Debt Moratorium: Theory and Evidence

Yasin Kürşat Önder Mauricio Villamizar Jose A. Villegas
Ghent University Central Bank of Colombia Ghent University

MOTIVATION, WHY IS IT IMPORTANT?

- Debt moratorium, refers to stipulating payment suspensions or extending the maturity of debt instruments.

MOTIVATION, WHY IS IT IMPORTANT?

- Debt moratorium, refers to stipulating payment suspensions or extending the maturity of debt instruments.
- One of the oldest policy recommendations, references in Abrahamic religions.
- "IF it is difficult for someone to repay a debt, postpone it until a time of ease." -Qur'an 2:280

MOTIVATION, WHY IS IT IMPORTANT?

- Debt moratorium, refers to stipulating payment suspensions or extending the maturity of debt instruments.
- One of the oldest policy recommendations, references in Abrahamic religions.
- "IF it is difficult for someone to repay a debt, postpone it until a time of ease." -Qur'an 2:280
- A world of record-high debt levels, both public and private
- Navigating such world record of debt levels is now at the forefront of macroeconomic debates. Debt moratorium plays a central role in these discussions.

MORATORIUM POLICIES (COVID-19)

What DO WE DO?

Three things:

(1) Provide a theoretical explanation with a three period model
(2) Investigate the impact of debt moratorium policy

- Provide causal evidence using highly granular loan level Colombian data (new)
- Propose an identification strategy (new)
(3) A quantitative model, variables that cannot be otherwise studied and extend it for policy analysis.(newish)

Preview of Our Main Findings

(1) Theory predicts different effects when accounting default risk as supply elasticities change.
(2) A causal link is established for stressed and non-stressed firms.
(3) Long-run indebtedness and default rise. Yet, if the policy can be designed to stipulate debt forgiveness (or at least interest rates are not accrued), then larger welfare gains can be attained by reducing default risk.

Simple three-period model

A THREE-PERIOD MODEL ENVIRONMENT

(1) One-good, closed economy with competitive lenders and firms.
(2) Firms have zero endowment in the first period, that is, $y_{1}=0$ and they discount the future at rate $\beta<1$ while banks discount rate is taken to be unity for simplicity.
(0) The utility function for both the bank and the firm is assumed to take the quasi-linear form, that $u(c)=A c$ for the initial period and $v(c)=A c-\frac{\phi}{2} c^{2}$ with $A>\phi>0$.
(9) With a probability π, a liquidity shock ℓ hits. With the policy in place, payments are deferred to the next period.

Firm's Problem

- The maximization problem of the firm without the debt moratorium policy can be written as

$$
\begin{aligned}
& \max _{b} \underbrace{u(q b)}_{t_{1}}+\beta \underbrace{\left[(1-\pi) v\left(1-\frac{b}{2}\right)+\pi v\left(1-\frac{b}{2}-\ell\right)\right]}_{t_{2}} \\
& +\beta \underbrace{\left[(1-\pi) v\left(1-\frac{b}{2}\right)+\pi v\left(1-\frac{b}{2}+\ell\right)\right]}_{t_{3}} \\
& \text { subject to } c \geq 0 .
\end{aligned}
$$

- FOC, demand curve for firms

$$
\begin{equation*}
b(q): 2 \frac{A(q-\beta)+\beta \phi}{\beta \phi} . \tag{2}
\end{equation*}
$$

WITH THE POLICY

- The maximization problem of the firm with the debt moratorium policy

$$
\begin{aligned}
& \max _{b^{p}} u\left(q b^{p}\right)+\beta[(1-\pi) v\left(1-\frac{b^{p}}{2}\right)+\overbrace{\pi v(1-\ell)]}^{\text {Payments deferred }}+ \\
& \beta[(1-\pi) v\left(1-\frac{b^{p}}{2}\right)+\underbrace{\left.\pi v\left(1+\ell-b^{p}\right)\right]}_{\text {Deferred payments are paid }} \\
& \text { subject to } c \geq 0 .
\end{aligned}
$$

New demand curve with the policy:

$$
\begin{equation*}
b^{p}(q): 2 \frac{A(q-\beta)+\beta \phi}{\beta \phi}+\beta \frac{\pi(A-\phi)+\pi \phi \ell}{\beta \phi} . \tag{4}
\end{equation*}
$$

LENDERS' PROBLEM

- The maximization problem without the policy:

$$
\begin{equation*}
\max _{b} u(1-q b)+v\left(1+\frac{b}{2}\right)+v\left(1+\frac{b}{2}\right) \tag{5}
\end{equation*}
$$

subject to $c \geq 0$.

