Market Power when Ideas get Harder to Find: A Theory of Directed Innovation

Julian Schärer (University of Zurich, University of Geneva)

EEA-ESEM 2023

31 August, 2023

Ideas are getting harder to find (Bloom et al., 2020)

Scope	Time period	Average annual growth rate (%)	Half-life (years)	Dynamic diminishing returns, β 3.1	
Aggregate economy	1930-2015	-5.1	14		
Moore's Law	1971-2014	-6.8	10	0.2	
Semiconductor TFP growth	1975-2011	-5.6	12	0.4	
Agriculture, US R&D	1970-2007	-3.7	19	2.2	
Agriculture, global R&D	1980-2010	-5.5	13	3.3	
Corn, version 1	1969-2009	-9.9	7	7.2	
Corn, version 2	1969-2009	-6.2	11	4.5	
Soybeans, version 1	1969-2009	-7.3	9	6.3	
Soybeans, version 2	1969-2009	-4.4	16	3.8	
Cotton, version 1	1969-2009	-3.4	21	2.5	
Cotton, version 2	1969-2009	+1.3	-55	-0.9	
Wheat, version 1	1969-2009	-6.1	11	6.8	
Wheat, version 2	1969-2009	-3.3	21	3.7	
New molecular entities	1970-2015	-3.5	20		
Cancer (all), publications	1975-2006	-0.6	116		
Cancer (all), trials	1975-2006	-5.7	12		
Breast cancer, publications	1975-2006	-6.1	11		
Breast cancer, trials	1975-2006	-10.1	7		
Heart disease, publications	1968-2011	-3.7	19		
Heart disease, trials	1968-2011	-7.2	10		
Compustat, sales	3 decades	-11.1	6	1.1	
Compustat, market cap	3 decades	-9.2	8	0.9	
Compustat, employment	3 decades	-14.5	5	1.8	
Compustat, sales/employment	3 decades	-4.5	15	1.1	
Census of Manufacturing	1992-2012	-7.8	9		

TABLE 7—SUMMARY OF THE EVIDENCE ON RESEARCH PRODUCTIVITY

Source: Bloom et al. (2020)

Other Macro trends since 1980s:

- Rise of market power (De Loecker et al., 2020: US markups 1)
- Declining business dynamism (firm entry ↓, share of young firms ↓, firm size ↑)

This paper:

- Schumpeterian firm dynamics with search & directed innovation
- Prediction: in *ideas get harder to find* environment, market power should rise
- This and other predictions: all in line with data
- Key ingredient: **directed innovation**

Why innovation seems to be directed

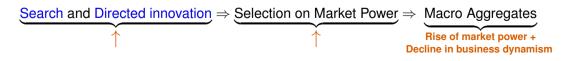
Recent evidence: product market dominance deters firm entry

- Argente et al. (2021): patenting by leaders \rightarrow less innovation by competitors/entrants
- Galasso and Schankerman (2015): invalidation of focal patent leads to more citations
 - effect starts after 2 years consistent with more entry and cumulative innovation

 \Rightarrow Firm entry & innovation are **directed** rather than undirected

Model in a nutshell

Market-specific rate of creative destruction = $Pr(success|innovation) \times Pr(innovation)$


- 1. With probability > 0, each innovation cannot build on leader's technology
 - Build on follower instead
 - ► The larger the leader-follower gap, the lower the likelihood of overtaking the leader
- 2. Search and Directed innovation
 - Choose sample size of market search, then target one and do R&D
 - Firms with high leader-follower gaps are targeted less than low-gap firms

Search and Directed innovation \Rightarrow Selection on Market Power \Rightarrow Macro Aggregates

Ideas get harder to find

Market-specific rate of creative destruction = $Pr(success|innovation) \times Pr(innovation)$

- 1. With probability > 0, each innovation cannot build on leader's technology
 - Build on follower instead
 - ► The larger the leader-follower gap, the lower the likelihood of overtaking the leader
- 2. Search and Directed innovation
 - Choose larger sample size of market search, then target one and do R&D
 - Firms with high leader-follower gaps are targeted even less than low-gap firms

Related literature

Schumpeterian growth theory

- Aghion & Howitt (1992)
- Grossman & Helpman (1991)

Schumpeterian firm dynamics

Klette & Kortum (2004)

Step-by-step innovation

• Aghion et al. (1997)

