BIASED SURVEYS

Luca Gemmi Rosen Valchev

HEC Lausanne Boston College

EEA ESEM 2023

Do surveys reflect true beliefs?

- Expectations are crucial to both macroeconomics and finance
- Growing literature use surveys of professional forecasters to document
 - **Stickiness** in aggregate beliefs updating

(Coibion & Gorodnishenko 15)

Behavioral biases in individual beliefs updating

(Bordalo et al 20, BGMS)

Do surveys reflect true beliefs?

- Expectations are crucial to both macroeconomics and finance
- Growing literature use surveys of professional forecasters to document
 - Stickiness in aggregate beliefs updating

(Coibion & Gorodnishenko 15)

Behavioral biases in individual beliefs updating

(Bordalo et al 20, BGMS)

- This paper: do survey forecasts reflect professional forecasters' beliefs?
- Document strategic incentives in forecast reporting: survey ≠ true expectation
 - Can explain the apparent behavioral biases
 - ▶ Bias the estimate of information stickiness

OVER AND UNDER-REACTION TO PRIVATE AND PUBLIC INFO

- BGMS 2020: forecasts overreact to new total information
- We distinguish between new private and public information (e.g. central bank communication), we find
 - Overreaction to new private information
 - ▶ Under-reaction to new *public* information

OVER AND UNDER-REACTION TO PRIVATE AND PUBLIC INFO

- BGMS 2020: forecasts overreact to new total information
- We distinguish between new *private* and *public* information (e.g. central bank communication), we find
 - Overreaction to new private information
 - ▶ Under-reaction to new public information
- ⇒ Not consistent with existing behavioral models (e.g. diagnostic expectations)
- ⇒ Consistent with **strategic diversification** in forecast reporting

(Ottaviani & Sorensen 06)

Forecasters over-weight private against public info to "stand out from the crowd"

RECOVER HONEST BELIEFS

- We propose a simple global game model with strategic substituability
 - ► Forecasters trade-off forecast accuracy with distance from the average forecast
- We show that the model is consistent with the evidence
- We estimate structurally the model to recover the underlying honest beliefs
 - 1. The honest **belief rigidity** is 20-30% higher than posted one
 - 2. The honest **belief dispersion** is 30-100% lower than the posted one

LITERATURE

• Test RE hypothesis: evidence for behavioral biases

Fuhrer 18, Bordalo et al 20, Broer and Kohlhas 23

- Apparent behavioral bias can be ascribed to strategic incentives in forecast reporting
- Test FI hypothesis: document beliefs rigidity

Muth 61, Coibion & Gorodnishenko 12, 15, Crowe 10, Woodford 02, Goldstein 21

- ▶ Highlight bias in existing rigidity estimates from strategic incentives & correct them
- Forecasters' strategic incentives

Laster et al 99, Ottaviani & Sorensen 06, Marinovic et al 13

Provide (i) novel supporting evidence, (ii) novel framework with public information,
 (iii) structural estimation on survey data

SPF DATA

- Data from the Survey of Professional Forecasters (SPF) collected by the Federal Bank Reserve of Philadelphia
- Quarterly panel of forecasts on macroeconomic and financial variables at different horizons
- For actual values, we use first-release data
- Transform variables in annualized growth rate

SIMPLE CONCEPTUAL FRAMEWORK

- Forecasters try to forecast some unobservable fundamental x_t at horizon h
- They obseve
 - Private signal: $s_t^i = x_{t+h} + \eta_t^i$, $\eta_t^i \sim N(0, \tau^{-1})$
 - Public signal: $g_t = x_{t+h} + e_t, \qquad e_t \sim N(0, \nu^{-1})$
- General structure of forecast $\tilde{E}_t^i[x_{t+h}]$ at time t about horizon h

$$\tilde{E}_t^i[x_{t+h}] = \tilde{E}_{t-1}^i[x_{t+h}] + \frac{G_1(g_t - \tilde{E}_{t-1}^i[x_{t+h}]) + \frac{G_2(s_t^i - \tilde{E}_{t-1}^i[x_{t+h}])}{G_2(s_t^i - \tilde{E}_{t-1}^i[x_{t+h}])}$$