LENDERS' PROBLEM

- The maximization problem without the policy:

$$
\begin{aligned}
& \max _{b} u(1-q b)+v\left(1+\frac{b}{2}\right)+v\left(1+\frac{b}{2}\right) \\
& \text { subject to } c \geq 0 .
\end{aligned}
$$

- With the policy it reads

receivables deferred

$$
\begin{align*}
& \max _{b^{p}} u\left(1-q b^{p}\right)+[(1-\pi) v\left(1+\frac{b^{p}}{2}\right)+\overbrace{\pi v(1)}^{\pi v}]+ \tag{6}\\
& {[(1-\pi) v\left(1+\frac{b^{p}}{2}\right)+\underbrace{\pi v\left(1+b^{p}\right)}_{\text {deferred payments received }}}
\end{align*}
$$

subject to $c \geq 0$.

LENDERS' PROBLEM

- The solution to these problems are supply curves:

$$
\begin{align*}
& b(q): \tag{7}\\
& b^{p}(q): \tag{8}\\
& 2 \frac{A(1-q)-\phi}{\phi} \\
& \phi(1+\pi)
\end{align*}
$$

Results

Figure 1: Demand and supply of loans with and without the policy.

WHEN DEFAULT RISK IS ACCOUNTED

- The solution to firm's problem, price is now $q(b)$

$$
\begin{align*}
& b(q): \quad 2 \frac{A(q-\beta)+\beta \phi}{\beta \phi-2 A \frac{\partial q}{\partial b}}, \tag{9}\\
& b_{\text {always } \geq 0}^{p}(q): \quad 2 \frac{A(q-\beta)+\beta \phi}{\beta \phi-2 A \frac{\partial q}{\partial b}} \underbrace{\beta \frac{\pi(A-\phi)+\pi \phi \ell}{\beta \phi}-2 A \frac{\partial q}{\partial b}}_{\text {alwayy } \geq 0} . \tag{10}
\end{align*}
$$

WHEN DEFAULT RISK IS ACCOUNTED

- The solution to firm's problem, price is now $q(b)$

$$
\begin{align*}
& b(q): 2 \frac{A(q-\beta)+\beta \phi}{\beta \phi-2 A \frac{\partial q}{\partial b}}, \tag{9}\\
& b_{\text {alwayy } \geq 0}^{p}(q): 2 \frac{A(q-\beta)+\beta \phi}{\beta \phi-2 A \frac{\partial q}{\partial b}} \underbrace{\beta \frac{\pi(A-\phi)+\pi \phi \ell}{\beta \phi}-2 A \frac{\partial q}{\partial b}}_{\text {alwayy } \geq 0} . \tag{10}
\end{align*}
$$

- The solution to lenders' problem

$$
\begin{align*}
b(q): & 2 \frac{\underbrace{\frac{A(1-q)-\phi}{\phi+2 A \frac{\partial q}{\partial b}}},}{b^{p}(q):} 2 \underbrace{\underbrace{\phi(1+\pi)+2 A \frac{\partial q}{\partial b}}}_{\underbrace{}_{\text {depends on price's responsiveness }}} . \tag{11}
\end{align*}
$$

REsULTS

- During crisis times, that is, when price q is highly responsive to the loan amount $b, \frac{\partial q}{\partial b}$

Figure 2: Demand and supply of loans with and without the policy when default risk is accounted.

Second part: Establishing a causal link

DATA

- Colombian credit registry (at the loan level) from Q1-2019 to Q4-2020 (4.4 million observations).
- Includes information on: interest rates, maturities, amounts, issuance dates, expiration dates, ex-ante credit ratings
- We center on new and existing loans
- We employ 176,638 loans (36 private banks \& 102,386 firms) at the end of 2020:Q2
- We match to 92,214 new loans from bank j to firm i issued in 2020:Q3-2021:Q4

The Colombian Debt Moratorium Policy

- Enacted in March $2020 \Longrightarrow$ mitigate the effects of the COVID-19

Pandemic

- Treatment
(1) Duration ≤ 120 days
(2) Grace periods on principal and interest payments
(3) Interest rate accrues - we will have a policy suggestion on this
(9) Credit rating remain frozen
- Eligibility: all loans with ≤ 60 days past due as of 29/02/2020
- First covid case: March $6^{\text {th }}$ NO ANTICIPATION!!!
- Commercial loans \Longrightarrow Eligible + apply for Debt Moratorium Policy \Longrightarrow Treated

IDENTIFICATION

Figure 3: Identification: all loans.