Endogenous markup distribution

• Peters (2020)

Market power, dynamism & growth: explanations

- Decline in knowledge diffusion: Akcigit & Ates (2021)
- Concentration and defensive R&D: Manera (2021)
- Role of IT: Aghion et al. (2021)
- Role of intangibles: De Ridder (2020)
- Declining interest rates: Liu et al. (2020)
- Declining population growth: Peters & Walsh (2021)

Decline in research productivity

• Bloom et al. (2020)

Rise of market power

• De Loecker et al. (2020)

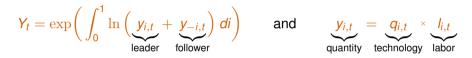
Model

Model environment I

• Preferences:

$$U_0 = \int_0^\infty e^{-
ho t} \ln(C_t) \, dt$$

• All output is consumed:

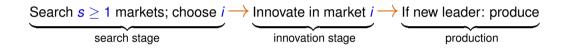

$$C_t = Y_t$$

• Labor supplied inelastically to firms *f* and entrants *e*,

$$\int_{f} \left(\underbrace{L_{P,f,t}}_{\text{production}} + \underbrace{L_{S,f,t}}_{\text{search}} + \underbrace{L_{R\&D,f,t}}_{R\&D} \right) df + \underbrace{\mathcal{M}_{0,t} \times L_{e,t}}_{\text{entrant labor}} = L$$

Model environment II

• Final good and intermediate products $i \in [0, 1]$:



- Bertrand competition \Rightarrow markup = gap,
- Only leaders produce and make profits:

$$\mu_{i,t} = rac{q_{i,t}}{q_{-i,t}} \ge 1$$
 $\Pi_t(\mu_i) = \left(1 - rac{1}{\mu_i}\right) Y_t$

 \Rightarrow gap μ_i is payoff-relevant for market *i*

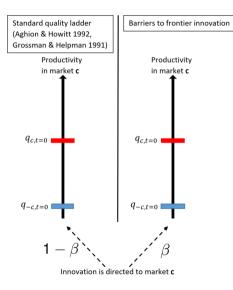
Timing

Two innovation-related decisions:

- 1. Sample size s: search intensity
- 2. Arrival rate of innovations

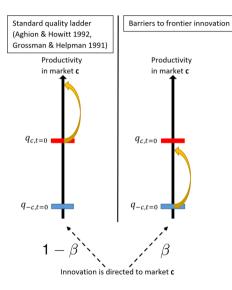
Timing

Two innovation-related decisions:


- 1. Sample size s: search intensity
- 2. Arrival rate of innovations

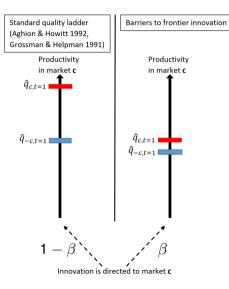
Innovation stage

Barriers to frontier innovation:


- With probability $\beta \in (0, 1)$, only build on follower's technology
- Microfoundations: strategic patents, trade secrets, slow technology diffusion

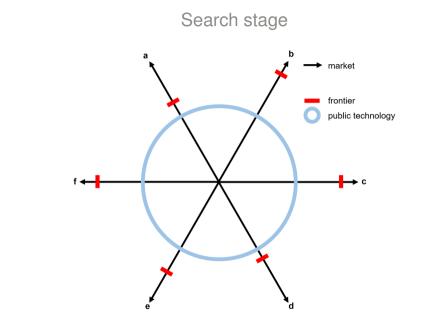
Innovation stage: high-gap market

▶ low-gap market

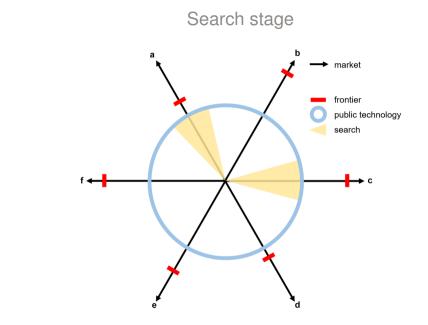

Innovation stage: high-gap market

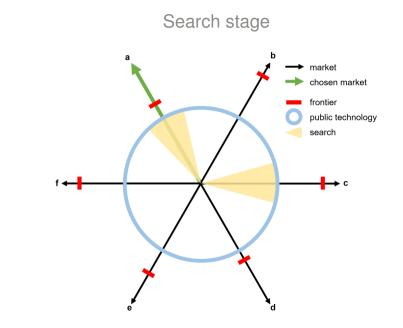
10/18

🗸 🕺 🗡


▶ low-gap market

10/18


Timing



 \Rightarrow search markets to target a less dominant (low-gap) leader

12/18

Full model: Firm dynamics à la Klette & Kortum (2004)