- This setup embeds RE and many behavioral models as special cases
 - ► Coefficients G₁ and G₂ arbitrary, not necessarily "optimal"
 - ▶ Total weight on new information $G = G_1 + G_2$ (stickiness 1 G)

BGMS 2020: OVERREACTION TO NEW INFORMATION

- According to RE, individual forecast errors should be unpredictable
- BGMS (2020) run the regression

$$\underbrace{x_{t+h} - \tilde{E}_t^i(x_{t+h})}_{fe_{t+h,t}^i} = \alpha + \beta_{BGMS}(\underbrace{\tilde{E}_t^i(x_{t+h}) - \tilde{E}_{t-1}(x_{t+h})}_{fr_{t+h,t}^i}) + err_t^i$$

- Under RE, $\beta_{BGMS} = 0$
- They find $\beta_{BGMS} < 0$: **overreaction** to *new* information
 - After a good news (fr > 0) forecast too optimistic ($fe = \underbrace{x}_{\uparrow} \underbrace{f(x)}_{\uparrow\uparrow} < 0$)

BGMS 2020: OVERREACTION TO NEW INFORMATION

$$fe_{t+h,t}^i = \alpha + \beta_1 fr_{t+h,t}^i + err_t^i$$

Notes: Panel regression with individual fe. Standard errors are corrected for heteroskedasticity and autocorrelation as in Vogelsang (2012). Confidence intervals reported at 10% significance level.

Overreaction to private and underreaction to public info

- Now we differentiate between reaction to public and private info
- Public signal: lagged consensus forecast
 - ▶ Use surprise component: $pi_t^i \equiv \tilde{\bar{E}}_{t-1}[x_{t+h}] \tilde{E}_{t-1}^i[x_{t+h}]$
- We run the following regression

$$fe_{t+h,t}^i = \alpha + \frac{\beta_1}{\beta_1} fr_{t+h,t}^i + \frac{\beta_2}{\beta_1} pi_{t+h,t}^i + err_t^i$$

- RE: $\beta_1 = 0$, $\beta_2 = 0$
- We find
 - ho $\beta_1 < 0$: **overreaction** to new *private* information
 - $ightharpoonup eta_2 > 0$: underreaction to new *public* information

Overreaction to private and underreaction to public info

$$\textit{fe}_{t+h,t}^{i} = \alpha + \frac{\beta_{1}}{\beta_{1}} \textit{fr}_{t+h,t}^{i} + \frac{\beta_{2}}{\beta_{1}} \textit{pi}_{t+h,t}^{i} + \textit{err}_{t}^{i}$$

Notes: Panel regression with individual fe. Standard errors are corrected for heteroskedasticity and autocorrelation as in Vogelsang (2012). Confidence intervals reported at 10% significance level.

Implications for models

- We find overreaction to new private info, but under-reaction to new public info
- ⇒ Not consistent with behavioral models of overreaction to all new information
 - Diagnostic expectations, extrapolative beliefs, ...
- ⇒ Consistent with two sets of models
- (1) Strategic diversification: (Ottaviani and Sorensen, 2006)
 - 1. Forecasters are rational but do not truthfully reveal their beliefs to surveys
 - 2. Overweight private signals to stand out from the crowd (winner-take-all game)
- (2) **Behavioral overconfidence** (Daniel et al, 1998; Broer and Kohlas, 2018)
 - 1. Forecasters are behavioral biased
 - 2. Overweight private signals because wrongly perceived them as more accurate

TEST 1: COMPARE WITH CENTRAL BANK FORECASTS

- Compare SPF with frecasts not intended for the public: Fed Board Greenbook
 - ▶ Made available to public with 5 years lag, less subject to strategic incentives
 - We consider last forecast of each quarter of 11 variables also included in SPF
- We find **no over or under-reaction** to new information
- ⇒ Biases absent in survey less affected by strategic incentives

NO OVER-REACTION TO NEW INFORMATION

$$fe_{t+h,t}^i = \alpha + \beta_1 fr_{t+h,t}^i + err_t^i$$

Notes: Bars reports the 90% confidence interval for the estimated coefficients. Standard errors are robust to heteroskedasticity and Newey-West with the automatic bandwidth selection procedure of Newey and West (1994).

