Context 00 Identification strategy 0000000

Results 00000000000000 Conclusion 0000

Distributional and Productivity Implications of Regulating Casual Labor: Evidence from Ridesharing in Indonesia

Shotaro N. Nakamura and Rizki Siregar

UC Davis, Universitas Indonesia

August 28, 2023

Introduction	Context	Identification strategy	Results	Conclusion
•0000	00	0000000	00000000000000	0000
Policy in	terventions	may correct fo	or frictions and	failures in

informal labor markets

$\bullet~70\text{-}80\%$ of employment in LMIC and LIC is informal

WDR, 2018

Introduction	Context	Identification strategy	Results	Conclusion
•0000	00	0000000	0000000000000	0000

Policy interventions may correct for frictions and failures in informal labor markets

- 70-80% of employment in LMIC and LIC is informal
 WDR, 2018
- Informal workers:
 - receive lower pay
 - Ulyssea 2018
 - experience shocks and uncertainty
 - Kochar 1995, 1999; Dupas et al. 2020
 - have lower productivity
 - La Porta and Shleifer 2014

Introduction	Context	Identification strategy	Results	Conclusion
•0000	00	0000000	0000000000000	0000

Policy interventions may correct for frictions and failures in informal labor markets

- 70-80% of employment in LMIC and LIC is informal
 WDR, 2018
- Informal workers:
 - receive lower pay
 - Ulyssea 2018
 - experience shocks and uncertainty
 - Kochar 1995, 1999; Dupas et al. 2020
 - have lower productivity
 - La Porta and Shleifer 2014
- It is difficult to directly regulate informal labor markets
- Effects are contingent upon spillovers and adjustments

 Introduction
 Context
 Identification strategy

 0000
 00
 000000

Results 00000000000000 Conclusion 0000

We address these challenges by studying regulations in Indonesian ridesharing market

• We evaluate the effects of an introduction of price-floor policy in Indonesia's ridesharing market.

Identification strategy 0000000

Results 0000000000000 Conclusion 0000

We address these challenges by studying regulations in Indonesian ridesharing market

- We evaluate the effects of an introduction of price-floor policy in Indonesia's ridesharing market.
- Increasingly relevant market to informal sector
 - App-based ridesharing is "informal-adjacent"
 - Regulatory frameworks are nascent and evolving
- Granular and (relatively) complete data help address mechanisms and their implications
 - Access to trip level data from 1 of 2 major platforms
 - Measures of prices, trip attributes, and productivity

Context 00 Identification strategy 0000000

Results 000000000000000 Conclusion 0000

Question: What are the consequences of price-floor regulations in a developing, informal labor market?

- Policy impact: How does the price-floor policy affect transaction volume, driver earnings, and wages?
- Mechanisms: What are the demand and supply-side responses that drive the policy impact?
- Implications: Does the policy affect distributional outcomes and/or worker productivity?

Identification strategy 0000000

Results 000000000000000 Conclusion 0000

Empirical results: price-floor policy does not achieve distributional objectives at efficiency cost

- Policy impact:
 - 4.6% increase in average driver fare but no effects on quantity, average daily driver earnings, and wages
- Mechanisms:
 - Increased driver supply with inelastic demand leads to fewer transactions per worker
 - Increased supply comes from low-earners but no impact on their earnings
- Implications:
 - 8-11% reduction in driver productivity from:
 - increased supply of less productive drivers
 - excess supply crowding out productive drivers
 - No evidence of improved outside options
 - Incidence falls differentially on consumers, while benefits (shorter wait) fall uniformly.

Contributions

Context

Identification strategy 0000000

Results 000000000000000 Conclusion 0000

- Provides insights into the efficacy of applying standard regulatory tools to gig-economies and casual labor markets (minimum-wage-like policy)
 - mixed evidence of min wage on disemployment
 - e.g. Card and Kruger 1994; Cengiz et al. 2019; Jardim et al. 2018
 - positive productivity and distributional effects
 - Engbom and Moser, forthcoming; Derenoncourt et al. 2021
 - Ku 2022; Coviello et al. 2021; Dustmann et al. 2022
- First to evaluate gov't pricing regulation on ridesharing in developing economy
 - Hall, Horton, and Knoepfle (2021)

Indonesia: large market with high penetration, with a pricing policy intended to improve earnings