RESULTS (डstrassid пाкмм)

(a) New loan amounts

(b) Interest rate on new loans

RESULTS

RESULTS (smussonnes)

Table 1: RD Benchmark results: new loans

	$\log ($ Loan $)$	Interest	Maturity	Collateral	Rating	Default Prob.	
							Ex-ante
			Ex-post				
Fuzzy-RD	$15.76^{* *}$	-25.56^{*}	$8.78^{* *}$	$1.30^{* *}$	$3.43^{* * *}$	$-1.51^{* * *}$	$-1.45^{* * *}$
	(6.8)	(15.3)	(3.8)	(0.6)	(1.3)	(0.4)	(0.5)
Observations	29,947	29,947	29,947	29,947	29,152	57,461	57,461
BW loc. poly.	16.3	18.9	19.9	29.0	25.3	27.7	18.3

Robust Bias-corrected standard errors in parentheses, *, **, *** indicate significance at the 10\% 5\% and 1% respectively

FALSIFICATION - DIFFERENT CUTOFFS

Testing for Pre-existing differences with respect to THE QUARTER/YEAR BEFORE POLICY

Testing for Pre-existing differences-Firms variables

Real Sector Effects

Table 2: RD benchmark results: Firm level outcomes

	Δ Emp.	Inv. rate	Δ Op. Rev.	Δ Liab.	Δ Assets	Δ Profits	Δ Equity
Fuzzy-RD	$1.59^{* *}$	$0.08^{* * *}$	$7.15^{* * *}$	$0.19^{* *}$	$0.93^{* * *}$	0.83^{*}	0.68^{*}
	(0.7)	(0.0)	(2.2)	(0.1)	(0.3)	(0.4)	(0.4)
Observations	15,379	11,386	31,799	30,864	30,626	28,490	30,900
BW loc. poly.	28.9	10.7	11.5	12.8	6.6	16.5	16.7

RESULTS FOR Non-strassid hrмs

- Acknowledge that the causal link is not as clean as the RDD.
- It is confounded by selection
- We aim to bring theory (and later on the model) closer to the data.
- Use DID, firm and bank-time fixed, $T_{t}=\mathbf{1}\{2020 Q 1\}$

$$
\begin{equation*}
\text { Loan }_{i j, t+1}=\alpha_{i, j t}+\gamma D_{i j}+\sum_{\tau=0}^{m} \beta_{\tau} D_{i j} T_{t-\tau}+\sum_{\tau=1}^{q} \beta_{-\tau} D_{i j} T_{t+\tau}+\epsilon_{i j, t+1} \tag{13}
\end{equation*}
$$

Real Sector Effects

Figure 4: Parallel trends assumption for non-stressed firms

Real Sector Effects

Table 3: DID benchmark results: firm level outcomes

	Δ Emp.	Inv. rate	Δ Op. Rev.	Δ Liab.	Δ Assets	Δ Profit	Δ Equity
DID	0.001	0.01	0.02	$-0.015^{* * *}$	$-0.025^{* * *}$	-0.007	0.71
	(0.01)	(0.03)	(0.01)	(0.004)	(0.008)	(0.01)	(1.2)
Observations	120,759	35,193	200,720	145,852	138,597	210,535	146,807
\bar{R}^{2}	15.4	1.2	1.2	2.6	1.4	0.7	-1.0

Robust Bias-corrected standard errors in parentheses, ${ }^{*},{ }^{* *},{ }^{* * *}$ indicate significance at the $10 \% 5 \%$ and 1% respectively

Results - Recap

Theory

	Loan amount	Interest rate
Stressed	\uparrow	$?$
Non-stressed	$?$	\uparrow

Empirical

	Loan amount	Interest rate
Stressed	\uparrow	\downarrow
Non-stressed	\downarrow	\uparrow

Third part: Quantitative part

MODEL OUTLINE

- Benchmark model: Eaton and Gersovitz (1981); Aguiar and Gopinath (2006), Arellano (2008), Hatcondo and Martinez and Önder and Roch (2022)
- Add liquidity shocks in the form of lenders' increased risk aversion.
- Introduce production economy as in Mendoza and Yue (2012)
- Nash-bargaining between borrowers and lenders after default
- Households own firms and borrow on behalf of them
- Each period, the household
(1) observes aggregate income and liquidity shocks,
(2) chooses whether to default,
(3) borrows using non-contingent bonds and contingent debt

NON-CONTINGENT BONDS

- Perpetuities with geometrical decreasing coupons (Arellano and Ramanarayanan, 2012; Chatterjee and Eyigungor, 2012; Hatchondo and Martinez, 2009).
- Coupon structure of a non-contingent bond issued at t :

DEBT MORATORIUM ASSET

- Automatic payment suspension with adverse "liquidity" shock.
- If payment suspension clause activates at $t+1$, unpaid coupon is paid (with interest) when liquidity shock is over.