- Innovation by entrants and incumbents
- Firm size distribution

Simplified model: Standard quality ladder à la Grossman & Helpman (1991)

- Innovation by entrants
- 1-product firms

Entry

- Free entry
- Labor to search *s* markets and generate 1 innovation:

- η : search elasticity
- ϕ : search productivity
- θ : research productivity

free entry condition

Steady state

Assumption: Innovation steps drawn from $\sim Pareto(\alpha)$

Proposition

Stationary distribution of leader-follower gaps μ is $\sim \text{Pareto}(\frac{\alpha}{s^*})$,

graphical proof

$$\mathit{cdf}(\mu) = \mathsf{1} - \mu^{-rac{lpha}{s^*}}$$

Proposition

Optimal search intensity is

$$oldsymbol{s^*} = \left(rac{\phi/ heta}{4/eta-2-\eta}
ight)^\eta$$

 \Rightarrow Decline in research productivity ($\theta \downarrow$) incentivizes more search: $s^* \uparrow$

Parametrization of pre-1980s (full model)

Assigned	Value	Description
ρ	0.01	Discount rate
eta	0.5	Barriers to frontier innovation
η	0.5	Search elasticity
γ	0.5	Incumbent R&D elasticity
δ	0.7	Entry externality
L	1	Size of labor force (normalized)

Estim	ated Value	Description	Key moment	Model	Data
$ ilde{ heta}$	0.63	Incumbent R&D productivity	TFP growth	0.0182	0.0182
heta	0.45	Entrant R&D productivity	Entrants' % TFP growth	0.25	0.25
lpha	13.2	Pareto shape of innovations	Firm entry rate	0.13	0.13
ϕ	25.2	Search productivity	Average markup	1.1	1.1

What caused the macro trends since the 1980s?

Find support for 2 explanations:

- 1. **Declining research prod.** $(\theta \downarrow, \tilde{\theta} \downarrow) \Rightarrow$ can explain sign + magnitude of effects
- 2. Barriers to frontier innovation ($\beta \uparrow$) \Rightarrow can explain sign of effects, but not magnitude

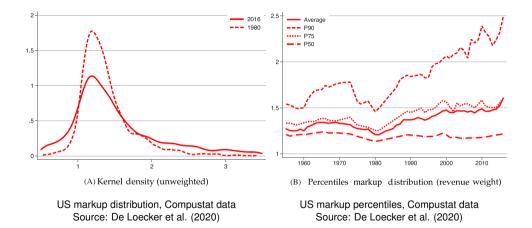
Today vs. pre-1980s: Decline in research productivity

- Optimal to search more markets ⇒ more selection, more market power
 - 1. Higher markups & dispersion, higher profit share
- R&D? Higher profit share dominates lower research productivity
 - 2. Higher % of R&D workers 🗸
- Growth? Decline in research productivity dominates increase of R&D workers
 - 3. Productivity growth slows down 🗸
 - 4. Less firm entry 🗸
- Firm size? Entrants' innovation rate drops more than incumbents'
 - 5. Larger and older firms 🗸

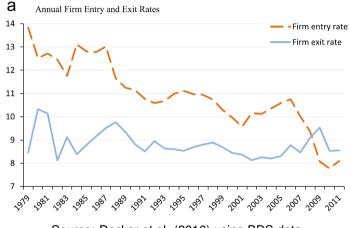
Implications of research productivity \downarrow by 75%

				Change		
	pre-1980 s.s.	2010 s.s.	Model	Data	Sign	Model/Data
Targeted moments						
TFP growth	0.0182	0.0096	-47%	-72%	\checkmark	65 %
Entrants' % TFP growth	0.25	0.206	-18%	-	-	-
Firm entry rate	0.13	0.064	-51%	-39%	\checkmark	131%
Average markup	1.1	1.15	+4.5%	+7%	\checkmark	64 %
Untargeted moments						
Average firm size	2.16	2.44	+13%	+15%	\checkmark	87%
Profit share	0.041	0.084	+105%	+75%	\checkmark	140%
R&D workers/labor force	0.076	0.086	+13%	+50%	\checkmark	26 %