- Indonesia's app-based 2-wheel taxis (ojeks) market
 - Ridesharing platforms emerged in mid 2010's
 - Large share (40-60%) of ride-hailing transactions in Indonesia are app-mediated
 - $\bullet~50\%$ of internet users book rides online in Indonesia
- Driver groups have advocated for pay raises and protection

Context

Identification strategy 0000000 Results 00000000000000 Conclusion 0000

Drivers' groups advocated for pay raise and protection

PHOTOS: Uber drivers across the world are striking about pay, conditions, and the firm's 'orgy of greed'

INDONESIA ISSUES NEW RULES FOR APP-BASED MOTORCYCLE TAXIS, BUT NEW MINIMAL TARIFFS STILL UNDECIDED

SHARING ECONOMY

(A) (F)

Grab and Go-Jek face the new challenge of fare regulators

ngapore and Indonesia say they want to safeguard drivers and riders alike

Regulators in Singapore and Indonesia could force ride-halling operator Grab and Go-Jek to set parameters for their fares - and size off a sixhal trend (Prost to Kosala) Minura).

KENTARO MAMOTO, Nikkei staff writer August 14, 2019 17:31 JST

© 232 koment

Driver Ojol Ancam Demo Jika Usulan Tarif Rp 3.000/Km Tak Dipenuhi

Achmad Dwi Afriyadi - detikFinan

milton and Megan Hernbroth May 8, 2079, 9:01 AM

- In 2019, Indonesian Gov't introduced restrictions on driver fare, i.e. price the driver receives on a trip on all app-based platforms
- This applied only to taxi trips (not food/delivery)
- Rollout occurred in 3 batches over 4 months
 - May 1, 2019—Batch 1: Jakarta, Bandung, Yogyakarta, Surabaya, dan Makassar
 - July 2, 2019—Batch 2: 41 cities.
 - August 9, 2019—Batch 3: 123 cities.
- Effective variation for analysis: Batches 2 and 3.

Detailed regulation table

Context 00 Identification strategy 000000 Results

Conclusion 0000

Prices respond visibly to policy

Context 00 Identification strategy 000000

Conclusion 0000

...through binding minimum driver fare

Distribution of driver fare pre policy variation, restricted to taxi

bin

Context 00 Identification strategy 000000

Conclusion 0000

...through binding minimum driver fare

Distribution of driver fare post policy variation, restricted to taxi

Identification strategy 0000000

Results

Conclusion 0000

We aggregate novel data to analyze market-wide effects

- We partner with a dominant ridesharing platforms in Indonesia
 - $\, \bullet \,$ Universe of transaction data across all (${\sim}70)$ cities
 - Individual level ID on demand and supply sides
 - Worker-day level measures of productivity

Identification strategy 0000000

Results 000000000000000 Conclusion 0000

We aggregate novel data to analyze market-wide effects

- We partner with a dominant ridesharing platforms in Indonesia
 - $\, \bullet \,$ Universe of transaction data across all (${\sim}70)$ cities
 - Individual level ID on demand and supply sides
 - Worker-day level measures of productivity
- Aggregated panel data at the city-day, or city-bin-day level
- Bins:
 - drivers' and customers' pre-policy measures (transaction volume, productivity) in deciles

Introduction	Context	Identification strategy	Results
00000	00	0000000	0000000000000

ID strategy: DiD on average outcomes

$$Y_{c,t} = \beta_1 * I_{c,t} (c \in Treat, t > 0) + \gamma_c + \rho_t + \epsilon_{c,t}$$
(1)

Conclusion

- c: city
- t: time (day), where t = 1 is first day of treatment (July 1)
- Treat: city is in rollout batch 2, as opposed to 3
- γ_c : city FE
- ρ_t : time FE

Context 00 $\begin{array}{c} \text{Identification strategy} \\ \texttt{000000} \bullet \end{array}$

Conclusion 0000

Outcome variables:

- Price and quantity
 - "Driver fare": total amount drivers receive per trip
 - Number of trips
- Earnings, supply, wages:
 - earnings/day: sum of driver fares per driver-day
 - supply hour: hours active on app, incl. idle time
 - wage: daily earnings/supply hour
- Productivity:
 - Quantity of work (km driven, hours on trip, N. trips)/supply hour

Identification strategy 0000000

Results •0000000000000 Conclusion 0000

Empirical results: price-floor policy does not achieve distributional objectives at efficiency cost

Policy impact:

- 4.6% increase in average driver fare but no effects on quantity, driver earnings, and wages
- Mechanisms:
 - Increased driver supply with inelastic demand leads to fewer transactions per worker
 - Increased supply comes from low-earners but no impact on their earnings
- Implications:
 - 8-11% reduction in driver productivity from:
 - increased supply of less productive drivers
 - excess supply crowding out productive drivers
 - No evidence of improved outside options
 - Incidence falls differentially on consumers, while benefits (shorter wait) fall uniformly.

