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Nowrcast and forecast models face challenges in presence of large and heterogeneous

shocks and non-linearities or shifts over time
e Large observations can distort parameter estimates and increase uncertainty

e Changing correlation structure and heterogeneous dynamics across indicators

Require flexible model features

e Accounting for time-varying trends and stochastic volatilities (SV) beneficial in UC,
DFM, VAR models (Stock and Watson, 2009; Clark, 2011; Antolin-Diaz et al., 2017)

e Covid-19: Account for extreme observations via t-distr. errors or outliers (Carriero
et al., 2021; Lenza and Primiceri, 2022; Antolin-Diaz et al., 2021)

e Bayesian shrinkage (Carriero et al., 2015; Mogliani and Simoni, 2021)

We combine time-varying components with multivariate MIDAS (Ghysels et al., 2020)
and Bayesian group-shrinkage: Trend-SVt-BMIDAS with GIGG prior



nd-SV-t-BMIDAS model

four key features

1. Time-varying unobserved components in the lower-frequency target variable
(time-varying Trend, stochastic volatlity (SV), t-distr. errors)

2. Information from high frequency indicators in multivariate MIDAS regression

3. Bayesian group-shrinkage via a global-local prior with three tiers of continuous
shrinkage (overall, between indicators, and within lags of an indicator)

4. A new group-wise sparsification algorithm on the posterior

o Ex-post sparsification motivated by decision theory allows for variable selection
and helps interpret signals over time via inclusion probabilities.

e Approach separates shrinkage and sparsity akin to “illusion of sparsity”
(Giannone et al., 2021), while accounting for within-group correlation.



Main Results: empirical application for now:

e Combination of time-varying components and group-shrinkage GIGG prior improves
nowcast performance for UK GDP growth, before and including the pandemic.

1. GIGG group-shrinkage prior shrinks information set towards a sparse selection

indicators, while to a lesser extent also drawing on other indicators.

2. Time-varying components help to shift between the most meaningful indicators
over data release cycle, rather then relying on constant signals.

e Inclusion probabilities inform about signals exploited by the model

e FEarly in data release cycle reliance on surveys, then shift to ‘hard’ indicators.
e Covid-19 pandemic: shift towards indicators for services, away from production.
e Other shrinkage priors such as Horseshoe rely on diffuse or broad set of

indicators and profit less from time-varying components.



Methodology



The Trend-BMIDAS-SV-t Model
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e 7 time-varying trend; 7; and y; are lower frequency (quarterly)
j—1
o B(LY™, k)Xt = Doimq w55 Ok)Xe—(m1)/m
o 0: (pr+ 1) * K parameters that link higher and lower frequency observations.
e w:R xR — R, nests Almon and U-MIDAS
ht, gt SVs, non-centered (Frithwirth-Schnatter and Wagner, 2010)
A¢: enforces a v-degrees of freedom t-distribution, fat-tailed SV



Group-shrinkage prior on multivariate MIDAS component

e GIGG (Group-Inverse-Gamma-Gamma) global-local prior (Boss et al., 2021)

e Models group-shrinkage + correlation among higher frequency lags
e Fach group g has pg 4 1 parameters to estimate
Og,i ~ N(071927§<P§,,‘)7 Vie{0,---,pg+1}
9~ C1(0,1), vglag ~ G(ag,1), ¥j,ilbg ~ 1G(bg, 1),
e 1) controls the overall level of sparsity

° vé(ag) controls sparsity across groups g
° goé,,-(bg) controls correlation of group members | within g

e We set g = R, i.e. groups defined as lags of each indicator (can be extended to
groupings across indicators if R large)

e At group-size 1, ag = by = 0.5, give horseshoe prior (Carvalho et al., 2010)



Univariate shrinkage with global-local prior




GIGG Prior Visualisation: Bi-variate
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p on the posterior

e Lack of interpretability with continuous priors: posterior coefficients remain non-zero
(Hahn and Carvalho, 2015), impact from indicators on nowcast opaque.

e Solution: Ex-post sparsification algorithm to the posterior 6.
e Decision tool that is separate from regularisation imposed by prior.
e Minimise a utility function over Euclidean distance between a linear model

which penalises group-size (akin to Zou, 2006) and the model’s prediction:
K

3 1 3
L(Y,a) = EHXWO‘_YH%"’Z(WHakHZa (3)
p

e penalisation term creates a soft-thresholding effect between [-¢, ¢¢]
e finds smallest subset of groups to achieve predictive performance closest to
unsparsified model, coefficients in other groups forced to zero.
e Gives inclusion probabilities that inform about the relative impact of an indicator

e relative frequency of lag-group R in the sparsified estimate a*(®) over Gibbs draws



