Increase in Turbulence and Market Power

Agnieszka Markiewicz¹ and Riccardo Silvestrini²

¹Erasmus School of Economics and Tinbergen Institute

²Erasmus School of Economics and Tinbergen Institute

38th Meeting of the European Economic Association (EEA 2023) Barcelona School of Economics 28th August - 1st September 2023

MOTIVATION

Introduction

Over the last decades, the U.S. economy was characterized by:

- Increase in market power: increase in profit margins, price markups and market concentration [DEU (QJE 2020), Autor et al. (QJE 2020)]
- Increase in turbulence: a decline in the persistence of firms' idiosyncratic productivity [Bloom et al. (ECMA 2018), Dong et al. (2022)]

Introduction

However, these trends are **heterogeneity** across sectors, with a clear positive correlation between them:

- Sectors characterized by a sharp increase in turbulence \rightarrow strong(er) increase in markups and concentration.
- Sectors with flat, or even decreasing, turbulence \rightarrow weak or no increase in market power.

The goal of this paper is to build a **theoretical model** that can rationalize these findings.

Preview of Results

Introduction

- In our framework, a sector-specific increase in turbulence can generate the heterogeneity in sectoral market power outcomes.
- Mechanism: an increase in turbulence shortens leadership duration and triggers reallocation toward high-markup firms.
- Empirically, we confirm that high-turbulence sectors **only** are characterized by this reallocation.

DATA

→ Compustat dataset, NAICS-3 sectors (*Appendix: CompNet*).

We measure **sectoral turbulence** as 1- the 5-year Spearman's rank correlation of firm-level productivity.

- We compute sectoral turbulence for each pair year-sector, using a rolling window.
- We split the economy in two: low-turbulence sectors, i.e. below median turbulence growth, and high-turbulence sectors.

HETEROGENEOUS INCREASE IN TURBULENCE

Figure: Turbulence trends, high vs. low-turbulence sectors

HETEROGENEOUS INCREASE IN MARKUPS

Figure: Cost-weighted **average markups**, 4 alternative measures, high vs. low turbulence sectors

INCREASE IN MARKUPS - DECOMPOSITION

Figure: Decomposition of the increase in weighted-average markups, high vs. low-turbulence sectors

Our **dynamic** framework entails:

- A countable number of heterogeneous firms
- Oligopolistic competition
- Idiosyncratic exit, entry and productivity shocks
 - Given this competitive structure, we calibrate the model to proxy two alternative sectors, which differ in terms of turbulence.

Model

THEORETICAL FRAMEWORK - COMPETITION

• Firms compete under oligopolistic competition á la Cournot.

From the F.O.C. of a type x(i) firm, the real price $\rho_t(i)$ is:

$$\rho_t(i) = \mu_t(i) \frac{w_t}{x(i)}$$

where w_t is the real wage. The **idiosyncratic markup** $\mu_t(i)$ is:

$$\mu_t(i) = \left(\frac{\theta}{\theta - 1}\right) \left(\frac{1}{1 - \omega_t(i)}\right)$$

where $\omega_t(i)$ is the type-i market share.

THEORETICAL FRAMEWORK - SHOCKS

 Productivity shocks are disciplined by a stationary Markov process.

The Markov process is crucial for our quantitative exercise, as its calibration characterizes the two sectors:

 \rightarrow (changes in) its probabilities are used to capture sectoral **turbulence** (shocks).

METHODOLOGY

We use our framework to proxy the evolution over time of representative high and low-turbulence sectors.

- We calibrate a **common** initial steady state, which replicates key features of the U.S. economy before 1980.
- We shock the equilibrium by permanently changing sector-specific primitives to characterize the two scenarios.
- We simulate the endogenous transition to the new equilibria.

BASELINE EXPERIMENT

We identify the **two** representative sectors as follows:

- A sector characterized by an increase in entry costs only, proxy for a low-turbulence industry.
- 2 A sector characterized by the **same** increase in entry costs *and* by a **sector-specific** increase in turbulence, proxy for high-turbulence.
 - We add robustness checks with shocks occurring in steps, further sector-specific primitives, heterogeneous entry costs...

SIMULATION - BENCHMARK

Figure: High vs. low-turbulence sectors, dynamic transition for 120 periods, median over 100 simulations. Quantities represented in levels.

SIMULATION - MARKUP DECOMPOSITION

Table: Model vs. data: high and low-turbulence

O---- time -

		Over-time					
		High-turbulence		Low-turbulence		Ratio	
		Data	Model	Data	Model	Data	Model
	$\Delta \mu_T^1$	6.13	3.50	5.56	2.60	1.10	1.35
	$\Delta\mu_T^2$	8.02	3.50	5.54	2.60	1.48	1.35
	Δd_T	23.98	21.06	16.19	17.03	1.48	1.24
_				Cross-section			
				Cross-section			
		High-t	urbulence	Low-turbi		Ra	atio
-		High-t	urbulence Model			Ra Data	atio Model
_	$\sigma_{\Delta\mu_T^1}$			Low-turbı	ılence		
-	$\sigma_{\Delta\mu_T^1} \ \sigma_{\Delta\mu_T^2}$	Data	Model	Low-turbi Data	ılence Model	Data	Model
-	$egin{array}{c} \sigma_{\Delta\mu_T^1} \ \sigma_{\Delta\mu_T^2} \ \sigma_{\Delta d_T} \end{array}$	Data 0.554	Model 0.016	Low-turbu Data 0.246	Model 0.007	Data 2.252	Model 2.178

CONCLUSIONS

- Empirically, high-turbulence sectors present a stronger increase in markups and concentration.
- When paired to an increase in entry costs, a sector-specific increase in turbulence generates the sectoral heterogeneity in market power dynamics.
- The **reallocation** toward high-markup firms explains the observed trends, both in the data and the model.

TURBULENCE AND MARKUPS

$\mu_{it} = \alpha_i + \beta \tau_{it} + \gamma_t + \epsilon_{it}$	
Cost-weighted	Rev-weighted
0.019**	0.034**
(0.008)	(0.012)
0.023***	0.037***
(0.010)	(0.012)
0.38***	0.052***
(0.008)	(0.012)
0.25***	0.036***
(0.007)	(0.009)
0.037***	0.052***
(0.003)	(0.012)
4309	4309
	Cost-weighted 0.019** (0.008) 0.023*** (0.010) 0.38*** (0.008) 0.25*** (0.007) 0.037*** (0.003)

Notes: This table reports the correlation coefficients from the regressions above. μ_{it} and τ_{it} represent, respectively, the markup and turbulence in sector i and year t, while α_i and γ_t are sector and time fixed effects.

SIMULATION - REALLOCATION