Context 00 Identification strategy 0000000

 Conclusion 0000

Higher driver fare (P), noisy effect on Q

Table 1: Average treatment effects on driver fare and number of transaction

	log(Avg driver fare)		log(N	log(N trips)		log(Sum driver fare)	
	All services	Regulated	All services	Regulated	All services	Regulated	
	(1)	(2)	(3)	(4)	(5)	(6)	
Treat	0.0461**	0.1286***	0.0021	-0.0976	0.0483	0.0310	
	(0.0177)	(0.0322)	(0.0829)	(0.0914)	(0.0751)	(0.0813)	
Observations	12,760	12,760	12,760	12,760	12,760	12,760	
R ²	0.93870	0.91247	0.98193	0.98331	0.98381	0.98426	
Within R^2	0.03673	0.14282	3.5×10^{-6}	0.00605	0.00189	0.00066	
Day fixed effects	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
City fixed effects	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	

Notes: City-day level data. "All services": Taxi, Food, Delivery. "Regulated": Taxi. Standard errors clustered at the city level. Two-tailed significance: p<0.1*; p<0.05**; p<0.01***.

ntroduction	
00000	

Identification strategy 0000000

Results 00000000000000 Conclusion 0000

.. but no evidence of increased earnings or wages

Table 2: Average treatment effects on per-driver daily earnings and wage $% \left({{{\mathbf{x}}_{i}}} \right)$

	log(Avg ear	nings/day)	log(Avg wage)
	All services	Regulated	
	(1)	(2)	(3)
Treat	-0.0167	0.0199	-0.0674
	(0.0248)	(0.0347)	(0.0503)
Observations	12,760	12,760	10,962
R ²	0.92638	0.94523	0.82260
Within R^2	0.00132	0.00134	0.00902
Day fixed effects	\checkmark	\checkmark	\checkmark
City fixed effects	\checkmark	\checkmark	\checkmark

Notes: City-day level data. "All services": Taxi, Food, Delivery. "Regulated": Taxi. Standard errors clustered at the city level. Two-tailed significance: $p<0.1^*$; $p<0.05^*$; $p<0.01^{***}$.

Identification strategy 0000000

Results 00000000000000 Conclusion 0000

Preview of results: price-floor policy does not achieve distributional objectives at efficiency cost

- Policy impact:
 - 4.6% increase in average driver fare but no effects on quantity, driver earnings, and wages
- Mechanisms:
 - Increased driver supply with inelastic demand leads to fewer transactions per worker
 - Increased supply comes from low-earners but no impact on their earnings
- Implications:
 - 8-11% reduction in driver productivity from:
 - increased supply of less productive drivers
 - excess supply crowding out productive drivers
 - No evidence of improved outside options
 - Incidence falls differentially on consumers, while benefits (shorter wait) fall uniformly.

Context 00 Identification strategy 0000000

Results 000000000000000 Conclusion 0000

The policy induces excess supply

Table 3: Average treatment effects on total driver supply hours and trip duration

	log(Sum supply hrs) (1)	log(Sum transaction hrs) (2)	log(Sum idle hrs) (3)
Treat	0.0865*	0.0169	0.2430***
	(0.0500)	(0.0738)	(0.0886)
Observations	10,962	12,760	10,912
R ²	0.98475	0.98198	0.92888
Within R ²	0.00996	0.00024	0.01580
Day fixed effects	\checkmark	\checkmark	\checkmark
City fixed effects	\checkmark	\checkmark	\checkmark

Notes: City-day level data. **"All services": Taxi, Food, Delivery. "Regulated": Taxi.** Standard errors clustered at the city level. Two-tailed significance: $p<0.1^*$; $p<0.05^{**}$; $p<0.01^{***}$.

