra risk of job loss
* Tenure-Wealth Correlation
(selection)
\rightarrow low-wealth workers more exposed to job-loss bc tend to be in low-tenure jobs
- Model results (today)
* accounts for Great Recession earnings gap dynamics by wealth
* explains atypical strong recovery in job-switching post-Pandemic due to fiscal stim.

Model (in a nutshell)

Model Overview

- Model combines
* search and matching framework with on-the-job search
* incomplete markets

```
develop generalized AOB protocol to accommodate these ingredients
```

- Risk-averse heterogeneous households: employed or unemployed
* if employed have tenure j
* can switch from lower to higher productivity firms
* switching jobs is risky because probability of job-loss, $\sigma(j)$, declines with tenure j

Employed Worker: Job-Switching Decision

- Worker who receives offer from firm with productivity n^{\prime} faces
$\max \left\{E\left(a, z, w_{\text {stay }}^{e}\left(a, z, n, n^{\prime}, j\right), n, j+1\right), E\left(a, z, w_{\text {switch }}^{e}\left(a, z, n, n^{\prime}, j\right), n^{\prime}, 0\right)\right\}$
* wages $w_{\text {stay }}^{e}$ and $w_{\text {switch }}^{e}$ are negotiated via generalized AOB

Employed Worker: Job-Switching Decision

- Worker who receives offer from firm with productivity n^{\prime} faces

$$
\max \left\{E\left(a, z, w_{\text {stay }}^{e}\left(a, z, n, n^{\prime}, j\right), n, j+1\right), E\left(a, z, w_{\text {switch }}^{e}\left(a, z, n, n^{\prime}, j\right), n^{\prime}, 0\right)\right\}
$$

* wages $w_{\text {stay }}^{e}$ and $w_{\text {switch }}^{e}$ are negotiated via generalized AOB
- Key trade-off when moving to higher productivity firm $n^{\prime}>n$
* higher wages: $w_{\text {switch }}^{e}(\cdot)>w_{\text {stay }}^{e}(\cdot)$
* lower tenure and lost job stability: $j+1>0 \Rightarrow \sigma(j+1)<\sigma(0)$
* depends on willingness to take on risk which depends on wealth

Employed Worker: Job-Switching Decision

- Worker who receives offer from firm with productivity n^{\prime} faces

$$
\max \left\{E\left(a, z, w_{\text {stay }}^{e}\left(a, z, n, n^{\prime}, j\right), n, j+1\right), E\left(a, z, w_{\text {switch }}^{e}\left(a, z, n, n^{\prime}, j\right), n^{\prime}, 0\right)\right\}
$$

wages $w_{\text {stay }}^{e}$ and $w_{\text {switch }}^{e}$ are negotiated via generalized $A O B$ (see paper)

- Key trade-off when moving to higher productivity firm $n^{\prime}>n$
* higher wages: $w_{\text {switch }}^{e}(\cdot)>w_{\text {stay }}^{e}(\cdot)$
* lower tenure and lost job stability: $j+1>0 \Rightarrow \sigma(j+1)<\sigma(0)$
* decision depends on sensitivity to risk and so wealth plays a key role
- Asset cutoff $a^{*}\left(z, n, n^{\prime}, j\right)$ above switch, below stay

Quantification

Quantification

- Calibrate to match key features of US labor market and wealth distribution

Quantification

- Calibrate to match key features of US labor market and wealth distribution
- Job-switches are risky:
* switchers face higher job-loss probability $(\mathrm{E} \rightarrow \mathrm{U})$ than if they had not switched
- Event study determines incremental job-loss prob. relative to non-switchers (SIPP: monthly estimation, quarterly aggregation)

Quantification

- Calibrate to match key features of US labor market and wealth distribution
- Job-switches are risky:
* switchers face higher job-loss probability $(\mathrm{E} \rightarrow \mathrm{U})$ than if they had not switched
- Event study determines incremental job-loss prob. relative to non-switchers (SIPP: monthly estimation, quarterly aggregation)

$$
\mathbb{1}\left(\mathrm{EU}_{i, t \rightarrow t+1}\right)=\sum_{n=-1}^{14} \theta_{j} D_{i, t}^{j}+\underbrace{\alpha_{i}}_{i-\mathrm{FE}}+\underbrace{\beta_{t}}_{t-\mathrm{FE}}+\Gamma X_{i, t}+\epsilon_{i, t}
$$

where $D_{i, t}^{j}:= \begin{cases}1 & \text { if at } t-j, \text { worker } i \text { switched jobs } \\ 0 & \text { otherwise }\end{cases}$

