Intergenerational Effects of Sick Leave on Child Human Capital

Julie Riise (UiB), Barton Willage (Uni Colorado, Denver), Alexander Willén (NHH)

Research question(s)

- Is the human capital development of children affected by parental takeup of employment protection and income replacement programs?
- More concretely: How does certified, paid sick leave affect school outcomes of children, at the extensive and intensive margins?
- Which mechanisms are at play?

Paper in short:

- We create a sick leave leniency measure using conditional exogenous GP swaps
 - and find large variation especially related to hard-to-verify conditions with unclear benefit from sick leave
- We estimate the effect of a parental swap to a more lenient GP on the child's human capital development
- We investigate whether the timing of the parental swap (age of the child) matters
- We examine an arguably important channel: the effect on the parent's attachment to the labour market and take-up of welfare services
- We conclude that the total effect on children's human capital is negative both on quality and quantity

Literature

- No(?) literature on possible intergenerational impact of certified sick leave
- Some literature on direct effect of sick leave on workers
 - e.g. Markussen et al. (2012), Fevang et al. (2014), Markussen and Røed (2017), Pichler and Ziebarth (2020), Godøy and Dale-Olsen (2018)
- A number of observational studies of the effect of parental welfare utilization on children
 - Black and Deveraux (2011), Bratsberg & Røed (2015), Bratberg, Nilsen & Vaage (2015), Antel (2021).
- Small but interesting literature on intergenerational transmission of dependence of welfare programs
 - e.g. Dahl et al. (2014), Dahl and Gielen (2021), Hartley et al. (2017)

The GP system and Norwegian sick leave - essentials

- GPs are the first point of contact with the health care system
 - Initial examinations, diagnoses, treatments, prescription of medications, referral to specialists, and sick leave certification
- You will need to get your sick leave certified by a GP if you are away from work more than 3 (8) days
- Sick leaves are 100% compensated from day one
 - Up to 1 year, cap of around 60000 £ per year
- Every GP has a list of patients, every Norwegian has the right to be assigned to a GP's list

GP assignments

- When a GP quits, retires, moves or reduces his/her patient list
 - Often, the entire list is transferred (we don't use these swaps), but when not:
 - Patients are randomly assigned to a new GP in the municipality, conditional on availability
- There are two important aspects of this process:
 - In the event of list reductions, patients to be removed are randomly drawn
 - When reassigning patients, which patient goes to which new GPs are randomly drawn
- We use this randomization as our source of exogenous variation
 - Also, we provide extensive balance tests to show that this happens in practice
- Patients are allowed to endogenously change GP twice a year.
 - We don't use these swaps.

Empirical approach

- 1. Estimate coefficients of new GP dummy variables #sickdays 1 year after swap
 - Controlling for previous GP, age at swap, time of swap, gender and sick leave in previous year
- 2. Construct a continuous standardized measure of leniency (mean:0, SD 1)
- 3. Regress child/parental outcomes of interest on the standardised leniency measure
 - Controlling for previous GP, age at swap, time of swap, gender and sick leave in previous year

- Leave-one-out design to avoid mechanical effects
- Based on linked administrative register data

Leniency measure

• Raw variation in sick leave and **pre-standardized** leniency

• More heterogeneity related to hard to verify causes

Identification

- Identifying assumption: GP leniency is not correlated with patient characteristics that can affect outcomes of interest
- We regress the GP leniency measure on 20+ different pre-characteristics
 - Health, labour market, education, family situation, partner outcomes
 - Small and non-significant
- We regress the GP leniency measure on all simultaneously
 - Non-significant

- Child outcomes are measured only once, but for parental outcomes we have multiple observations over time
- => apply a diff-in-diff model using within individual variation
 - Gives both qualitatively and quantitatively similar results
- => use this variation in an event study set-up to look at trends in parental outcomes
 - No differences in pre-trends
- Placebo on those 21-25 when shock hits
 - No effects (small and insign.)

Could we be picking up something else about the GPs?

- We correlate the GP leniency measure with:
 - Short- and long-term mortality at the patient level
 - Other GP practice characteristics at the doctor level
 - GP value added
 - Likelihood that the GP conducts check-ups with the patient
 - Inpatient visits and ER visits of the patient
- No correlation => confident that we measure effect of getting assigned a GP that is more lenient in certifying sick leave

Child outcomes

	(1)	(2)	(3)	(4)	(5)	(6)
	GPA,	GPA,	Academic		Start	
	Gr 8-10	Gr 11-13	Track	HS Grad	College	Years of Ed
Leniency SD	-0.013**	-0.014***	-0.000	-0.008***	-0.008***	-0.032***
	(0.004)	(0.003)	(0.002)	(0.002)	(0.002)	(0.009)
Dep Mean	4.139	3.988	0.743	0.653	0.614	12.626
Ν	312,357	459,004	256,157	322,395	451,122	322,395

Note: * p<0.05, ** p<0.01, *** p<0.001.

The table presents the OLS estimates of the effect of GP sick note leniency. Estimating equation: $w_{ijkt} = \beta LeniencySD_j + \pi_k + \theta_{it} + \varepsilon_{ijkt}$, where w_{ijkt} is the outcome at the top of the column, LeniencySD_j is a standardized continuous measure of GP sick note leniency, π_k are previous GP FE, and θ_{it} is a vector of controls (sick leave days the year before swap, patient age, and patient sex). Displayed estimates are the coefficient β , the effect of a 1 SD increase in GP sick note leniency.

Standard errors in parentheses clustered at GP level.