$$SumSupply_{c,t} = \Sigma_i supply_{i,c,t} = \Sigma_i transaction_{i,c,t} + \Sigma_i idle_{i,c,t}$$

Driver entry and exit

Introduction	Context	Identification strategy	Results	Conclusion
00000	00	000000	000000000000	0000

Increased driver competition reduces number of trips/driver

Table 4: Average treatment effects on the intensive margin market participation

	log(Avg n. b	ookings/driver)	log(Avg n. bo	okings/customer)
	All services	Regulated	All services	Regulated
	(1)	(2)	(3)	(4)
Treat	-0.0628*	-0.1087**	-0.0173	-0.0346***
	(0.0322)	(0.0409)	(0.0115)	(0.0116)
Observations	12,760	12,760	12,760	12,760
R ²	0.91089	0.95232	0.84742	0.83562
Within R ²	0.01750	0.03698	0.00751	0.03185
Day fixed effects	\checkmark	\checkmark	\checkmark	\checkmark
City fixed effects	\checkmark	\checkmark	\checkmark	\checkmark

Notes: City-day level data. **"All services": Taxi, Food, Delivery. "Regulated": Taxi.** Standard errors clustered at the city level. Two-tailed significance: $p < 0.1^*$; $p < 0.05^{**}$; $p < 0.01^{***}$.

Identification strategy 0000000

Results 000000●0000000 Conclusion 0000

Empirical results: price-floor policy does not achieve distributional objectives at efficiency cost

- Policy impact:
 - 4.6% increase in average driver fare but no effects on quantity, driver earnings, and wages

Mechanisms:

- Increased driver supply with inelastic demand leads to fewer transactions per worker
- Increased supply comes from low-earners but no impact on their earnings
- Implications:
 - 8-11% reduction in driver productivity from:
 - increased supply of less productive drivers
 - excess supply crowding out productive drivers
 - No evidence of improved outside options
 - Incidence falls differentially on consumers, while benefits (shorter wait) fall uniformly.

Introduction	Context	Identification strategy	Results	Conclusion
00000	00	0000000	000000000000	0000

We estimate CATEs by pre-policy earnings decile bins

$$Y_{c,b,t} = \sum_{b \in B} \beta_b I_{c,b,t} (c \in Treat, t > 0, b) + \gamma_{c,b} + \rho_{b,t} + \epsilon_{c,b,t}$$
(2)

- c: city
- b: bin
- t: time (day), where t = 1 is first day of treatment (July 1)
- Treat: city is in rollout batch 2, as opposed to 3
- $\gamma_{c,b}$: city-bin FE—more precise definition of "i" in panel
- ρ_{b,t}: bin-time FE—to address variation in bin-specific time trend

 Introduction
 Context
 Identification strategy
 Results
 Conclusion

 00000
 00
 000000
 0000000
 0000

Policy increases labor supply from low-earners

(a) Effects on log(aggregate supply hours) by prepolicy earnings decile

Notes: The dependent variable: log(aggregate supply hrs). The deciles: pre-policy driver earnings. Standard errors are clustered at the city-bin level.

Driver entry and exit

...but does not increase per-driver earnings of lower deciles

Notes: The dependent variable: log(avg daily earnings). The deciles: pre-policy driver earnings. Standard errors are clustered at the city-bin level.

Identification strategy 0000000

Results 000000000●000 Conclusion 0000

Empirical results: price-floor policy does not achieve distributional objectives at efficiency cost

- Policy impact:
 - 4.6% increase in average driver fare but no effects on quantity, driver earnings, and wages
- Mechanisms:
 - Increased driver supply with inelastic demand leads to fewer transactions per worker
 - Increased supply comes from low-earners but no impact on their earnings

Implications:

- 8-11% reduction in driver productivity from:
 - increased supply of less productive drivers
 - excess supply crowding out productive drivers
- No evidence of improved outside options
- Incidence falls differentially on consumers, while benefits (shorter wait) fall uniformly.