NO OVER OR UNDER-REACTION TO PRIVATE AND PUBLIC INFO

$$fe_{t+h,t}^i = \alpha + \frac{\beta_1}{\beta_1} fr_{t+h,t}^i + \frac{\beta_2}{\beta_1} pi_{t+h,t}^i + err_t^i$$

Notes: Bars reports the 90% confidence interval for the estimated coefficients. Standard errors are robust to heteroskedasticity and Newey-West with the automatic bandwidth selection procedure of Newey and West (1994)

Test 2: Compare different public signals

- Compare underreaction to two different public signals:
 - 1. Lagged consensus: $pi_{1,t}^i \equiv \tilde{\bar{E}}_{t-1}[x_{t+h}] \tilde{E}_{t-1}^i[x_{t+h}]$
 - 2. Lagged actual: $pi_{2,t}^{i} \equiv x_{t-1} \tilde{E}_{t-1}^{i}[x_{t-1}]$
- We include both in the regression

$$fe_{t+h,t}^i = \alpha + \beta_1 fr_{t+h,t}^i + \beta_2 \rho i_{1,t}^i + \beta_3 \rho i_{2,t}^i + err_t^i$$

- We find $\beta_2 > \beta_3$: larger under-reaction to signal about other forecasters' beliefs
- Intuitively consistent with strategic diversification

Test 2: Compare different public signals

$$fe_{t+h,t}^i = \alpha + \beta_1 fr_{t+h,t}^i + \beta_2 pi_{1,t}^i + \beta_3 pi_{2,t}^i + err_t^i$$

Notes: Panel regression with individual fe. Standard errors are corrected for heteroskedasticity and autocorrelation as in Vogelsang (2012). Confidence intervals reported at 10% significance level.

STATIC STRATEGIC DIVERSIFICATION GAME

- Agents submit forecast \hat{x}^i about x to the survey
- Their problem is

min
$$u^i = E^i \left[(\hat{x}^i - x)^2 - \lambda (\hat{x}^i - \bar{\hat{x}})^2 \right]$$

foc: $\hat{x}^i = \frac{1}{1 - \lambda} E^i[x] - \frac{\lambda}{1 - \lambda} E^i[\bar{\hat{x}}]$

- $\lambda = 0$: agents submit their honest beliefs
- \triangleright 0 > λ > 1: agents wants to stand out from the crowd

STATIC STRATEGIC DIVERSIFICATION GAME

- Agents submit forecast \hat{x}^i about x to the survey
- Their problem is

$$min \quad u^{i} = E^{i} \left[(\hat{x}^{i} - x)^{2} - \lambda (\hat{x}^{i} - \bar{\hat{x}})^{2} \right]$$

$$foc: \quad \hat{x}^{i} = \frac{1}{1 - \lambda} E^{i}[x] - \frac{\lambda}{1 - \lambda} E^{i}[\bar{\hat{x}}]$$

- $\lambda = 0$: agents submit their honest beliefs
- \triangleright 0 > λ > 1: agents wants to stand out from the crowd
- They have prior $x \sim N(0, \chi^{-1})$ and observe signals

$$g = x + e,$$
 $e \sim N(0, \nu^{-1})$
 $s^i = x + \eta^i,$ $\eta^i \sim N(0, \tau^{-1})$