Job-Switching Risk

- Job-loss probability increases in the months following a J2J move

- Cumulative ~ 7 p.p. increase in the avg. prob. of job-loss (18% to 25%)

Precautionary Job-Keeping at Work

Low-Wealth Workers' Lower Job-Switching Rates

Precautionary job-keeping explains lower job-switching for low-wealth workers

Low-Wealth Workers' Lower Job-Switching Rates

Precautionary job-keeping explains lower job-switching for low-wealth workers

- It implies asset cutoff for switching job keeping states and amenities fixed

Example of Worker's Stay vs. Switch Values

Low-Wealth Workers' Lower Job-Switching Rates

Precautionary job-keeping explains lower job-switching for low-wealth workers

- Aggregating over workers leads to a prob. of switching jobs increasing in assets

Low-Wealth Workers' Lower Job-Switching Rates

Precautionary job-keeping explains lower job-switching for low-wealth workers

- In SS, low-wealth workers face steeper probability of job-switching

Low-Wealth Workers' Lower Job-Switching Rates

Precautionary job-keeping explains lower job-switching for low-wealth workers

- In SS, low-wealth workers face steeper probability of job-switching

- In recessions wealth falls and job-switching falls more for low-wealth workers

Precautionary Job-Keeping: Model vs. Data

- Use SIPP and model to run (X : age, tenure, industry, educ., race, married, num. kids)

Precautionary Job-Keeping: Model vs. Data

- Use SIPP and model to run (X : age, tenure, industry, educ., race, married, num. kids)

$$
\mathbb{1}\left(\mathrm{EE}_{i, t}\right)=\beta_{0}+\beta_{1} \frac{\text { Wealth }_{i, t}}{\text { Income }_{i, t}}+\vec{\gamma} X_{i, t}+\alpha_{i}+\delta_{t}+\varepsilon_{i, t}
$$

Sensitivity of job-switching to wealth/income ratio $\left(\beta_{1}\right)$

Precautionary Job-Keeping: Model vs. Data

- Condition on incumbent/poacher, β-het. \rightarrow filters out selection effects
(1) down-ward sloping (2) extra year-worth of income \uparrow prob. of switching by 7 p.p.

Sensitivity of job-switching to wealth/income ratio $\left(\beta_{1}\right)$

Results

Quantitative Results

Fit to Untargeted Moments

- Great Recession
- Unequal Great Recession
* account for 40% of earnings gap between low- and high-wealth workers

Counterfactual Exercise

- Pandemic Recession
* rationalize strong job-switching rate post-Pandemic

Unequal Recovery from the Great Recession

- Low-wealth workers suffered larger earnings losses than high-wealth workers

Unequal Recovery from the Great Recession

Labor Earnings post Great Recession

Unequal Recovery from the Great Recession

- Low-wealth workers suffered larger earnings losses than high-wealth workers
- What does the model imply for earnings dynamics?
* shock Z_{t} and σ_{t} to match output and unemployment in GR Targets \rightarrow Wealth
* compute (untargeted) earnings response for low- and high-wealth workers

Unequal Recovery from the Great Recession

Labor Earnings post Great Recession

Unequal Recovery from the Great Recession

Labor Earnings post Great Recession

Unequal Recovery from the Great Recession

- Low-wealth workers suffered larger earnings losses than high-wealth workers
- What does the model imply?
* shock Z_{t} and σ_{t} to match output and unemployment in GR
* compute earnings response for low- and high-wealth workers
- How much of earnings gap can the model explain?

Unequal Recovery from the Great Recession Great Recession Earnings Gap

Unequal Recovery from the Great Recession

- Low-wealth workers suffered larger earnings losses than high-wealth workers
- What does the model imply?
* shock Z_{t} and σ_{t} to match output and unemployment in GR
* compute earnings response for low- and high-wealth workers
- How much of earnings gap can my model explain?
* compare to naïve model with constant job-loss prob. to match unemp. level
* next: benchmark model explains extra 40% of earnings gap relative to naïve

Unequal Recovery from the Great Recession
Great Recession Earnings Gap

Job-Switching: Great vs. Pandemic Recession

- Model not tailored to Pandemic but helps understand behavior of job-switching
* Great Recession: deep fall and slow recovery
* Pandemic Recession: mild fall and quick recovery

Post-Pandemic Great Reallocation

Can fiscal stimulus account for atypical job-switching post-Pandemic?