RECURSIVE FORMULATION (STANDARD)

Let $s \equiv(\epsilon, p)$ denote the vector of exogenous states

$$
\begin{aligned}
& \quad V\left(b_{m}, b, s\right)=\max \left\{V^{R}\left(b_{m}, b, s\right), V^{D}\left(b_{m}, b, s\right)\right\}, \\
& c=\epsilon f(K, L)-I^{f} P^{f}\left(r^{*}\right)-\delta b-[1-\mathcal{I}(p)] \delta_{m} b_{m}+q\left(b^{\prime}, b_{m}^{\prime}, s\right) i+q_{m}\left(b^{\prime}, b_{m}^{\prime}, s\right) i_{m}, \\
& i=b^{\prime}-b(1-\delta), \\
& i_{m}=b_{m}^{\prime}-[1-\mathcal{I}(p)] b_{m}\left(1-\delta_{m}\right)-\mathcal{I}(p) b_{m} e^{r_{m}}, \\
& q\left(b^{\prime}, b_{m}^{\prime}, s\right) \geq \underline{q} \forall b^{\prime}>b(1-\delta), \\
& q_{m}\left(b^{\prime}, b_{m}^{\prime}, s\right) \geq \underline{q} \forall b_{m}^{\prime}>[1-\mathcal{I}(p)] b_{m}\left(1-\delta_{m}\right)+\mathcal{I}(p) b_{m} e^{r_{m}},
\end{aligned}
$$

r_{m} is suspension rate.

EQUILIBRIUM BOND PRICES

$d^{\prime}=$ next-period default decision $=\hat{d}\left(b^{\prime}, b_{m}^{\prime}, s^{\prime}\right)$,
$b^{\prime \prime}=$ next-period non-contingent debt decision $=\hat{b}\left(b^{\prime}, b_{m}^{\prime}, s^{\prime}\right)$,
$b_{m}^{\prime \prime}=$ next-period debt moratorium decision $=\hat{b}_{m}\left(b^{\prime}, b_{m}^{\prime}, s^{\prime}\right)$.
$q\left(b^{\prime}, b_{m}^{\prime}, s\right)=\mathbb{E}_{s^{\prime} \mid s}\left[M\left(\varepsilon^{\prime}, p\right)\left[d^{\prime} \alpha q\left(\alpha b^{\prime}, \alpha b_{m}^{\prime}, s^{\prime}\right)\left(1-d^{\prime}\right)\left[\delta+(1-\delta) q\left(b^{\prime \prime}, b_{m}^{\prime \prime}, s^{\prime}\right)\right][1] 4\right)\right.$

$$
\begin{align*}
q_{m}\left(b^{\prime}, b_{m}^{\prime}, s\right) & =\mathbb{E}_{s^{\prime} \mid s}\left[M (\varepsilon ^ { \prime } , p) \left[d^{\prime} \alpha q_{m}\left(\alpha b^{\prime}, \alpha b_{m}^{\prime}, s^{\prime}\right)\right.\right. \\
& +\left(1-d^{\prime}\right)\left[\left[1-\mathcal{I}\left(p^{\prime}, g^{\prime}\right)\right]\left[\delta_{m}+\left(1-\delta_{m}\right) q_{m}\left(b^{\prime \prime}, b_{m}^{\prime \prime}, s^{\prime}\right)\right]\right. \\
& \left.\left.\left.+\mathcal{I}\left(p^{\prime}, g^{\prime}\right) e^{r_{m}} q_{m}\left(b^{\prime \prime}, b_{m}^{\prime \prime}, s^{\prime}\right)\right]\right]\right] \tag{15}
\end{align*}
$$

PARAMETERIZATION

- Follow Hacthondo et al. (2022) for global liquidity shock:
- Three 1.25-year p_{H} episodes every 20 years, o.w. $p_{L}=0$
- Spread is on average 300 basis points higher with p_{H}
- With negative correlation between shocks to global risk premia and TFP