Their honest/true posterior is

$$E^{i}[x] = \mu + \gamma_1(g - \mu) + \gamma_2(s^{i} - \mu)$$

with
$$\gamma_1 = \frac{\nu}{\tau + \nu + \chi}$$
, $\gamma_2 = \frac{\tau}{\tau + \nu + \chi}$.

$$\hat{x}^i = \mu + \delta_1(g - \mu) + \delta_2(s^i - \mu)$$

- Where
 - $lackbreak \delta_1 = rac{(1-\lambda)\gamma_1}{(1-\lambda)+\lambda\gamma_2} < \gamma_1$: underweight new *public* information (this paper)

Their honest/true posterior is

$$E^{i}[x] = \mu + \gamma_1(g - \mu) + \gamma_2(s^{i} - \mu)$$

with
$$\gamma_1 = \frac{\nu}{\tau + \nu + \chi}$$
, $\gamma_2 = \frac{\tau}{\tau + \nu + \chi}$.

$$\hat{x}^i = \mu + \delta_1(g - \mu) + \frac{\delta_2}{\delta_2}(s^i - \mu)$$

- Where
 - $\delta_1 = \frac{(1-\lambda)\gamma_1}{(1-\lambda)+\lambda\gamma_2} < \gamma_1$: underweight new public information (this paper)
 - $\delta_2 = \frac{\gamma_2}{(1-\lambda)+\lambda\gamma_2} > \gamma_2$: **overweight** new *private* information (this paper)

Their honest/true posterior is

$$E^{i}[x] = \mu + \gamma_1(g - \mu) + \gamma_2(s^{i} - \mu)$$

with
$$\gamma_1 = \frac{\nu}{\tau + \nu + \chi}$$
, $\gamma_2 = \frac{\tau}{\tau + \nu + \chi}$.

$$\hat{x}^i = \mu + \delta_1(g - \mu) + \delta_2(s^i - \mu)$$

- Where
 - $\delta_1 = \frac{(1-\lambda)\gamma_1}{(1-\lambda)+\lambda\gamma_2} < \gamma_1$: underweight new public information (this paper)
 - $\delta_2 = \frac{\gamma_2}{(1-\lambda)+\lambda\gamma_2} > \gamma_2$: overweight new private information (this paper)
 - $\delta_1 + \delta_2 > \gamma_1 + \gamma_2$: **overweight** *new* information (BGMS 2020)

Their honest/true posterior is

$$E^{i}[x] = \mu + \gamma_1(g - \mu) + \gamma_2(s^{i} - \mu)$$

with
$$\gamma_1 = \frac{\nu}{\tau + \nu + \chi}$$
, $\gamma_2 = \frac{\tau}{\tau + \nu + \chi}$.

$$\hat{x}^i = \mu + \delta_1(g - \mu) + \delta_2(s^i - \mu)$$

- Where
 - $\delta_1 = \frac{(1-\lambda)\gamma_1}{(1-\lambda)+\lambda\gamma_2} < \gamma_1$: underweight new public information (this paper)
 - $\delta_2 = \frac{\gamma_2}{(1-\lambda)+\lambda\gamma_2} > \gamma_2$: overweight new private information (this paper)
 - $\delta_1 + \delta_2 > \gamma_1 + \gamma_2$: overweight new information (BGMS 2020)
 - $\delta_1 + \delta_2 < 1$: consensus belief **stickiness** (CG 2015, Goldstein 2021)

QUANTITATIVE MODEL

DYNAMIC MODEL

• Fundamental: unobservable, AR(1)

$$x_t = \rho x_{t-1} + u_t, \qquad u_t \sim N(0, \xi^{-1})$$

• Information: private signal and public signal

$$g_t = x_t + e_t,$$
 $e_t \sim N(0, \nu^{-1})$
 $s_t^i = x_t + \eta_t^i,$ $\eta_t^i \sim N(0, \tau^{-1})$