Conclusions

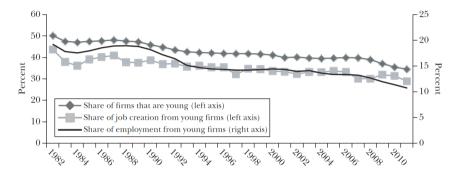

- Directed innovation matters for the macroeconomy, market power and growth
- Ideas got harder to find (Bloom et al. 2020) is a unified explanation for macro trends

Thank you for your attention!

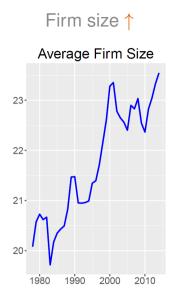

comments: julian.schaerer@econ.uzh.ch

Appendix

Markups increased, especially at the top


Firm entry rate ↓

Source: Decker et al. (2016) using BDS data


Share of young firms \downarrow

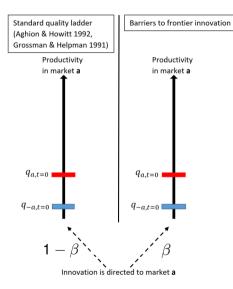
Declining Share of Activity from Young Firms (Firms Age 5 or Less)

Source: Author calculations from the US Census Bureau's Business Dynamics Statistics.

Source: Decker et al. (2014)

Number of workers per firm. Source: Hopenhayn et al. (2018) using BDS data

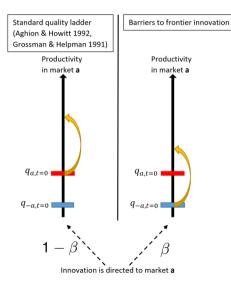
22/18

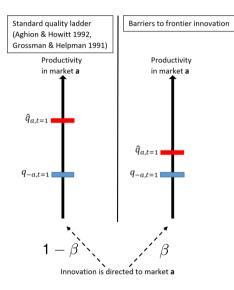

Research productivity ↓

Scope	Time period	Average annual growth rate (%)	Half-life (years)	Dynamic diminishing returns, β	
Aggregate economy	1930-2015	-5.1	14	3.1	
Moore's Law	1971-2014	-6.8	10	0.2	
Semiconductor TFP growth	1975-2011	-5.6	12	0.4	
Agriculture, US R&D	1970-2007	-3.7	19	2.2	
Agriculture, global R&D	1980-2010	-5.5	13	3.3	
Corn, version 1	1969-2009	-9.9	7	7.2	
Corn, version 2	1969-2009	-6.2	11	4.5	
Soybeans, version 1	1969-2009	-7.3	9	6.3	
Soybeans, version 2	1969-2009	-4.4	16	3.8	
Cotton, version 1	1969-2009	-3.4	21	2.5	
Cotton, version 2	1969-2009	+1.3	-55	-0.9	
Wheat, version 1	1969-2009	-6.1	11	6.8	
Wheat, version 2	1969-2009	-3.3	21	3.7	
New molecular entities	1970-2015	-3.5	20		
Cancer (all), publications	1975-2006	-0.6	116		
Cancer (all), trials	1975-2006	-5.7	12		
Breast cancer, publications	1975-2006	-6.1	11		
Breast cancer, trials	1975-2006	-10.1	7		
Heart disease, publications	1968-2011	-3.7	19		
Heart disease, trials	1968-2011	-7.2	10		
Compustat, sales	3 decades	-11.1	6	1.1	
Compustat, market cap	3 decades	-9.2	8	0.9	
Compustat, employment	3 decades	-14.5	5	1.8	
Compustat, sales/employment	3 decades	-4.5	15	1.1	
Census of Manufacturing	1992-2012	-7.8	9		

TABLE 7—SUMMARY OF THE EVIDENCE ON RESEARCH PRODUCTIVITY

Source: Bloom et al. (2020)


Innovation stage: low-gap market


return

24/18

Innovation stage: low-gap market

$\checkmark \qquad (\checkmark)$

24/18

Firms

A firm *j* is the collection $\mathcal{I}(j)$ of markets (or product lines) in which *j* is the leader