- I simulate an economy in which I introduce
* extra UI (2.7\% of GDP)
\Rightarrow workers' wealth increased! * Wealth
* govt. checks (3.9% of GDP)
* job-loss shock to match empirical EE rate
- Then contrast its implications to that of an economy without fiscal stimulus

Q: How would have job-switching behaved absent stimulus?

Post-Pandemic Great Reallocation

Job-Switching Rate since Pandemic

Post-Pandemic Great Reallocation

 Job-Switching Rate since Pandemic

Post-Pandemic Great Reallocation

 Job-Switching Rate since Pandemic

Post-Pandemic Great Reallocation

 Job-Switching Rate since Pandemic

Post-Pandemic Great Reallocation

Can fiscal stimulus account for atypical job-switching post-Pandemic?

* I simulate and economy in which I introduce
* extra UI (2.7% of GDP)
\Rightarrow workers' wealth increased!
* govt. checks (3.9\% of GDP)
* job-loss shock to match empirical EE rate
* Then contrast its implications to that of an economy without fiscal stimulus

Q: How would have job-switching behaved absent stimulus?
\Rightarrow Fiscal stimulus alleviated precautionary job-keeping

* fiscal stimulus supported EE recovery by encouraging job-switching

Conclusion

- Study cyclical labor market outcomes across the wealth distribution
- Build an equilibrium model of the labor market with
* risk-aversion
* incomplete markets and asset accumulation
* job-loss probability is decreasing in tenure
- Give rise to precautionary job-keeping and tenure-wealth correlation which help
* explain 40% of earnings gap dynamics by wealth following Great Recession
* account for post-Pandemic Great Reallocation

Appendix

SIPP Dataset

- use SIPP waves from 1996 to 2013
- panel varies from a few to 40 months, median 22
- contains rich labor market information
* weekly frequency
* job ID (allows to track job-switches)
- contains detailed information on financial wealth
* only certain waves of survey collect financial data
* I use closest reported wealth data
- sample:
* 15-55 years old (non-dependent)

SIPP Labor Flows

	Mean (\%)			Stdv.			Persistence		
	all	low-wealth	high-wealth	all	low-wealth	high-wealth	all	low-wealth	high-wealth
UE	55.68	51.16	61.69	$\begin{gathered} 5.54 \\ (0.828) \end{gathered}$	$\begin{gathered} 5.04 \\ (0.764) \end{gathered}$	$\begin{gathered} 6.06 \\ (0.960) \end{gathered}$	$\begin{aligned} & 0.9641 \\ & (0.041) \end{aligned}$	$\begin{aligned} & 0.9637 \\ & (0.042) \end{aligned}$	$\begin{aligned} & 0.9617 \\ & (0.039) \end{aligned}$
EU	3.64	4.80	2.91	$\begin{gathered} 1.49 \\ (0.204) \end{gathered}$	$\begin{gathered} 1.81 \\ (0.188) \end{gathered}$	$\begin{gathered} 1.21 \\ (0.172) \end{gathered}$	$\begin{aligned} & 0.8827 \\ & (0.073) \end{aligned}$	$\begin{aligned} & 0.8790 \\ & (0.066) \end{aligned}$	$\begin{aligned} & 0.8788 \\ & (0.069) \end{aligned}$
EE	4.12	5.07	3.35	$\begin{gathered} 0.99 \\ (0.120) \end{gathered}$	$\begin{gathered} 1.20 \\ (0.171) \end{gathered}$	$\begin{gathered} 0.81 \\ (0.092) \end{gathered}$	$\begin{aligned} & 0.9105 \\ & (0.089) \end{aligned}$	$\begin{aligned} & 0.9128 \\ & (0.084) \end{aligned}$	$\begin{aligned} & 0.9058 \\ & (0.093) \end{aligned}$
u	5.17	7.21	3.38	$\begin{gathered} 1.57 \\ (0.352) \end{gathered}$	$\begin{gathered} 2.45 \\ (0.572) \end{gathered}$	$\begin{gathered} 1.03 \\ (0.186) \end{gathered}$	$\begin{aligned} & 0.9468 \\ & (0.086) \end{aligned}$	$\begin{aligned} & 0.9424 \\ & (0.083) \end{aligned}$	$\begin{aligned} & 0.9499 \\ & (0.075) \end{aligned}$