Global game

$$\hat{x}_{t,t}^i = \frac{1}{1-\lambda} E_t^i[x_t] - \frac{\lambda}{1-\lambda} E_t^i[\bar{\hat{x}}_{t,t}]$$

⇒ Individual posted forecast update similar to KF

$$\hat{x}_{t,t}^i = \hat{x}_{t,t-1}^i + \frac{G_1}{G_1}(g_t - \hat{x}_{t,t-1}^i) + \frac{G_2}{G_2}(s_t^i - \hat{x}_{t,t-1}^i)$$

• With $G_1 < K_1$ and $G_2 > K_2$, where K_1, K_2 are the optimal weights

STRUCTURAL ESTIMATION

- For each series we estimate
 - Fundamental parameters (ρ, ξ) from actual data
 - ▶ Signal noises (ν, τ) and strategic incentive (λ) with GMM
- Target moments:
 - 1. Mean FE dispersion
 - 2. Estimated posted gain G
 - 3. Estimated overraction to private information
- Very good match of untargeted moments

Estimated parameters

Posted and honest consensus forecast MSE

• Information rigidity is higher than the raw estimate

$$G_{true} \approx 0.4 < G_{posted} \approx 0.5$$

- ▶ The reported consensus forecast is more accurate than true avg expectations
- ► True consensus forecast MSE 30-100% larger than *posted* one

Estimated gain

POSTED AND HONEST FE DISPERSION

- True beliefs dispersion lower than raw estimate
 - ► True mean FE dispersion 80% **lower** than *posted* one

Estimated dispersion

CONCLUSION

- We provide new evidence consistent with strategic diversification in professional forecasters surveys
 - ► Survey expectations ≠ honest beliefs
 - Explain the biases documented by existing literature
- Estimate structurally a forecasting model of strategic incentives
 - We recover honest beliefs
 - ► Honest stickiness 20% higher and dispersion 80% lower than posted ones

SUMMARY STATISTICS

	Consensus					Individual		
	Errors			Revisions		Forecast dispersion	Nonrev share	Pr(< 80% revise same
	Mean	SD	SE	Mean	SD			direction)
Variable	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Nominal GDP	-0.26	1.69	0.19	-0.14	0.68	1.00	0.02	0.80
GDP price index inflation	-0.28	0.58	0.08	-0.08	0.25	0.49	0.07	0.85
Real GDP	-0.26	1.64	0.19	-0.16	0.58	0.78	0.02	0.74
Consumer Price Index	-0.08	1.04	0.15	-0.11	0.68	0.54	0.06	0.66
Industrial production	-0.83	3.94	0.46	-0.49	1.19	1.57	0.01	0.72
Housing Start	-3.36	17.79	2.20	-2.31	5.93	8.34	0.00	0.68
Real Consumption	0.32	1.10	0.15	-0.06	0.41	0.61	0.03	0.78
Real residential investment	-0.46	8.32	1.19	-0.61	2.33	4.37	0.04	0.87
Real nonresidential investment	0.20	5.60	0.79	-0.22	1.71	2.31	0.03	0.74
Real state and local government consumption	0.04	2.96	0.38	0.14	1.10	2.09	0.07	0.91
Real federal government consumption	0.02	1.10	0.15	-0.05	0.33	0.98	0.11	0.93
Unemployment rate	0.01	0.68	0.08	0.05	0.32	0.30	0.18	0.66
Three-month Treasury rate	-0.51	1.14	0.16	-0.19	0.51	0.43	0.15	0.59
Ten-year Treasury rate	-0.48	0.73	0.11	-0.12	0.36	0.37	0.11	0.55
AAA Corporate Rate Bond	-0.46	0.82	0.11	-0.11	0.38	0.49	0.09	0.66

