Flexibility in Power System: Market Design Matters

Dongchen He¹ Bert Willems^{1, 2, 3}

¹ Tilburg University

²Université catholique de Louvain

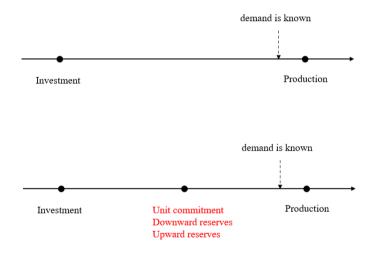
³Toulouse School of Economics

Aug 31, 2023

One Technology

Motivation

- Intermittent renewables will dominate (64% by 2050 according to European Parliament) future's power system.
- Balancing demand and supply with intermittent renewables **requires flexible assets**: flexible generators, batteries, demand side management.
- Does the market provide sufficient **investment incentives** for flexible technologies?
 - European commission says renewable integration requires 7 times larger flexibility by 2050 and they ask for proposal on reforms of the EU electricity market to address the flexibility needs.


Contribution

- The standard economic tool to analyze the investment in energy sector is peak-load pricing model (Boiteux, 1949).
- However, the **peak-load pricing** model assumes perfect flexibility:
 - All generation capacity is always available
 - Production can be adjusted without costs

	Literature	Our paper	
Demand	periodic+uncertain	periodic+uncertain	
Technology	Baseload vs. Peakload	+Inflexible vs. flexible	
Stage	investment+production	+unit commitment	
Adjustment costs	No	Yes	

Introduction One Technology Two Technologies Conclusion Figures

Peak-load Pricing Model Timing

Dongchen He; Bert Willems	Flexibility in Power System: Market Design Matters	Aug 31, 2023

5 / 28

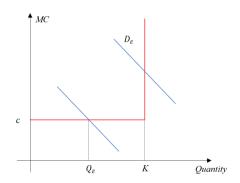
What Could we Use the Model for?

- To determine optimal generation mix and comparative statistics:
 - How much base vs peak and flexible vs. inflexible assets to invest?
 - How does the mix depend on demand elasticity?
 - How does the mix depend on uncertainty?
- Market design:
 - How can we decentralize the market outcome?
 - What is the role of reserves markets? Are the current reserves market efficient to incentive flexibility investment?
- Model extension:
 - Some assumptions such as perfect competition, risk neutrality can be further relaxed.

This Talk

- Our paper
 - A continuous set of technology, three-stage social planner optimization.
 - Two types of consumers (real-time elastic inelastic).
 - Deriving first order conditions for technology production, commitment and investment.
 - Investigating the efficiency of existing market design.
- This talk:
 - Give intuition from a single technology case, and understand the difference between flexible and inflexible technology.
 - Show the market design implication from a two-technology case.

Introduction

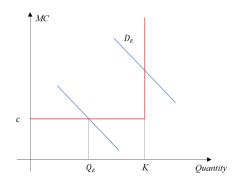

2 One Technology

3 Two Technologies

4 Conclusion

Full Flexibility = Standard Peak-load Model

K: total capacity, D_{ε} : demand in state ε . Q_{ε} : production in state ε , p_{ε} : price in state ε .

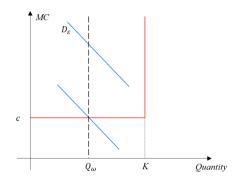

• **Two**-period model.

• Production Decision Q_{ε}

$$egin{aligned} Q_arepsilon &= 0 \quad ext{if} \quad p_arepsilon < c, \ Q_arepsilon &\in [0, K] \quad ext{if} \quad p_arepsilon &= c, \ Q_arepsilon &= K \quad ext{if} \quad p_arepsilon > c, \end{aligned}$$

• Scarcity rent is earned when: $p_{\varepsilon} > c$.

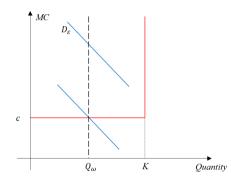
Full Flexibility = Standard Peak-load Model


K: total capacity, D_{ε} : demand in state ε . Q_{ε} : production in state ε , p_{ε} : price in state ε .

- Two-period model.
- Investment Decision *K* Free entry decision:

 $E_{\varepsilon}\{\max(p_{\varepsilon}-c,0)\}=I$

• Capacity is a call option with strike price = *c*.

