From Premia to Spirals: How Financial Frictions Drive Lumpy Investments

Miguel H. Ferreira¹ Timo Haber ² Hanbaek Lee³ EEA 2023

¹Queen Mary University London
 ²De Nederlandsche Bank; Views expressed are those of the authors and do not necessarily reflect official positions of De Nederlandsche Bank or the Eurosystem.
 ³University of Tokyo

• Abundant evidence of investment lumpiness at the micro level.

- Abundant evidence of investment lumpiness at the micro level.
- Most investment decisions are externally financed.

- Abundant evidence of investment lumpiness at the micro level.
- Most investment decisions are externally financed.
- This creates close link between lumpiness and financial conditions.

- Abundant evidence of investment lumpiness at the micro level.
- Most investment decisions are externally financed.
- This creates close link between lumpiness and financial conditions.
- Do financial frictions create a more lumpy economy?

- Abundant evidence of investment lumpiness at the micro level.
- Most investment decisions are externally financed.
- This creates close link between lumpiness and financial conditions.
- Do financial frictions create a more lumpy economy?
- Does lumpiness leads higher financing costs?

• Theoretical firm investment model with financial frictions:

- Theoretical firm investment model with financial frictions:
 - How do lumpiness and financial frictions interact?

- Theoretical firm investment model with financial frictions:
 - How do lumpiness and financial frictions interact?
- Aggregate model assessing quantitative implications of the lumpiness and financial frictions interaction

- Theoretical firm investment model with financial frictions:
 - How do lumpiness and financial frictions interact?
- Aggregate model assessing quantitative implications of the lumpiness and financial frictions interaction
- Empirical section with firm level data:

- Theoretical firm investment model with financial frictions:
 - How do lumpiness and financial frictions interact?
- Aggregate model assessing quantitative implications of the lumpiness and financial frictions interaction
- Empirical section with firm level data:
 - Are the theoretical predictions borne out by the data?

• Theoretical model predicts a spiral:

- Theoretical model predicts a spiral:
 - Higher lumpiness results in larger external finance premium

- Theoretical model predicts a spiral:
 - Higher lumpiness results in larger external finance premium
 - Larger external finance premium implies larger lumpiness

What we find

- Theoretical model predicts a spiral:
 - Higher lumpiness results in larger external finance premium
 - Larger external finance premium implies larger lumpiness
- Quantitatively:
 - Stronger market incompleteness leads to lumpier investment

What we find

- Theoretical model predicts a spiral:
 - Higher lumpiness results in larger external finance premium
 - Larger external finance premium implies larger lumpiness
- Quantitatively:
 - Stronger market incompleteness leads to lumpier investment
- Empirically we find:
 - Strong positive correlation between firm lumpiness and external finance premium

- Theoretical model predicts a spiral:
 - Higher lumpiness results in larger external finance premium
 - Larger external finance premium implies larger lumpiness
- Quantitatively:
 - Stronger market incompleteness leads to lumpier investment
- Empirically we find:
 - Strong positive correlation between firm lumpiness and external finance premium
 - Increases in external finance premium lead to higher lumpiness

- Theoretical model predicts a spiral:
 - Higher lumpiness results in larger external finance premium
 - Larger external finance premium implies larger lumpiness
- Quantitatively:
 - Stronger market incompleteness leads to lumpier investment
- Empirically we find:
 - Strong positive correlation between firm lumpiness and external finance premium
 - Increases in external finance premium lead to higher lumpiness
 - Lumpiness leads to higher external finance premium

Literature

- Lumpy investment: Caballero and Engel 1999; Cooper and Haltiwanger 2006; Khan and Thomas 2008; Winberry 2021; Lee 2022; Baley and Blanco 2021 and many others
- Firm investment and financial frictions: Khan and Thomas 2013; Ottonello and Winberry 2020; Cloyne et al. 2023 and many others
- Interaction of lumpiness and credit decisions: Jiao and Zhang 2022; Görtz, Sakellaris, and Tsoukalas 2022; Bazdresch 2013

Motivating evidence

- Use quarterly Compustat data from 1981Q1 onwards
- **Capital**: measured using perpetual inventory method (see e.g. Bachmann and Bayer 2014)
- Investment: $I_{it} = K_{it} (1 \delta)K_{it-1}$
- Financial variables: Leverage, liquidity and interest expenses and distance to default (Gilchrist and Zakrajšek 2012)
- Lumpiness measures:
 - Cross section: Herfindahl-Hirschman index, Gini coefficient and coefficient of variation • Lumpiness measures
 - Panel: Spikes $\frac{l_{it}}{K_{it-1}} > 0.2$; Inaction duration

Investment concentration and distance to default

Figure 1: Investment concentration on the y-axis and distance to default on the x-axis.