LONG-RUN SIMULATION RESULTS

	Data	Benchmark	Moratoria
Mean standard loan/income (\%)	15.7	15.5	4.0
Mean moratorium loan/income (\%)	$n . a$.	$n . a$.	14.2
Mean $r_{s}(\%)$	5.7	5.7	6.5
Mean moratorium $r_{s}(\%)$	$n . a$.	$n . a$.	7.6
Share of NPL	3.5	3.7	3.9
Recovery rate (\%)	33	31.2	29.2
Duration	5.0	5.0	4.8
Duration moratorium	$n . a$.	$n . a$.	5.2
$\sigma_{r_{s}}$	2.2	2.4	2.82
$\sigma_{r_{s}}$ moratorium	$n . a$.	$n . a$.	2.9
Labor decline during defaults (\%)		14.4	14.3
Labor decline during high-risk-premium		2.8	3.2
Probability high-risk-premium starts (\%)	15.0	15.0	15.0
Lower income during high-risk-premium (\%)	4.0	4	4.5
Δr_{s} with high-risk-premium shock	3	3	3.8
Fraction of defaults triggered by liquidity (\%)		10.1	0.8
$\sigma(c) / \sigma(y)$		0.95	0.93
$\rho(c, y)$		0.99	0.99

WELFARE GAINS

- Equivalent \% increase in consumption.
- Initial debt = mean debt in the simulations.

Figure 5: Welfare gains from switching to debt moratorium economy

WAYS TO IMPROVE THE CONTRACT DESIGN WELFARE GAINS

- Equivalent \% increase in consumption.
- Initial debt = mean debt in the simulations.

Conclusion

CONCLUSIONS

- Debt moratorium has different effects depending if firm is stressed or not. Do it If stressed
- Haircuts on the suspension rate may reduce defaults and improve welfare even further. At least do not accrue interest during the suspension.

WHEN DEFAULT RISK IS ACCOUNTED

$$
\begin{align*}
& \max _{b} u(q b)+\beta(1-\pi)(\underbrace{\int_{y^{\star}} v\left(y-\frac{b}{2}\right)}_{\text {repayment }}+\underbrace{\int_{y^{\star}}^{y^{\star}} v(y-C(y))}_{\text {default }}) d F(y) \tag{16}\\
& +\beta \pi(\underbrace{\int_{\text {repayment } v\left(y-\frac{b}{2}-\ell\right)}^{v}}_{y^{\star}}+\underbrace{\int_{v(y-C(y)}^{y^{\star}} v}_{\text {default }}) d F(y) \\
& +\beta(1-\pi)(\underbrace{\int_{y^{\star}} v\left(y-\frac{b}{2}\right)}_{\text {repayment }}+\underbrace{\int_{v(y-C(y)}^{y^{\star}} v}_{\text {default }})) d F(y) \\
& +\beta \pi(\underbrace{\left.\int_{v\left(y-\frac{b}{2}\right.}^{y-\ell}\right)}_{y^{\star}}+\underbrace{\left.\int_{v(y-C(y))}^{y^{\star}}\right)}_{\text {depayment }}) d F(y)
\end{align*}
$$

subject to $c \geq 0$.

WHEN DEFAULT RISK IS ACCOUNTED

and the lender's problem who takes the default threshold y^{*} given as

$$
\begin{align*}
& \max _{b} u(1-q b)+(1-\pi)(\underbrace{\int_{y^{\star}} v\left(y+\frac{b}{2}\right)}_{\text {repaid }}+\underbrace{\int_{y^{\star}}^{y^{\star}} v(y)}_{\text {defaulted }}) d F(y) \tag{17}\\
& +\pi(\underbrace{\int_{y^{\star}} v\left(y+\frac{b}{2}\right)}_{\text {repaid }}+\underbrace{\left.\int_{y^{\star}}^{v(y)}\right) d F(y)}_{\text {defaulted }} \\
& +(1-\pi)(\underbrace{\int_{y^{\star}} v\left(y+\frac{b}{2}\right)}_{\text {repaid }}+\underbrace{\int_{y^{\star}}^{v} v(y)}_{\text {defaulted }}) d F(y) \\
& +\pi(\underbrace{\int_{y^{\star}} v\left(y+\frac{b}{2}\right)}_{\text {repaid }}+\underbrace{\left.\int_{y^{\star}}^{v(y)}\right) d F(y)}_{\text {defaulted }} \\
& \text { subject to } c \geq 0 .
\end{align*}
$$

Bells and WHistles