FACT 2: NOVEL STRATEGY TO ESTIMATE STICKINESS

	G_{CG}	SE	G	SE	Difference	SE	p-value
Variable	(1)	(2)	(3)	(4)	(5)	(6)	(7)
Nominal GDP	0.66	0.13	0.53	0.02	0.13	0.13	0.17
GDP price index inflation	0.77	0.13	0.49	0.03	0.28	0.13	0.02
Real GDP	0.60	0.07	0.56	0.03	0.04	0.08	0.29
Consumer Price Index	0.82	0.17	0.49	0.02	0.33	0.17	0.03
Industrial production	0.83	0.38	0.50	0.03	0.33	0.38	0.19
Housing Start	0.72	0.13	0.49	0.03	0.24	0.13	0.04
Real Consumption	0.76	0.19	0.49	0.03	0.28	0.20	0.08
Real residential investment	0.45	0.07	0.41	0.03	0.04	0.07	0.30
Real nonresidential investment	0.45	0.04	0.48	0.02	-0.02	0.05	0.69
Real state and local government consumption	1.30	0.32	0.43	0.04	0.87	0.32	0.00
Real federal government consumption	0.61	0.12	0.47	0.04	0.15	0.13	0.13
Unemployment rate	0.57	0.05	0.49	0.02	0.08	0.05	0.06
Three-month Treasury rate	0.62	0.07	0.55	0.02	0.07	0.07	0.16
Ten-year Treasury rate	1.01	0.09	0.51	0.02	0.50	0.09	0.00
AAA Corporate Rate Bond	1.03	0.18	0.54	0.02	0.49	0.18	0.00

Notes: Columns (1)-(2) reports the implied gain from CG regressions. Columns (3)-(4) replicate the gain estimate from Goldstein regression. Columns (5)-(8) reports the difference between column (1) and (3), its standard error and the probability of rejecting the null of column (5) lower or equal to zero.

FACT 2: NOVEL STRATEGY TO ESTIMATE STICKINESS

	2 quarters horizon				
	β	SE	p-value	Median	
Variable	(1)	(2)	(3)	(4)	
Nominal GDP	0.61	0.01	0.00	0.62	
GDP price index inflation	0.63	0.02	0.00	0.68	
Real GDP	0.63	0.02	0.00	0.62	
Consumer Price Index	0.70	0.02	0.00	0.71	
Industrial production	0.59	0.02	0.00	0.63	
Housing Start	0.53	0.02	0.00	0.56	
Real Consumption	0.63	0.03	0.00	0.62	
Real residential investment	0.56	0.02	0.00	0.64	
Real nonresidential investment	0.61	0.03	0.00	0.61	
Real state and local government consumption	0.60	0.05	0.00	0.56	
Real federal government consumption	0.62	0.03	0.00	0.62	
Unemployment rate	0.56	0.02	0.00	0.62	
Three-month Treasury rate	0.63	0.03	0.00	0.67	
Ten-year Treasury rate	0.60	0.02	0.00	0.63	
AAA Corporate Rate Bond	0.61	0.02	0.00	0.62	

Notes: Columns 1-3: panel with individual and time fixed effects; column 4: median of individual demeaned regressions. Standard errors are corrected for heteroskedasticity and autocorrelation as in Vogelsang (2012).

BK OVERREACTION TO PUBLIC SIGNAL

• Broer and Khohlas (2019) regress FE on public signal by itself

$$fe_{t+h,t}^i = \alpha + \beta_{BK}g_t + err_t^i$$

• They find $\beta_{BK} \ge 0$: **mixed** reaction to new public information

Our correction to BK

• We run the same regression but isolating the surprise component:

$$fe_{t+h,t}^i = \alpha + \beta pi_{t+h,t}^i + err_t^i, \qquad pi_t^i \equiv g_t - \tilde{E}_{t-1}^i[x_{t+h}]$$

• We find $\beta > 0$: **underreaction** to new public information

EXTENSION: HETEROGENEOUS PRIORS

 The benchmark strategic diversification model does not match the "univariate" underreaction to public information

$$fe_{t+h,t}^{i} = \alpha + \beta pi_{t+h,t}^{i} + err_{t}^{i}, \qquad \beta_{model} = 0$$