A simple model of lumpy investment and financial frictions

Simple Theory: Financial intermediary

- Firm can use either internal resources, or external resources *b* to finance investment
- Theory of bond pricing subject to a firm's endogenous default decision
- Denote borrowing amount as \mathcal{N} , the liquidation value as y, and the risk-free return as R
- The bank's payoff is as follows:

 $\min\{\mathcal{N}, \max\{y, 0\}\}$

• The bond interest rate Q^{Bond} is determined by:

$$Q^{Bond} = \frac{R}{\mathbb{E}\min\left\{1, \frac{\max\{y, 0\}}{N}\right\}}$$

Simple Theory: Firm

• Firm-level extensive-margin investment problem as follows:

$$J(z,k;Q) = \int_{0}^{\xi^{*}} \max\{\underbrace{J^{L}(z,k,\xi;Q)}_{\text{Value of investment}}, \underbrace{J^{N}(z,k;Q)}_{\text{Value of no investment}}\} dG(\xi)$$

- Investment entails a fixed adjustment cost $\xi \sim_{iid} Unif[0, \overline{\xi}]$
- Firms uses capital to produce according to a Cobb-Douglas production technology
- Given Q and z, firm decides either to invest or not and the amount of investment *I*
- We define $\xi^* = \xi^*(z, k; Q)$ such that

$$J^L(z,k,\xi^*;Q) = J^N(z,k;Q)$$

9

Proposition (The monotonicity of the risk premium in the real friction)

The risk premium increases in the frictional cost of investment:

$$\frac{\partial}{\partial \mathcal{N}} Q^{\textit{Bond}} > 0$$

Proposition (The risk premium effect on the lumpy investments)

As the risk premium increases, the threshold rule ξ^* decreases:

$$rac{\partial}{\partial Q}\xi^*(z,b;Q) < 0.$$

This weakly decreases the investment probability ψ^* given by

$$\psi^* = \frac{\min\{\xi^*, \overline{\xi}\}}{\overline{\xi}}.$$

Structural model

• Heterogeneous firms model, with real and financial frictions.

- Heterogeneous firms model, with real and financial frictions.
- Real friction: Fixed capital adjustment costs $\xi \sim_{iid} \mathcal{U}[0, \overline{\xi}]$.

- Heterogeneous firms model, with real and financial frictions.
- Real friction: Fixed capital adjustment costs $\xi \sim_{iid} \mathcal{U}[0, \bar{\xi}]$. • Real
 - When investment is beyond a range $\Omega = [-\nu k, \nu k]$.

- Heterogeneous firms model, with real and financial frictions.
- Real friction: Fixed capital adjustment costs $\xi \sim_{iid} \mathcal{U}[0, \bar{\xi}]$. • Real
 - When investment is beyond a range $\Omega = [-\nu k, \nu k]$.
- Financial friction: External finance premium.

- Heterogeneous firms model, with real and financial frictions.
- Real friction: Fixed capital adjustment costs $\xi \sim_{iid} \mathcal{U}[0, \bar{\xi}]$. • Real
 - When investment is beyond a range $\Omega = [-\nu k, \nu k]$.
- Financial friction: External finance premium.
- Firms produce according to a Cobb-Douglas production technology, employing labor and capital. Production

- Heterogeneous firms model, with real and financial frictions.
- Real friction: Fixed capital adjustment costs $\xi \sim_{iid} \mathcal{U}[0, \bar{\xi}]$. • Real
 - When investment is beyond a range $\Omega = [-\nu k, \nu k]$.
- Financial friction: External finance premium.
- Firms produce according to a Cobb-Douglas production technology, employing labor and capital. Production
- Firms choose capital and debt/savings to maximize continuation value. Firm's problem

- Heterogeneous firms model, with real and financial frictions.
- Real friction: Fixed capital adjustment costs $\xi \sim_{iid} \mathcal{U}[0, \bar{\xi}]$. • Real
 - When investment is beyond a range $\Omega = [-\nu k, \nu k]$.
- Financial friction: External finance premium.
- Firms produce according to a Cobb-Douglas production technology, employing labor and capital. Production
- Firms choose capital and debt/savings to maximize continuation value. Firm's problem
- Representative household who consumes, saves and supplies labor. Household

	Inaction	Spike prob
No fin friction	3.184	18.6%
Fin friction	3.224	19.2%

- Annual risk-free return: 2.35%
- Risk premium incremental by 0.5p.p. of the annual risk-free return.