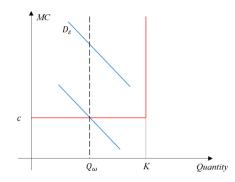

No Flexibility

 ω : period, Q_{ω} : production commitment for period ω .

- Three-period model.
- Production Decision Q_{ε}
 - $Q_{\varepsilon} = Q_{\omega}$
- Real-time supply is inelastic.

No Flexibility

 ω : period, Q_{ω} : production commitment for period ω .


• Three-period model.

•
$$p_{\omega}^{F}$$
: $p_{\omega}^{F} = E_{\varepsilon|\omega}(p_{\varepsilon})$.

• Commitment Decision Q_{ω}

$$egin{aligned} Q_{\omega} &= 0 \quad ext{if} \quad p^F_{\omega} < c, \ Q_{\omega} &\in [0,K] \quad ext{if} \quad p^F_{\omega} = c, \ Q_{\omega} &= \mathcal{K} \quad ext{if} \quad p^F_{\omega} > c, \end{aligned}$$

No Flexibility

 ω : period, Q_{ω} : production commitment for period ω

• Three-period model.

•
$$p^{F}_{\omega}$$
: $p^{F}_{\omega} = E_{\varepsilon|\omega}(p_{\varepsilon})$

• Investment Decision *K* Free entry decision:

$$E_{\omega}\{\max(p^F_{\omega}-c,0)\}=I$$

• Flexible technology is obviously more profitable.

(

Introduction

2 One Technology

3 Two Technologies

4 Conclusion

5 Figures

A toy model

- Two technologies: $i \in \{1,2\}$; Tech 1 is flexible, Tech 2 is inflexible
 - production cost $c_1 = c_2 = c$;
 - Investment cost $I_1 > I_2$; Total Capacity K_1, K_2
- One period with two states:
 - low demand: $\varepsilon = L$ with probability f_L ;
 - high demand: $\varepsilon = H$ with probability f_H , $f_H + f_L = 1$.
- All consumers can react to real-time prices;
- Demand: $D_{\varepsilon}(p)$; gross surplus: $S_{\varepsilon}(D_{\varepsilon}(p))$
- Perfect competition;
- Risk-neutral

Real-time Optimal Pricing

Social Planner Solution = Competitive Equilibrium.

$$\max_{\{K_1, K_2, Q_1^{\varepsilon}, Q_2\}} \mathbb{E}[S_{\varepsilon}(Q_1^{\varepsilon} + Q_2) - c(Q_1^{\varepsilon} + Q_2)] - l_1 K_1 - l_2 K_2$$

$$s.t. \quad Q_1^{\varepsilon} \le K_1$$

$$Q_2^{\varepsilon} = Q_2 \le K_2$$
(1)

Proposition

In the presence of demand uncertainty and an efficient real-time market:

- inflexible firms earn the expected price $E_{\varepsilon}(p)$;
- **(a)** flexible firms earn the high price $p_H = \frac{l_1}{f_H} + c$;
- **(a)** low demand price is below marginal production cost, $p_L = c \frac{l_1 l_2}{f_l} < c$.

Flexible firms should earn a **flexibility premium** in order to recoup the investment cost difference.

Introduction One Technology Two Technologies Conclusion Figures

Day-ahead Optimal Pricing

$$\max_{\{K_{1},K_{2},Q_{1},Q_{2}\}} E[S_{\varepsilon}(Q_{1}+Q_{2})-c(Q_{1}+Q_{2})] - l_{1}K_{1} - l_{2}K_{2}$$
s.t. $Q_{1} \leq K_{1}$
 $Q_{2} \leq K_{2}$
(2)

Proposition

In the absence of real-time markets and presence of a forward market, long-term equilibrium gives:

- under-investment in flexible technology;
- over-investment in inflexible technology;

No real-time price signal distorts investment.

Reserves Market = Options Market

Proposition

The social optimum can be attained through a forward market with forward price $p_F = E_{\varepsilon}(p)$ and an option market with capacity price p_K and strike price p_X described by:

$$p_K = f_H(p_H - p_X), \quad p_L \le p_X \le p_H \tag{3}$$

 p^F only gives investment incentive for inflexibility, and flexible firms need two predetermined prices: one for investment, one for production.

Reserves Market: $p_X = c$

Lemma

If strike price is equal to production cost, $p_X = c$, a flexible firm should be paid a capacity payment p_K larger than opportunity cost of not trading in the forward market:

$$p_K > E_{\varepsilon}(p) - c$$

The popular idea that reserves should earn opportunity cost of not selling in day-ahead forward energy market is wrong!