Other priors and estimation

Priors for latent states standard: (7, F), g) joint normal prior as in Chan and Jeliazkov
(2009), McCausland et al. (2011) and Kim et al. (1998)

Estimation via Metropolis-within-Gibbs sampler

e Recursive sampling from conditional distributions: MIDAS parameters 0, GIGG
hyperparameters, latent states (7, h,§) (non-recursively, as in Chan and Jeliazkov
(2009)), At, degrees of freedom v

e sampling of v requires Metropolis step

e 5000 burn-in iterations, retain further 5000 for inference



Empirical Application



UK GDP growth, 1999-2021

Setup
e In-Sample Start: Q1 1999, Nowcast Start: Q1 2011
e Nowcast End: “pre-pandemic” Q4 2019, “including pandemic” Q3 2021

Monthly indicators

e indices of services and production, trade
e surveys (CBI, PMI, GfK)
e labour market (unemployment rate, employment, vacancies, hours)

e mortgage approvals, VISA consumer spending

Nowcast evaluation

e pseudo-real-time calendar: 20 nowcasts per quarter around data releases

e each nowcast has new information set, latest available 6 monthly obs. of each indicator

Metrics

e Point: Root-mean-squared forecast error (RMSFE)
e Density: Average cumulative rank probability score (CRPS) 10



Three Sets of Results

1. Posterior estimates time-varying trend, cyclical component, and stochastic volatilities
2. Nowcast evaluation

e prior alternatives, all with time varying components

e prior alternatives, without time varying components

3. Inclusion probabilities Signals exploited over the data release cycle and over time

11



Trend & Cyclical: Pre-Pandemic
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Role of group-shrinkage - Nowcast evaluation acros
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Role of group-shrinkage prior 4+ shutting down time-variation

RMSFE Pre-Pandemic 5 RMSFE Including Pandemic
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Intuition -

Average Inclusion Probability Pre-Pandemic
T-SV-t GIGG
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Intuition -

Average Inclusion Probability Including the Pandemic
T-SV-t GIGG
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Intuition -

Average Inclusion Probability Including the Pandemic
GIGG, Const. Var
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Conclusi

e Time-varying components + Bayesian MIDAS + flexible group-shrinkage prior.

e Group-shrinkage and time-varying components (trends, volatilities, large errors)
jointly lead to strong nowcasting performance for UK GDP growth.

e Approach brings new insights to literature on density vs sparsity in macroeconomic
forecasting (Giannone et al., 2021)

e grouping + time variation in shrinkage important to separate the relevant
sub-group of indicators in each nowcast period and over time (e.g. Covid-19)

e Shrinkage and sparsification are split apart: no a priori sparsification via prior,
but on the posterior to enhance interpretability

e Can be relevant to a range of exercises where group shrinkage matters (e.g. also
disaggregated data).
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Thank you

Thank you

Contact: galina.potjagailo@bankofengland.co.uk
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Links to the literature

The model nests / compares to existing models when shutting down model features

e multivariate BMIDAS with horseshoe (Kohns and Bhattacharjee, 2022) or
spike-and-slab group shrinkage prior (Mogliani and Simoni, 2021) asymptotically

e BMIDAS model with SV (Carriero et al., 2015)

e Trend-SV-outl. DFM (Antolin-Diaz et al., 2021)

e MIDAS literature (Ghysels et al., 2007, 2020; Foroni et al., 2015)
e Machine learning for nowcasting (Babii et al., 2022)

e Global-local shrinkage priors (Polson and Scott, 2010; Polson et al., 2014; Carvalho
et al., 2010) and group-lasso priors (Casella et al., 2010; Xu and Ghosh, 2015) and
spike-and-slab (Ishwaran et al., 2005; Piironen et al., 2017)
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Almon lag polynomial rest MIDAS

e U-MIDAS (Foroni et al., 2015) involves many parameters and can lead to erratic

weight profiles

e Restrict coefficients via Almon lag-polynomials on 6;: assuming a pr << Lj
polynomial process of the coefficients across high-frequency observations

Almon Lag MIDAS

Assume lags i = 0,--- , L can be represented by a 3rd degree polynomial, then each HF
parameter process, 0; can be written as:
0 = Bo + P + Bai® + B5i° (4)
We add economically relevant restrictions (Smith and Giles, 1976)
6 =0
(5)
0, =0