Empirical evidence

Theoretical predictions:

1. Higher lumpiness results in larger external finance premium

Theoretical predictions:

- 1. Higher lumpiness results in larger external finance premium
- 2. Larger external finance premium implies larger lumpiness

- 1. Exogenous increase in risk premium leads to higher lumpinsess
 Premium on lumpiness

- 1. Exogenous increase in risk premium leads to higher lumpinsess

 Premium on lumpiness
 - Use monetary policy shocks and industry elasticities to get exogenous variation Specification
- 2. Lumpiness leads to higher finance premium Lump on premium

Conclusion

- We find a strong correlation between financial frictions and investment lumpiness.
- Theoretical model predicts a spiral:
 - 1. Higher lumpiness results in larger external finance premium
 - 2. Larger external finance premium implies larger lumpiness
- Empirical results support theory predictions
- Stronger market incompleteness increases investment lumpiness
- Where next: misallocation and business cycle implications!

Appendix

Tables

 Table 1: Gini coefficient of quarterly firm level investment and proxies

 for financing costs

Liquidity	0.041				
	(0.007)				
Distance to default		-0.006			
		(0.000)			
Leverage			-0.004		
			(0.008)		
Interest Expenses				0.090	
				(0.161)	
Age					-0.001
					(0.000)
Observations	6510	5862	6510	6401	6510

Table 2: Coefficient of variation of quarterly firm level investment andproxies for financing costs

Liquidity	0.084				
	(0.020)				
Distance to default		-0.017			
		(0.002)			
Leverage			0.031		
			(0.025)		
Interest Expenses				0.712	
				(0.256)	
Age					-0.001
					(0.000)
Observations	6504	5857	6504	6395	6504

 Table 3: HHI coefficient of annual firm level investment and proxies for financing costs

Liquidity	-0.077				
	(0.011)				
Distance to default	()	-0.004			
		(0, 000)			
		(0.000)			
Leverage			0.048		
			(0.009)		
Interest Expenses				0.218	
				(0.044)	
Age					-0.001
					(0.000)
Observations	5342	4826	5342	5333	5342

Table 4: Gini coefficient of annual firm level investment and proxies for financing costs

Liquidity	0.021				
	(0.010)				
Distance to default		-0.005			
		(0.001)			
Leverage			0.017		
			(0.009)		
Interest Expenses				0.221	
				(0.057)	
Age					-0.000
					(0.000)
Observations	5342	4826	5342	5333	5342

Table 5: Coefficient of variation of annual firm level investment and proxies for financing costs

Liquidity	0.059				
	(0.027)				
Distance to default		-0.011			
		(0.002)			
Leverage			0.048		
			(0.027)		
Interest Expenses				0.561	
				(0.168)	
Age					-0.000
					(0.000)
Observations	5340	4826	5340	5331	5340

Table 6: Spikes (investment rate above 10%) and distance to default

	(1)		
$\widehat{D2D_{ijt-1}}$	0.022		
	(0.010)		
Firm FE	Yes		
Sector FE	Yes		
Firm controls	Yes		
Instrument	Mon. Pol. shock*Ind. Elast.		

Table 7: Investment rate conditional on a spike and distance to default

	(1)		
$\widehat{D2D_{ijt-1}}$	0.010		
	(0.002)		
Firm FE	Yes		
Sector FE	Yes		
Firm controls	Yes		
Instrument	Mon. Pol. shock*Ind. Elast.		

Table 8: Spikes and distance to default, with weight monetary policyshocks

	(1)		
$\widehat{D2D_{ijt-1}}$	0.015		
	(0.006)		
Firm FE	Yes		
Sector FE	Yes		
Firm controls	Yes		
Instrument	Mon. Pol. shock*Ind. Elast.		

Table 9: Inaction duration and distance to default

(1)
-0.504
(0.182)
Yes
Yes
Yes

Figures

Ext. Fin. IRF

Back

Leverage IRF

Back

Empirics

Lumpiness meausres

- Our main measure for firm level lumpiness over the cross section: the Herfindahl-Hirschman index
- Larger values are associated with more concentration of investment in a few periods

$$\mathsf{HHI}_{i} = \left(\sum_{t=1}^{T} \left(\frac{I_{it}}{\sum_{l=1}^{T} I_{il}}\right)^{2} |I_{it} > 0\right)$$

- Our findings are robust to a variety of other measures, considered in the appendix
 - Gini coefficient
 - Coefficient of variation i.e. standard deviation normalized by the mean

Liquidity	-0.058			
	(0.010)			
Distance to default		-0.003		
		(0.000)		
Leverage			0.042	
			(0.008)	
Interest Expenses				0.601
				(0.184)
Observations	6511	5862	6511	6402