- Underweight public signal relative to private signal, not to prior
 - $\lambda > 0$ leads to underweight public info relative to private info
 - But both prior and new public signals are public
- In order to match this fact, allow for heterogeneous priors (Morris, 1995; Patton and Timmermann, 2010)
 - Now priors partially private: underweight new public info wrt priors
 - For some calibration still get overreaction to new info $\beta_{BGMS} < 0$
- We abstract from this in dynamic model

SURVEY ANONYMITY

- We use the SPF, which is collected by the Fed anonymously
- However "According to industry experts, forecasters often seem to submit to the anonymous surveys the same forecasts they have already prepared for public" (Marinovic et al, 2013). Two reasons:
 - 1. Cost in compiling new forecasts
 - 2. Their strategic behavior could be uncovered by the editor of the anonymous survey
- Two observations supporting this claim:
 - 1. Anonymous SPF forecasts are very similar to non-anonymous Blue Chip ones (BGMS, 2020)
 - The ECB asked it directly to their SPF panelists: "When responding to the SPF, what forecast do you provide?"
 - In 2013: 18% "new forecasts", 82% "latest available"
 - In 2008 below 10%.

TARGET MOMENTS

	Mean Dispersion		С		eta_1	
	Data	Model	Data	Model	Data	Mode
Variable	(1)	(2)	(3)	(4)	(5)	(6)
Nominal GDP	1.49	1.49	0.53	0.53	-0.54	-0.54
GDP price index inflation	0.33	0.33	0.49	0.49	-0.68	-0.68
Real GDP	0.92	0.92	0.56	0.56	-0.34	-0.34
Consumer Price Index	0.31	0.31	0.49	0.49	-0.48	-0.48
Industrial production	3.71	3.71	0.50	0.50	-0.59	-0.59
Housing Start	110.04	110.04	0.49	0.49	-0.58	-0.58
Real Consumption	0.51	0.51	0.49	0.49	-0.56	-0.56
Real residential investment	27.03	27.03	0.41	0.41	-0.37	-0.37
Real nonresidential investment	7.38	7.38	0.48	0.48	-0.12	-0.12
Real state and local government consumption	1.41	1.41	0.47	0.47	-0.84	-0.84
Real federal government consumption	6.40	6.40	0.43	0.43	-0.83	-0.83
Ten-year Treasury rate	0.17	0.17	0.51	0.51	-0.47	-0.47
AAA Corporate Rate Bond	0.34	0.34	0.54	0.54	-0.61	-0.61

UNTARGETED MOMENTS

	C_{CG}		β_{BGMS}		β_2	
	Data	Model	Data	Model	Data	Model
Variable	(1)	(2)	(3)	(4)	(5)	(6)
Nominal GDP	0.66	0.71	-0.25	-0.31	0.75	0.21
GDP price index inflation	0.77	0.67	-0.35	-0.44	0.81	0.31
Real GDP	0.61	0.75	-0.10	-0.15	0.57	0.13
Consumer Price Index	0.82	0.73	-0.30	-0.24	0.67	0.16
Industrial production	0.83	0.82	-0.30	-0.22	0.79	0.26
Housing Start	0.72	0.76	-0.28	-0.28	0.78	0.23
Real Consumption	0.76	0.80	-0.26	-0.23	0.80	0.23
Real residential investment	0.45	0.72	-0.08	-0.17	0.73	0.11
Real nonresidential investment	0.45	0.52	0.08	-0.10	0.65	0.01
Real state and local government consumption	0.61	0.85	-0.48	-0.41	0.91	0.45
Real federal government consumption	1.30	0.89	-0.56	-0.35	0.93	0.37
Ten-year Treasury rate	1.01	0.59	-0.22	-0.38	0.76	0.09
AAA Corporate Rate Bond	1.03	0.62	-0.27	-0.48	0.83	0.18