[^0]
Moments Detail

- bootstrap SE Politis and Romano '94
- residualized by age, sex, race, education, work class, industry
- differences hold for EU and EE

Standard Deviation of cyclical component			
	all	low wealth	high wealth
UE	$\begin{gathered} 5.11 \\ (0.807) \end{gathered}$	$\begin{gathered} 4.70 \\ (0.791) \end{gathered}$	$\begin{gathered} 5.71 \\ (0.916) \end{gathered}$
EU	$\begin{gathered} 1.23 \\ (0.094) \end{gathered}$	$\begin{gathered} 1.41 \\ (0.162) \end{gathered}$	$\begin{gathered} 1.09 \\ (0.077) \end{gathered}$
EE	$\begin{gathered} 0.46 \\ (0.081) \end{gathered}$	$\begin{gathered} 0.78 \\ (0.19) \end{gathered}$	$\begin{gathered} 0.34 \\ (0.0 .041) \end{gathered}$

Job-Loss Decreasing in Tenure: Microfoundation

- Job-loss probability $\sigma(j)$ decreases with tenure j
- Firm and worker learn about idiosyncratic match quality
* high quality (H) with prob. π^{H}, low quality (L) with prob. $1-\pi^{H}$
- Tenure $j<J$: firm learns worker potential
* firm receives a signal of worker potential
- with prob. α^{L} low-potential type is revealed \rightarrow worker laid off
- with prob. $1-\alpha^{L}$ signal is uninformative \rightarrow job-loss prob. is σ
* lay-off probability is $\sigma(j)=\left(1-\pi^{H}\right)\left(1-\alpha^{L}\right)^{j} \alpha^{L}+\sigma$
- Tenure $j \geq J$: true quality is revealed and job-loss probability is σ

Job-Loss Decreasing in Tenure: Microfoundation

- Job-loss probability $\sigma(j)$ decreases with tenure j
- Firm and worker learn about idiosyncratic match quality
* high quality (H) with prob. π^{H}, low quality (L) with prob. $1-\pi^{H}$
- Tenure $j<J$: firm learns worker potential
* firm receives a signal of worker potential
- with prob. α^{L} low-potential type is revealed \rightarrow worker laid off
- with prob. $1-\alpha^{L}$ signal is uninformative \rightarrow job-loss prob. is σ
* lay-off probability is $\sigma(j)=\left(1-\pi^{H}\right)\left(1-\alpha^{L}\right)^{j} \alpha^{L}+\sigma$
- Tenure $j \geq J$: true quality is revealed and job-loss probability is σ

Firms: Active

- Value of active firms matched to worker $x \equiv(a, z, w, j)$ is

$$
\begin{aligned}
J(x ; n) & =\underbrace{y_{n}-r^{K} k-w}_{\text {flow profits } \pi}+\frac{1}{1+r} \mathbb{E}[(1-\sigma(j)) s \sum_{n^{\prime}} g\left(n^{\prime} \mid n\right) \lambda_{n^{\prime}} \underbrace{J^{e e}\left(x^{\prime} ; n, n^{\prime}\right)}_{\text {outside offer }} \\
& +(1-\sigma(j))\left(1-s \sum_{n^{\prime}} g\left(n^{\prime} \mid n\right) \lambda_{n^{\prime}}\right) \underbrace{J\left(x^{\prime} ; n\right)}_{\text {no outside offer }}+\sigma(j) \underbrace{V(n)}_{\text {match ends }}]
\end{aligned}
$$

where firms rent capital at $r^{K}, k=p_{n} \cdot z$, and $V(n)$ is the value of a vacancy

- $J^{e e}(\cdot)$ firm value when worker receives outsider offered from firm n^{\prime}

$$
J^{e e}(\cdot)= \begin{cases}V(n), & \text { if worker switches } \\ J\left(a^{\prime}, z^{\prime}, w_{\text {stay }}^{e}\left(x^{\prime} ; n, n^{\prime}\right), n, j+1\right), & \text { if worker stays }\end{cases}
$$