Panel 1: Exogenous changes in finance premia

• How do changes in finance premia affect lumpiness?

$$y_{ijt} = \beta_1 D2 default_{ijt-1} + \Gamma X_{ijt-1} + \theta Z_t + \alpha_i + \delta_j$$

- Where y_{ijt} is investment spike (investment rate;20%)
- Distance to default endogenous to investment decisions
- Use monetary policy surprises and industry elasticities as instrument

$$D2default_{it} = \delta_1 Shock_t + \alpha_i \quad \forall \quad j$$

• High-frequency monetary policy shocks, using identification methodology from Gürkaynak et al. 2021 Back

Table 10: Spikes and distance to default

	(1)		
$\widehat{D2D_{ijt-1}}$	0.021		
	(0.006)		
Firm FE	Yes		
Sector FE	Yes		
Firm controls	Yes		
Instrument	Mon. Pol. shock*Ind. Elast.		

Spike 10% Inv Rate Weighted mon pol shocks Inaction

Panel 2: What happens after spikes?

- Analyse behaviour of external finance proxies after investment spike
- Run the following local projection

$$D2default_{it+h} = \beta_h Spike_{it} + \gamma D2default_{it} + \Gamma_h X_{it-1} + \theta_h Z_t + \alpha_i + \delta_j + u_{it} \quad \forall h = 0, \dots, 12 \quad (1)$$

- β_h is the coefficient of interest
- Including D2default_{it} on the RHS guarantees that we measure the effect of an investment spike which does not move distance to default contemporaneously
- However, still not a causal statement! Back

Panel 2: What happens after spikes?

Simple Model

Model

Firms profit function given by

$$\max_{n_t} \pi(k, z, A) = A_t z_t k_t^{\alpha} n_t^{\gamma} - w_t n_t$$

where w_t is wage at period t. The logged idiosyncratic productivity follows an AR(1) process:

$$\log(z_{t+1}) = \rho_z \log(z_t) + \sigma_z \epsilon_{t+1}^z, \quad \epsilon_{t+1}^z \sim_{iid} N(0, 1).$$

• The firm incurs the fixed adjustment cost $\xi \sim_{iid} \mathcal{U}(0, \overline{\xi}]$ when it invest more than Ω , where Ω is defined as

$$\Omega = [-\nu k, \nu k]. \tag{2}$$

Financial Constraints

- Firm can use either internal resources, or external resources *b* to finance investment
- The external finance pricing schedule is given by

$$Q(I,k,z) = \begin{cases} 1 & \text{if } I \leq \Psi(k,z) \\ 1 * \frac{\Psi(k,z)}{I} + Q^{RP} * \left(1 - \frac{\Psi(k,z)}{I}\right) & \text{if } I > \Psi(k,z) \end{cases}$$

where $\Psi(k, z) = \theta(\pi(k, z; S) + (1 - \delta)k)$ is cash on hand.

• We can characterize the net risk premium as follows:

$$Q(I, k, z) = Q^{RP} - (Q^{RP} - 1) \frac{\theta(\pi(k, z; S) + (1 - \delta)k)}{I},$$

$$V^{0}(b, k, z; S) = \pi(k, z; S) + (1 - \delta)k - b + \int_{0}^{\bar{\xi}} \max \{ V^{*}(b, k, z, \xi; S), V^{c}(b, k, z; S) \} dG(\xi)$$

where

$$V^{*}(b,k,z,\xi;S) = \max_{k',b'} -k' + b' - \xi w(S) + E[q(S,S')V(\widetilde{Q}(b',k',z)b',k',z';S')]$$

$$V^{c}(b,k,z;S) = \max_{k^{c} \in \Omega, b^{c}} -k^{c} + b^{c} + E[q(S,S')V(\widetilde{Q}(b^{c},k^{c},z)b^{c},k^{c},z';S')]$$

Household

The recursive formulation of the household's problem is as follows:

$$V(a; S) = \max_{c,a',L} \log(c) - \frac{\eta}{1 + \frac{1}{\chi}} L^{1 + \frac{1}{\chi}}, +\beta \mathbb{E}V(a'; S')$$

s.t. $c + \int \Gamma_{A,A'}q(S, S')a'(S')dS' = w(S)I_H + a(S)$
 $G_{\Phi}(S) = \Phi', \quad \mathbb{P}(A'|A) = \Gamma_{A,A'}, \quad S = \{\Phi, A\}$

where *a* is the state-contingent equity portfolio value; *A* is the aggregate productivity; Φ is the joint cumulative distribution of the individual state variable; *q* is the state-contingent price; Γ is the transition kernel of the aggregate productivity; G_{Φ} is the expected dynamics of the individual state distribution Φ .