Child outcomes, variation by age of exposure (swap)

Panel A: Lower Secondary GPA				
	(1)	(2)	(3)	(4)
	Age 3-8	Age 9-11	Age 12-14	Age 15-16
Leniency SD	-0.011	-0.016*	-0.012	-0.020**
	(0.007)	(0.007)	(0.007)	(0.007)
Dep Mean	4.225	4.159	4.125	4.094
Ν	52,297	72,823	101,885	83,452
Panel B: Start College				_
	(1)	(2)	(3)	(4)
	Age 3-8	Age 9-11	Age 12-14	Age 15-16
Leniency SD	-0.010	-0.011*	-0.012**	-0.013**
	(0.007)	(0.005)	(0.004)	(0.005)
Dep Mean	0.504	0.529	0.558	0.571
Ν	13,759	47,065	78,829	69,166

 Table 5: Effect Variation by Age of Exposure, Lower Secondary GPA and Start College

Note: * p<0.05, ** p<0.01, *** p<0.001.

The table presents the OLS estimates of the effect of GP sick note leniency. Estimating equation: $w_{ijkt} = \beta LeniencySD_j + \pi_k + \theta_{it} + \varepsilon_{ijkt}$, where w_{ijkt} is the outcome at the top of the column, $LeniencySD_j$ is a standardized continuous measure of GP sick note leniency, π_k are previous GP FE, and θ_{it} is a vector of controls (sick leave days the year before swap, patient age, and patient sex). Displayed estimates are the coefficient β , the effect of a 1 SD increase in GP sick note leniency. Standard errors in parentheses clustered at GP level.

Parental outcomes 2 years after swap

D 14 L 1		of market and	Survey river o	410011105, 2 1 00	a i ost Enpos	are
Panel A: Labor	Market					
	(1)	(2)				
	Employed	Earnings				
Leniency SD	-0.000	-5052.7***				
	(0.001)	(1499.6)				
Dep Mean	0.970	537203.7				
Ν	205,991	205,991				
Panel B: Safety	v Net					
	(1)	(2)	(3)	(4)	(5)	(6)
	Any	UI	Any	DI	Any	Total
	UI	Level	DI	Level	Benefits	Benefits
Leniency SD	0.003*	284.364	0.001	235.056	0.006**	2270.762***
·	(0.001)	(145.127)	(0.001)	(138.278)	(0.002)	(487.125)
Dep Mean	0.046	3375.965	0.021	3722.960	0.675	54832.837
N	205,991	205,991	205,991	205,991	205,991	205,991

Table 8: Effect on Own Labor Market and Safety Net Outcomes, 2 Year Post Exposure

Note: * p<0.05, ** p<0.01, *** p<0.001.

The table presents the OLS estimates of the effect of GP sick note leniency. Estimating equation: $w_{ijkt} = \beta LeniencySD_j + \pi_k + \theta_{it} + \varepsilon_{ijkt}$, where w_{ijkt} is the outcome at the top of the column, $LeniencySD_j$ is a standardized continuous measure of GP sick note leniency, π_k are previous GP FE, and θ_{it} is a vector of controls (sick leave days the year before swap, patient age, and patient sex). Displayed estimates are the coefficient β , the effect of a 1 SD increase in GP sick note leniency. Standard errors in parentheses clustered at GP level.

Parental outcomes 5 years after swap

Table 9: Long-Run Earnings and Welfare, 5 Year Post Exposure				
(1)	(2)			
Earnings	Total Benefits			
-4893.167* (1925.122)	983.469* (490.540)			
551023.858 175.967	51786.526 175.967			
	(1) Earnings -4893.167* (1925.122) 551023.858 175,967			

Note: * p<0.05, ** p<0.01, *** p<0.001.

The table presents the OLS estimates of the effect of GP sick note leniency. Estimating equation: $w_{ijkt} = \beta LeniencySD_j + \pi_k + \theta_{it} + \varepsilon_{ijkt}$, where w_{ijkt} is the outcome at the top of the column, $LeniencySD_j$ is a standardized continuous measure of GP sick note leniency, π_k are previous GP FE, and θ_{it} is a vector of controls (sick leave days the year before swap, patient age, and patient sex). Displayed estimates are the coefficient β , the effect of a 1 SD increase in GP sick note leniency.

Standard errors in parentheses clustered at GP level.

Discussion of mechanisms

- Reduced labour market attachment and income + increased take-up of other welfare services
 - In sum: Negative effects on parent's economic resources
- BUT, the timing of the shock matters shocks in early years do not seem to give clear/as big negative effects on human capital (measured at age 16+)
- Would expect the effect of reduced labour market attachment and economic resources to be stronger the longer exposed, but no clear signs of this
- Stress, worrying, role modelling something like that around the critical measurement time (end of lower secondary school) does likely also play a role

Robustness/sample checks

- Adjustment with shrinkage factor
 - To adjust for potential measurement error
 - Effects increase slightly
- Dropping children with same exogenous swap as parent
 - No difference
- Restrict to parents using sick leave the year before swap
 - To avoid results being affected by never-takers
 - Larger effects

Specification checks

- Leave out each of the controls in turn
- PSM common support
- Random inference P-values
- Leave out one year at the time
- Leave out one county at the time
- Dropping GPs with very few new assigned patients
- => everything seems solid :)

Concluding remarks I

- Employment protection and income replacement programs play an important role not only for the focal workers, but also in their children's lives.
- We find sizable negative effects of parental sick leave on the child's human capital development and that the timing matters
- Sick leave induces parents to be more likely to find themselves outside the workforce, earn lower wages, and become more dependent on the social safety net.
- Also probably a story of increased stress and/or change of role models

Concluding remarks II

- Conventional social protection policies designed to help individual workers can generate important spillovers to their children.
- In our study negative spillovers were bigger than potential positive spillovers
 - Important to investigate the mechanisms and their relative magnitude further
- Our results imply that the cost of these policies is likely larger than previously thought

Thank you!

julie.riise@uib.no