- Payoff-relevant state variable: $\{\mu_i\}_{i \in \mathcal{I}(j)}$
- Firm size $n_j = |\mathcal{I}(j)|$

Firm dynamics

- Grow if innovate in a line operated by another firm
- Shrink if other firms/entrants innovate in a line $i \in \mathcal{I}(j)$
- Exit if last product is lost
- New firms enter with 1 product

✓ return

Firm Problem I

To search a sample of *s* markets at rate *x*, need to employ

$$L_{\mathcal{S}}(\boldsymbol{s},x) = x \frac{1}{\phi} \eta \boldsymbol{s}^{rac{1}{\eta}}$$

- $\eta \in (0, 1)$: search elasticity
- ϕ : search productivity

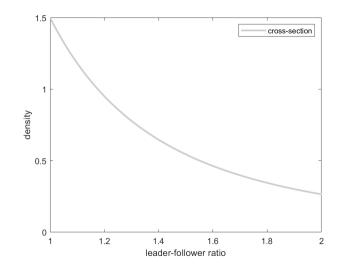
✓ return

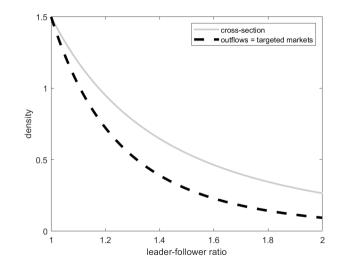
Firm Problem II

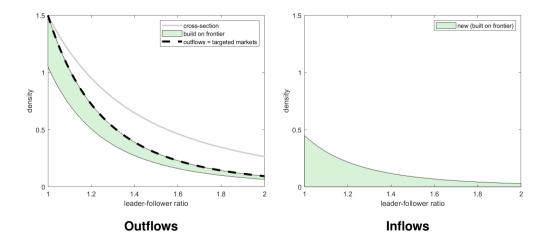
To innovate at rate x, a size-n firm needs to employ

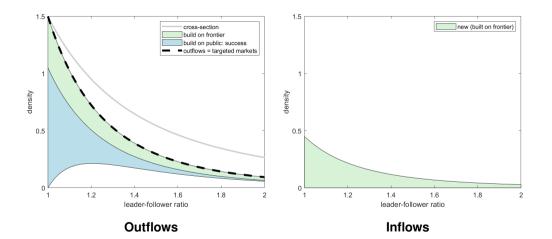
$$L_{R\&D}(x|n) = rac{1}{\widetilde{ heta}} \gamma x^{rac{1}{\gamma}} n^{rac{\gamma-\gamma}{\gamma}}$$

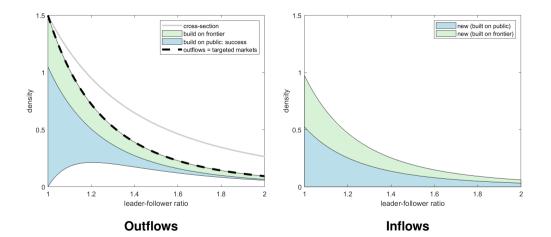
- $\gamma \in (0, 1)$: innovation elasticity
- $\tilde{\theta}$: incumbent research productivity
- Can show: innovation intensity per product, $\tilde{x} \equiv x/n$, is the same for all firms

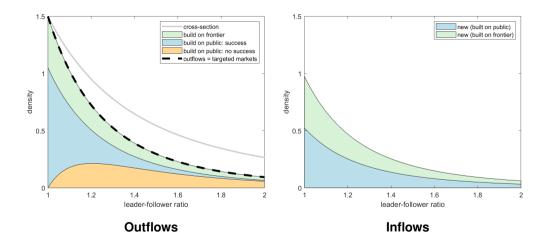

return

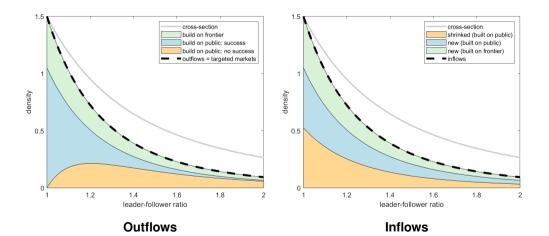

Free entry condition

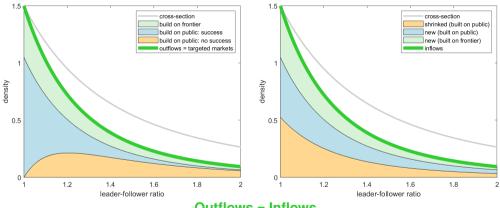

Free entry condition determines mass of entrants \mathcal{M}_0 :