Firms: Vacant

- Posts one vacancy today at cost $\mathcal{k} \cdot p_{n}$, fills it tomorrow with prob. q_{n}

$$
V(n)=-\kappa p_{n}+\frac{1}{1+r}\left[\left(1-q_{n}\right) V(n)+q_{n} J_{0}(n)\right]
$$

- $J_{0}(n)$ is the expected value when meeting a worker

$$
\begin{aligned}
J_{0}(n) & =\int_{x^{u}} g(n \mid 0) J^{0}\left(x^{u}, w^{u}\left(x^{u} ; n\right)\right) d \Psi^{u}\left(x^{u}\right) \\
& +\int_{x^{e}} \sum_{n^{\prime}>0} g\left(n \mid n^{\prime}\right)[\underbrace{\varphi\left(x^{e}, n^{\prime}\right)}_{\text {pr. of poaching }} J^{0}\left(x^{e}, w_{\text {switch }}^{e}\left(x^{e}, n^{\prime}\right)\right)+\left(1-\varphi\left(x^{e}, n^{\prime}\right)\right) V(n)] d \Psi^{e}\left(x^{e}\right)
\end{aligned}
$$

$$
\text { where } x^{u} \equiv(a, z), x^{e} \equiv(a, z, n, j) \text { and } \Psi^{u}\left(x^{u}\right), \Psi^{e}\left(x^{e}\right) \text { are distributions over } x^{u}, x^{e}
$$

- $J^{0}(\cdot)$ same as $J(\cdot)$ but without immediate possibility of switching

Rest of Model: Detail

- Dividends aggregated across firms net of vacancy costs

$$
\Pi=\sum_{n=1}^{N} \int_{x^{e}}\left[p_{n} z\left(x^{e}\right)\left(y_{n}-r^{K} k\left(x^{e}\right)\right)-w\left(x^{e}\right)\right] d \Psi\left(x^{e}\right)-\kappa \sum_{n=1}^{N} v_{n} p_{n}
$$

- Risk-neutral Capitalists rent capital and maximize firm equity s.t. adj. costs

$$
p\left(K^{\prime}\right)=\max _{K} \Pi+r^{K} K-\left[K^{\prime}-(1-\delta) K+\frac{1}{2 \delta \varepsilon_{l}}\left(\frac{K^{\prime}-K}{K}\right)^{2} K\right]+\frac{1}{1+r} p(K)
$$

$$
\text { where } \delta \equiv \text { depreciation rate, } \epsilon_{l} \equiv \text { elasticity of investment to Tobin's q }
$$

- Government transfers resources across agents and balanced budget

$$
\tau \int_{x^{e}} w\left(x^{e}\right) d \Psi\left(x^{e}\right)=b \int_{x^{u}} d \Psi\left(x^{u}\right)+T
$$

$x^{u} \equiv(a, z)$ and $x^{e} \equiv(a, z, n, j)$, conditional on unemp. and employment

Equilibrium

Set of values $\left\{U, E, E^{U}, E^{e}, V, J, J^{e e}, J^{0}\right\}$, policies $\left\{c^{U}, c^{E}, a^{U}, a^{E}, \varphi\right\}$, prices $\left\{r, r^{K}, w^{u}(\cdot), w^{e}(\cdot)\right\}$, and labor market tightnesses $\left\{\theta_{n}\right\}$ such that

- Agents, firms, capitalist maximize objectives + govt. balances budget
- Asset market clears

$$
\int_{x^{u}} a^{U}\left(x^{u}\right) d \Psi^{u}+\int_{x^{e}} a^{E}\left(x^{e}\right) d \Psi^{e}=p(K)
$$

- Labor market clears

$$
\sum_{n=1}^{N} \int z \cdot p_{n} d i_{k}^{E}=L
$$

- Free entry holds at each rung

$$
V(n)=0 \Longleftrightarrow q\left(\theta_{n}\right)=(1+r) \frac{\kappa p_{n}}{J_{0}(n)}
$$

Bargaining with the Unemployed

Players: worker and firm of type n
Procedure: alternating offer bargaining over $m \in\{1, \ldots M\}$ sub-periods (M odd)