We find 8-11% reduction in average worker productivity

	log(Avg util. rate) (1)	log(Avg km/supp hr) (2)	log(Avg rides/supp hr) (3)
Treat	-0.0800	-0.0919*	-0.1050*
	(0.0516)	(0.0521)	(0.0556)
Observations	10,962	10,962	10,962
R ²	0.75871	0.87826	0.83735
Within R ²	0.00852	0.01600	0.02264
Day fixed effects	\checkmark	\checkmark	\checkmark
City fixed effects	\checkmark	\checkmark	\checkmark

Table 5: Average treatment effects on productivity

Notes: City-day level data. Standard errors clustered at the city level. Two-tailed significance: $p<0.1^*$; $p<0.05^{**}$; $p<0.01^{***}$.

Figure 3: Effects on log(total supply hours) by prepolicy productivity decile

Notes: The dependent variable: log(total supply hours). The deciles: pre-policy productivity. Standard errors are clustered at the city-bin level.

Context 00 Identification strategy 0000000

Results 00000000000000 Conclusion 0000

... and reduction in individual productivity

Figure 4: Effects on log(km driven/supply hour) by prepolicy productivity decile

Notes: The dependent variable: log(Avg km/supp hr). The deciles: pre-policy productivity. Standard errors are clustered at the city-bin level.

Identification strategy 0000000

Results 00000000000000

External validity: Large labor supply responses may be a feature of developing cities

- No other work that evaluates government-led price floor policy in ridesharing market to our knowledge
- Similar work using Uber data in US to estimate effects of level shifts in prices on driver outcomes
 - Hall, Horton, and Knoepfle (2021)
- Significant contextual differences
 - platform policy vs. government regulation
 - average shift vs. price floor
 - U.S. vs. Indonesia
- Select outcomes (demand, supply hours, productivity, and wages) and compare elasticities
- Choices informed by a static search model with exogenous price shifts and labor supply as choice variable

Specification

00000	Context	Identification strategy	Results 00000000000000	Conclusion 0000
l arma labar	aunaly rea	noncos in Indono	aia laadima ta l	~~~~~

Large labor supply responses in Indonesia, leading to larger reductions in driver efficiency and wages

Table 6: Elasticities to driver fare and comparisons from Hall, Horton, and Knoepfle (2021)

	log(N trips) (1)	log(Sum supply hrs) (2)	log(Avg km/supp hr) (3)	log(Avg wage) (4)
log(Avg customer fare)	0.0219			
	(0.8594)			
log(Avg driver fare)		1.756	-1.867**	-1.370
		(1.242)	(0.7973)	(0.8560)
Observations	12,760	10,962	10,962	10,962
R ²	0.98178	0.98004	0.84658	0.80637
Within R ²	-0.00832	-0.29534	-0.24009	-0.08163
Day fixed effects	\checkmark	\checkmark	\checkmark	\checkmark
City fixed effects	\checkmark	\checkmark	\checkmark	\checkmark
HHK estimates	-0.099	0.342***	-0.655***	0.075
HHK SEs	(0.081)	(0.034)	(0.059)	(0.064)

 $\textit{Notes: City-day level data. 2SLS estimates. Two-tailed significance: p < 0.1^*; p < 0.05^{**}; p < 0.01^{***}.$

Context 00 Identification strategy 0000000

Results

Conclusion 0000

Conclusion

- The price-floor policy does not achieve the policy nor distributional objectives, at an efficiency cost.
 - no increase in average earnings or wages
- Mechanism: Increased excess supply drives down number of matches per driver.
 - large stock of informal labor force might exacerbate this
- Externalities of pricing policy: driver productivity declines from:
 - increased supply of less productive drivers
 - excess supply crowding out productive drivers.
- Shocks not large enough to affect drivers' outside options.
- Increased cost and reduced wait time for customers, though benefits are inefficiently allocated.

Context 00 Identification strategy

Results

Conclusion 0000

Thank you! Website: https://shotaro-n-nakamura.github.io/ Email: snnakamura@ucdavis.edu Twitter: @NakamuraShotaro

Empirical results: price-floor policy does not achieve its objectives at efficiency cost

- Policy impact:
 - 4.6% increase in average driver fare but no effects on quantity, driver earnings, and wages
- Mechanisms:
 - Increased driver supply with inelastic demand leads to fewer transactions per worker
 - Increased supply comes from low-earners but no impact on their earnings

Implications:

- 8-11% reduction in driver productivity from:
 - increased supply of less productive drivers
 - excess supply crowding out productive drivers
- No evidence of improved outside options
- Incidence falls differentially on consumers, while benefits (shorter wait) fall uniformly.

Should we be concerned about unobserved spillovers?