But: Smoothness of Almon-polynomial increases parameter correlation 21



Metropolis-within-Gibbs sampling algorithm

N =

N e & o> 89

. Sample e ~ p(Oly,e)

. Sample hyper-parameters ¥, v;, <pf?j, vp in one block

2.1 92 ~ p(¥*]y,e)

2.2 7 ~1/p(7; %Iy, ®)

2.3 ¢y ~ p(gply, )

sample ¥ ~ p(F|y,®) and 70 ~ p(70ly, °)

sample h ~ p(hly, e), ho ~ p(holy, #) and wy ~ p(ws]y, »)
sample g ~ p(gly, ), go ~ p(holy, ®) and ~ p(wgly, )
Sample {At}i1 ~ p(Acly, o)

Sample v ~ p(v|y, e) with a Metropolis step

sampling technique of Chan and Jeliazkov (2009) allows drawing steps 3.-5. in a
non-recursive fashion which increases efficiency and can be sped up using sparse-matrices
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Pseudo Real Time Calendar for UK No

Nowcast Quarter Days to GDP Month Timing within month Release Publication Lag
1 135 1 1st of month PMIs m-1
2 125 1 End of 2nd week IoP, IoS, Ex, Im m-2
3 120 1 3rd week Labour market data m-2
4 115 1 3rd Friday of month Mortgage & Visa m-1
5 110 1 End of 3rd week CBIs & GfK m
6 Reference 105 2 1st of month PMIs m-1
7 quarter 97 2 Mid of 2nd week Quarterly GDP q-1
8 (nowcast) 95 2 End of 2nd week IoP, oS, Ex, Im m-2
9 90 2 3rd week Labour market data m-2
10 85 2 3rd Friday of month Mortgage & Visa m-1
11 80 2 End of 3rd week CBIs & GfK m
12 75 3 1st of month PMIs m-1
13 65 & End of 2nd week IoP, IoS, Ex, Im m-2
14 60 3 3rd week Labour market data m-2
15 55 3 3rd Friday of month Mortgage & Visa m-1
16 50 3 End of 3rd week CBIs & GfK m
17 45 1 1st of month PMIs m-1
18 Subsequent 35 1 End of 2nd week ToP, IoS, Ex, Im m-2
19 quarter 30 1 3rd week Labour market data m-2
20 (backcast) 25 1 3rd Friday of month Mortgage & Visa m-1
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t evaluation result tive to AR(2).

Evaluation pre-pandemic Evaluation incl. pandemic period
Nowcast Periods Average 6 13 18 Average 6 13 18

RMSFE RMSFE
AR(2) benchmark (abs. RMSFE) 0.42 0.42 0.42 0.42 11.45 11.4 11.47 11.48
T-SV-t BMIDAS, 0.66%** 0.68%* 0.60* 0.51** L HED 0.27 0.11 0.10
GIGG w/ Spars. (rel. RMSFE)
Alternatives to T-SV-t (all BMIDAS, GIGG w/ Spars)
T-SV NS 0.81* 0.72 0.44%* @2 0.27 0.17 0.08
T, Constant variance (OR76 s 0.84 0.68 0.47** Do ZLEES 0.28 0.16 0.07
No T, SV-t NS 0.90 0.70 0.46** @2 0.31 0.10 0.08
No T, SV 0.81%** 0.91 0.77 0.46** 0.22%** 0.31 0.15 0.08
No T, Const. var. LR 1.01 1.00%* 0.67 (OR2225 0.27 0.19 0.09
Alternatives to BMIDAS (all with T-SV-t, GIGG w/ Spars)
U-BMIDAS (OISt 0.74%* 0.65%* 0.60%* 0.24%** 0.29 0.18 0.18
MF-DFM 0.67*** 0.75 0.67** 0.63** 0.32%** 0.33 0.32 0.34
Combination univar. MIDAS 0.68%** 0.68%* 0.67** 0.67** 0.36%** 0.37 0.34 0.33
Alternatives priors on BMIDAS (all with T-SV-t)
GIGG w/out Spars. 0.69%** 0.71% 0.62 0.49% 0.21%** 0.32 0.10 0.09
Horseshoe (HS) (OFRIRESE 0.87 0.73 0.74 0.28%** 0.28 0.23 0.24
Spike and Slab (SS) (ON7GRSEE 0.74%* 0.72% 0.78 0.32%** 0.38 0.25 0.25
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RMSFE Pre-Pandemic
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1st Nowcast Period
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