* offers and decisions are made simultaneously
* firms make offers at odd m (start and finish), worker at even m

Contract: signed at m consist of wage w_{m}^{n}

Bargaining with the Unemployed

Players: worker and firm of type n
Procedure: alternating offer bargaining over $m \in\{1, \ldots M\}$ sub-periods (M odd)

* offers and decisions are made simultaneously
* firms make offers at odd m (start and finish), worker at even m

Contract: signed at m consist of wage w_{m}^{n}
Logic: if worker and firm sign contract at m

* firm and worker earn profits and wages only from subperiod m on
* if $M=3$ months, contract signed in month 2 firm only gets 2 months of output
* firm impatient because loses output by postponing signing of contract (pie shrinks)

Job-Switching Risk: Low-Wealth Only
 $\Delta \operatorname{Pr}(E U)$ after J2J move

Figure: Change in probability of separation into unemployment after a J2J transitions for workers with low net worth (bottom half of US distribution). Estimated using SIPP, following Davis and von Wachter (2011).

Job-Switching Risk: All Wage Changes

Job-Switching Risk: Low-Wealth Only \times Wage Increases $\Delta \operatorname{Pr}(E U)$ after J2J move

Figure: Change in probability of separation into unemployment after a J2J transitions. Estimated using SIPP, following Davis and von Wachter (2011).

Calibration Details

Wealth Share Owned (\%)					
Quintile	Q1	Q2	Q3	Q4	Q5
Model	1.92	5.06	8.80	18.13	66.09
Data	-1.04	0.68	6.85	18.21	75.30

- Use β 's to match wealth Lorenz curve
- Rungs $\left\{p_{n}\right\}_{k}$ help match income distribution with $K=8$
- $\log (\epsilon) \in\{-0.64,0.64\}$ with prob. of persisting in state equal to 0.85
- elasticity I to $q \epsilon_{I}=4$ Auclert et al. 2021

External Validation: Job-Switching and Wealth

- Can model match key untargeted moments related to job-switching and wealth?
- Use SIPP and model to compute β_{1} : sensitivity of job-switching to wealth

$$
\mathbb{1}\left(\mathrm{EE}_{i, t+t+1}\right)=\beta_{0}+\beta_{1} \frac{\text { Wealth }_{i, t}}{\text { Income }_{i, t}}+\Gamma X_{i, t}+\delta_{t}+u_{i, t}
$$

$$
X_{i, t} \text { : controls for age, tenure, work type, education and } \delta_{t}: \text { time FE }
$$

- Compute β_{1} for low- and high-wealth separately
- Higher job-switching sensitivity for low-wealth

	Data	Model
low-wealth	0.900	0.926
high-wealth	0.0006	0.1650
	Back	

Tenure Reshuffling

- In recessions workers move from high- to low-tenure jobs
- Difference between tenure distribution in recession periods and non-recessions periods
- In recessions there are more low-tenure jobs

Tenure Distribution in SS

- This implies low wealth workers tend to have low-tenure (\leftrightarrow high separation)

Cyclical Moments

- Can model account for differences in job-switching and job-losing by wealth?
- Let productivity and common job-loss probability be stochastic

$$
\begin{aligned}
\sigma_{t}-\sigma^{*}= & \rho_{\sigma}\left[\sigma_{t-1}-\sigma^{*}\right]+\epsilon_{t}^{\sigma} \\
\log \left(Z_{t}\right)-\log \left(Z^{*}\right)= & \rho_{Z}\left[\log \left(Z_{t-1}\right)-\log \left(Z^{*}\right)\right]+\epsilon_{t}^{Z} \\
\text { s.t. } & \binom{\epsilon_{t}^{\sigma}}{\epsilon_{t}^{Z}} \sim \mathcal{N}\left(\overrightarrow{0}, \Sigma=\left(\begin{array}{cc}
\sigma_{\sigma}^{2} & \sigma_{\sigma, Z} \\
\sigma_{\sigma, Z} & \sigma_{Z}^{2}
\end{array}\right)\right)
\end{aligned}
$$