POSTED AND HONEST GAIN

	Gain			Consensus MSE			
	Posted	Honest	Ratio	Posted	Honest	Ratio	
Variable	(1)	(2)	(3)	(4)	(5)	(6)	
Nominal GDP	0.53	0.40	0.76	0.49	1.07	2.19	
GDP price index inflation	0.49	0.32	0.66	0.05	0.14	2.92	
Real GDP	0.56	0.49	0.88	0.78	1.14	1.47	
Consumer Price Index	0.49	0.40	0.82	0.23	0.36	1.58	
Industrial production	0.50	0.44	0.87	3.51	5.11	1.46	
Housing Start	0.49	0.40	0.82	69.95	115.75	1.65	
Real Consumption	0.49	0.42	0.86	0.46	0.68	1.49	
Real residential investment	0.41	0.36	0.87	29.60	40.95	1.38	
Real nonresidential investment	0.48	0.43	0.90	4.12	5.30	1.29	
Real state and local government consumption	0.47	0.40	0.86	0.54	0.81	1.51	
Real federal government consumption	0.43	0.39	0.90	5.96	7.49	1.26	
Ten-year Treasury rate	0.51	0.33	0.64	0.04	0.11	2.55	
AAA Corporate Rate Bond	0.54	0.29	0.54	0.04	0.14	3.75	

POSTED AND HONEST DISPERSION

	Dispersion			
	Posted	Honest	Ratio	
Variable	(1)	(2)	(3)	
Nominal GDP	1.49	0.29	0.19	
GDP price index inflation	0.33	0.02	0.06	
Real GDP	0.92	0.41	0.44	
Consumer Price Index	0.31	0.08	0.27	
Industrial production	3.71	0.60	0.16	
Housing Start	110.04	18.10	0.16	
Real Consumption	0.51	0.09	0.18	
Real residential investment	27.03	10.76	0.40	
Real nonresidential investment	7.38	6.01	0.82	
Real state and local government consumption	1.41	0.02	0.02	
Real federal government consumption	6.40	0.14	0.02	
Ten-year Treasury rate	0.17	0.05	0.27	
AAA Corporate Rate Bond	0.34	0.04	0.11	

ESTIMATED PARAMETERS

	ρ	$\sqrt{\frac{\xi}{\nu}}$	$\sqrt{\frac{\xi}{\tau}}$	λ
Variable	(1)	(2)	(3)	(4)
Nominal GDP	0.93	1.48	1.70	0.74
GDP price index inflation	0.93	1.60	2.13	0.88
Real GDP	0.80	1.30	1.36	0.47
Consumer Price Index	0.78	1.38	1.60	0.61
Industrial production	0.85	1.28	1.86	0.68
Housing Start	0.85	1.38	1.81	0.70
Real Consumption	0.87	1.33	1.84	0.67
Real residential investment	0.89	1.56	1.74	0.49
Real nonresidential investment	0.89	2.37	1.28	0.25
Real state and local government consumption	0.89	1.32	2.79	0.90
Real federal government consumption	0.80	1.29	2.90	0.87
Ten-year Treasury rate	0.83	1.81	1.56	0.72
AAA Corporate Rate Bond	0.85	1.76	1.82	0.87

Public information in forecasts

- We provide evidence on the importance of public information in survey forecasts
- We compare
- (1) CG 2015's estimate of new info weight G
 - ▶ Regress consensus forecast error on forecast revisions
 - ▶ Biased by public information: $\hat{G}_{CG} > G$
- (2) Goldstein 2021's estimate of new info weight G
 - ► Regress forecast revision dispersion on prior dispersion
 - **Problem** Robust to public information: $\hat{G}_{Goldstein} = G$
 - The difference is informative about importance of public information in forecast

Public information in forecasts

Notes: Panel regression with individual fe. Standard errors are corrected for heteroskedasticity and autocorrelation as in Vogelsang (2012). Confidence intervals reported at 10% significance level.