- Challenge: We do not observe what drivers do outside the platform
 - Spillovers and adjustments via multihoming, offline work, home production etc.
 - Large enough impact would affect values of outside options

Should we be concerned about unobserved spillovers?

- Challenge: We do not observe what drivers do outside the platform
 - Spillovers and adjustments via multihoming, offline work, home production etc.
 - Large enough impact would affect values of outside options
- Question: Does the price-floor policy meaningfully affect drivers' "reservation wage"?
- Method: new data at proposed-match level and subset by match outcomes (completed, accepted, and not accepted)
- Outcomes:
 - Driver fare
 - Driver fare/trip duration
- Analysis on regulated (i.e., taxi) segment from 4 April, 2019.

The policy increases the price of accepted and non-accepted matches

Table 7: Average treatment effects on the driver fare by trip status: driver-day level

	log(Avg driver cut)		
	Completed	Accepted	Not accepted
	(1)	(2)	(3)
Treat	0.1247***	0.1215***	0.1167***
	(0.0326)	(0.0315)	(0.0263)
Observations	7,112	7,112	7,094
R ²	0.89851	0.89768	0.78508
Within R ²	0.16088	0.15473	0.06983
Day fixed effects	\checkmark	\checkmark	\checkmark
City fixed effects	\checkmark	\checkmark	\checkmark

Notes: City-day level data. Standard errors clustered at the city level. Two-tailed significance: $p<0.1^*$; $p<0.05^{**}$; $p<0.01^{***}$.

... but only increases per-minute fare (i.e., "wage") of completed trips

Table 8: Average treatment effects on the driver fare by trip status: driver-day level

	log(Avg driver cut/min)		
	Completed	Accepted	Not accepted
	(1)	(2)	(3)
Treat	0.1039**	0.0344	-0.0342
	(0.0409)	(0.0315)	(0.0431)
Observations	7,112	7,112	7,094
R ²	0.85475	0.72105	0.49115
Within R ²	0.08680	0.00358	0.00072
Day fixed effects	\checkmark	\checkmark	\checkmark
City fixed effects	\checkmark	\checkmark	\checkmark

Notes: City-day level data. Standard errors clustered at the city level. Two-tailed significance: $p<0.1^*$; $p<0.05^{**}$; $p<0.01^{***}$.

Empirical results: price-floor policy does not achieve distributional objectives at efficiency cost

- Policy impact:
 - 4.6% increase in average driver fare but no effects on quantity, driver earnings, and wages
- Mechanisms:
 - Increased driver supply with inelastic demand leads to fewer transactions per worker
 - Increased supply comes from low-earners but no impact on their earnings

Implications:

- 8-11% reduction in driver productivity from:
 - increased supply of less productive drivers
 - excess supply crowding out productive drivers
- No evidence of improved outside options
- Incidence falls differentially on consumers, while benefits (shorter wait) fall uniformly.

Most exposed customers' expenditures go up

(a) Daily expenditure/customer

...but they are not differentially compensated by wait time

(a) Customer-average wait distance

Online gig-economies, and interests in regulating them, are growing

- Rapid growth of gig economy in developed and developing countries
 - By 2023, 78 million workers, \$298 billion in payroll in global gig economy
 - In 2019 in SE-Asia: 3.6 billion annual rides, 3.8 million active drivers
- Tandem growth of regulatory frameworks
 - Licensing/entry bans: platforms licensed in mid 2010's
 - Employment vs. casual contracts: California's AB5
 - Price control: restrictions on fare structures

Most jurisdictions regulate ridesharing in some way

Figure 4: Overview of regulatory pressure on e-hailing services in major cities across the globe

Source: Arthur D. Little, 2020

Dynamic model: Price effect consistent across weeks

Figure 7: Weekly effects on average driver fare: distributed lag model

Notes: The dependent variable: log(average driver fare). Regression is run on a city by day panel data. Standard errors are clustered at the city level.

... but parallel trends on some other outcomes less robust

Figure 8: Weekly effects on N. trips and N. drivers

Notes: The dependent variable: log(average driver fare). Regression is run on "a city by day panel data. Standard errors are clustered at the city level.

- Differential reduction in worker availability and transactions during Eid al-Fitr
- Qualitatively similar results with:
 - excluding the Eid period
 - synthetic-control-based inference procedure