Cyclical Moments

- Can model account for differences in job-switching and job-losing by wealth?
- Let productivity and common job-loss probability be stochastic

$$
\begin{aligned}
\sigma_{t}-\sigma^{*}= & \rho_{\sigma}\left[\sigma_{t-1}-\sigma^{*}\right]+\epsilon_{t}^{\sigma} \\
\log \left(Z_{t}\right)-\log \left(Z^{*}\right)= & \rho_{Z}\left[\log \left(Z_{t-1}\right)-\log \left(Z^{*}\right)\right]+\epsilon_{t}^{Z} \\
\text { s.t. } & \binom{\epsilon_{t}^{\sigma}}{\epsilon_{t}^{Z}} \sim \mathcal{N}\left(\overrightarrow{0}, \Sigma=\left(\begin{array}{cc}
\sigma_{\sigma}^{2} & \sigma_{\sigma, Z} \\
\sigma_{\sigma, Z} & \sigma_{Z}^{2}
\end{array}\right)\right)
\end{aligned}
$$

- Estimate $\left(\rho_{\sigma}, \rho_{Z}, \Sigma\right)$ targeting headline SD and persistence of u, EE, EU

Cyclical Moments

			Standard Deviation (by wealth)	
	Data			
	all	low	high	
EE	0.99	1.20	0.81	
EU	1.49	1.81	1.21	
u	1.57	2.45	1.03	

- Does model match the higher volatility of EE and EU at low wealth?

Cyclical Moments

			Standard Deviation (by wealth)			
	Data			Model		
	all		low	high	all	low
	high					
EE	0.99	1.20	0.81	0.87	1.41	0.55
EU	1.49	1.81	1.21	0.86	1.29	0.57
u	1.57	2.45	1.03	1.13	1.21	1.09

- Does model match the higher volatility of EE and EU at low wealth? Yes

Cyclical Moments

	Standard Deviation (by wealth)						
	Data				Model		
	all	low	high	all	low	high	
	EE	0.99	1.20	0.81	0.87	1.41	

- Does model match the higher volatility of EE and EU at low wealth? Yes
- Can "standard" models match these moments?
* compare to naïve model with constant job-loss prob. to match unemp. level

Cyclical Moments

Standard Deviation (by wealth)									
	Data			Model			Naïve Model		
	all	low	high	all	low	high	all	Iow	high
EE	0.99	1.20	0.81	0.87	1.41	0.55	0.85	0.88	0.82
EU	1.49	1.81	1.21	0.86	1.29	0.57	1.12	1.12	1.12
u	1.57	2.45	1.03	1.13	1.21	1.09	1.35	1.36	1.35

- Does model match the higher volatility of EE and EU at low wealth? Yes
- Can "standard" models match these moments? No
* compare to naïve model with constant job-loss prob. to match unemp. level

SMM Details

- minimize distance between model-implied and empirical SD and persistence of headline EE, EU, and u rates

$$
\begin{aligned}
\min _{\rho_{Z, \rho_{\sigma}, \Sigma}} & \left(\frac{S D_{E E}^{\text {data }}-S D_{E E}^{\text {model }}}{S D_{E E}^{\text {data }}}\right)^{2}+\left(\frac{S D_{E U}^{\text {data }}-S D_{E U}^{\text {model }}}{S D_{E U}^{\text {data }}}\right)^{2}+\left(\frac{S D_{u}^{\text {data }}-S D_{u}^{\text {model }}}{S D_{u}^{\text {data }}}\right)^{2} \\
& \left(\frac{\rho_{E E}^{\text {data }}-\rho_{E E}^{\text {model }}}{\rho_{E E}^{\text {data }}}\right)^{2}+\left(\frac{\rho_{E U}^{\text {data }}-\rho_{E U}^{\text {model }}}{\rho_{E U}^{\text {data }}}\right)^{2}+\left(\frac{\rho_{U}^{\text {data }}-\rho_{u}^{\text {model }}}{\rho_{u}^{\text {data }}}\right)^{2}
\end{aligned}
$$

- $\rho_{Z}=0.74, \rho_{\sigma}=0.85$
- $\sigma_{Z}=0.01, \sigma_{\sigma}=0.16, \sigma_{\sigma, Z}=-0.26$

Unequal Recovery from the Great Recession

Unemployment

Output

Wealth GR Exercise

Unequal Recovery: Decomposition

Great Recession Earnings Gap

EE and EU Rate in Exercise

Job-Losing Rate Gap

Wealth post-Recessions

Changes in Net-Worth ex. Housing

[^0]: Back