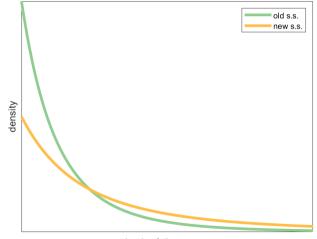

$$0 = \max_{s} \left(\underbrace{1 - \beta + \beta \operatorname{Pr}(\operatorname{innov} > \operatorname{gap}(s))}_{\operatorname{Pr}(\operatorname{success}|\operatorname{innov}), \uparrow \operatorname{in} s} \right) \times \underbrace{\mathbb{E}(V_{\operatorname{new}})}_{\downarrow \operatorname{in} \mathcal{M}_{0}} - \underbrace{L_{e}(s)}_{\uparrow \operatorname{in} s} \times wage$$


return to entry specification









Outflows = Inflows

Effect of more search on gap distribution

leader-follower gap

Productivity growth: new vs. old steady state

$$g = \underbrace{\left(\tilde{x} + \mathcal{M}_{0}\right)}_{\text{declines}} \times \underbrace{\Pr(\text{success})}_{=\left(1 - \frac{\beta}{2}\right), \text{ constant}} \times \underbrace{\mathbb{E}\left(\ln(\text{StepSize})\right)}_{=\frac{1}{\alpha}, \text{ constant}}$$

(where \mathcal{M}_0 is the mass of entrants in the full model)

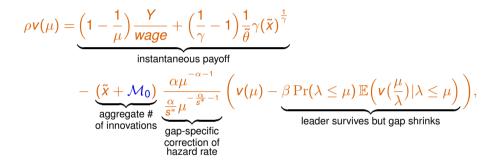
✓ return

Product value function in steady state I

- Define $v_t(\mu) \equiv \frac{V_t(\mu)}{wage_t}$ as product value normalized by the wage
- $v_t(\mu) = v(\mu)$ constant in steady state
- It holds $\forall \mu \geq 1$:

$$\rho \mathbf{v}(\mu) = \underbrace{\left(1 - \frac{1}{\mu}\right) \frac{\mathbf{Y}}{\mathbf{wage}} + \left(\frac{1}{\gamma} - 1\right) \frac{1}{\tilde{\theta}} \gamma(\tilde{\mathbf{x}})^{\frac{1}{\gamma}}}_{\text{instantaneous payoff:}}}_{\text{instantaneous payoff:}} - \underbrace{\left(\tilde{\mathbf{x}} + \mathcal{M}_{0}\right)}_{\text{aggregate $\#$}} \underbrace{\frac{\alpha \mu^{-\alpha - 1}}{\frac{s^{\ast} \mu}{s^{\ast} - 1}}}_{\text{gap-specific correction of hazard rate}} \left(\mathbf{v}(\mu) - \underbrace{\beta \Pr(\lambda \leq \mu) \mathbb{E}\left(\mathbf{v}(\frac{\mu}{\lambda}) | \lambda \leq \mu\right)}_{\text{leader survives but gap shrinks}}\right),$$

Product value function in steady state II


Product value for $\mu = 1$ simplifies to

$$m{v}(1) = \Big(rac{1}{\gamma} - 1\Big) rac{1}{ ilde{ heta}} \gamma(ilde{x})^{rac{1}{\gamma}} - ig(ilde{x} + \mathcal{M}_0ig) \,m{s}^* \,m{v}(1)$$

• To solve for $v(\mu)$ for all $\mu > 1$, "unravel from below"

Solving for \mathcal{M}_0

Product value function $\forall \mu \geq 1$:

Free entry condition reads

$$\left(1-rac{eta}{2}
ight)\mathbb{E}(oldsymbol{v_{new}})=rac{1}{\phi}\etaoldsymbol{s}^{*rac{1}{\eta}}+rac{1}{ heta}(\mathcal{M}_0)^{\delta}$$

where we know the formula for $s^* \Rightarrow \text{Easy}_{35/18}$ to solve for \mathcal{M}_0 numerically