(4)

Lessons to Existing Markets

Efficiency of market-based auction for reserves market?

- Integrated auction (energy+reserves): No, under-investement in flexibility.
- A pay-as-bid scoring auction: **Yes**, but demanding for system operator.
- Uniform pricing: No, under-investement in flexibility.

Introduction

- One Technology
- **3 Two Technologies**

Conclusion

Efficient pricing and investment for (in) flexible technologies and implications for market design.

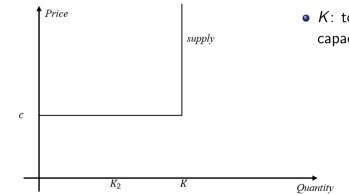
Lessons:

- Flexible technologies should earn flexibility premium in optimum.
- Real time market works in theory to achieve optimum.
- Only a day-ahead forward market would result in under-investment of flexible assets.
- Day-ahead market with reserve markets can implement second best, but requiring technology specific payment.
- Reserves' capacity payment based on day-ahead price as opportunity cost distorts price signal.
- Neither integrated nor separate uniform pricing auction is efficient.

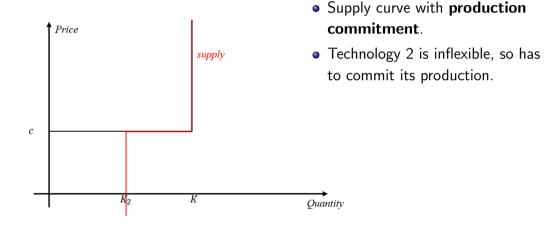
Literature

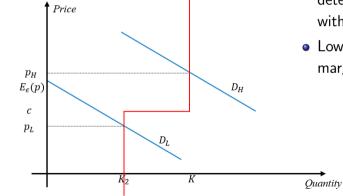
- Peak load pricing
 - Different technologies: Boiteux (1949), Crew and Kleindorfer (1976)
 - With uncertainty and demand rationing: Visscher (1973), Carlton (1977), Joskow and Tirole (2007)
- Reserve Markets
 - Reserve margins prevent system wide black outs (= Public good) (Joskow & Tirole,2007)
 - Auction design for efficient activation (Bushnell & Oren, 1994; Cramton 2017, Wilson 2002, Oren & Sioshansi, 2005)
 - Reserves as financial hedge (Kleindorfer & Wu, 2005; Anderson et al. 2017)
- Adjustment cost
 - Macroeconomics (some inputs are hard to adjust): different short and long run elasticities (Lucas, 1976)
 - Electricity Markets: empirical evidence that short term supply elasticity is lower (Ito & Reguant, (2016); Hortascu & Puller (2008))

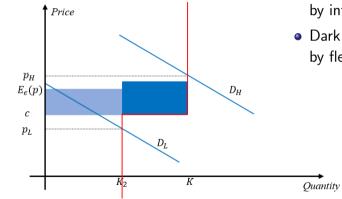
Dongchen He; Bert Willems


Flexibility in Power System: Market Design Matters

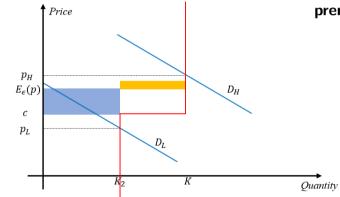
Questions?

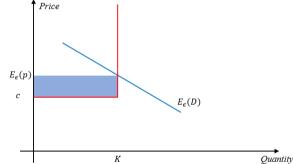

Introduction

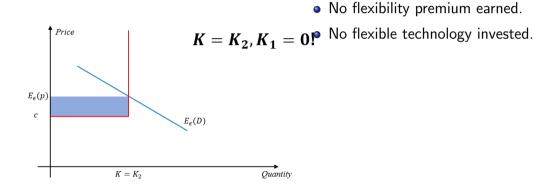

- One Technology
- **3 Two Technologies**
- Conclusion



- Supply curve with total capacity.
- K: total capacity, K₂: inflexible capacity.




- Price and actual production are determined by demand and supply with commitment.
- Low demand price is lower than marginal production cost.


- Light blue part is the profit earned by inflexible technology 2.
- Dark blue part is the profit earned by flexible technology 1.

• Yellow part is the **flexibility premium**.

- No real-time adjustment.
- Supply curve with total capacity. Commitment = Production.
- Same profit for both technologies.

