Debt Aversion Theory and Experiment

Thomas Meissner & David Albrecht

Maastricht University

EEA ESEM August 2023

Motivation

- Debt aversion: intrinsic unwillingness to take on debt, even if economically reasonable
 - Suboptimal investment
 - Tertiary education (Field, 2009; Caetano et al. 2019)
 - Energy-efficient technologies (Schleich et al., 2021)
 - Entrepreneurs (Nguyen et al. 2020, Paaso et al. 2021)
 - Suboptimal consumption
 - Consumption/saving experiments (Meissner, 2016; Duffy and Orland, 2020, Ahrens et al. 2022)
 - Suboptimal portfolio choice
 - Debt repayment experiments (Martínez-Marquina and Shi, 2022; Ozyilmaz, 2022)

What we do

► This project:

- 1. Model of debt aversion
- 2. Experiment involving real debt contracts
- 3. Structural estimation of debt aversion
- Debt preferences will be jointly considered with:
 - Risk aversion
 - Loss aversion
 - Time preferences
- All these preferences may affect how people save and borrow and therefore need to be controlled for

Identification

Compare willingness to accept different saving and debt contracts
structural similarity: gain and loss of money, temporally separated

 Debt Aversion: Willingness to pay a premium to avoid being in debt (after controlling for other preferences)

Identification

Compare willingness to accept different saving and debt contracts
structural similarity: gain and loss of money, temporally separated

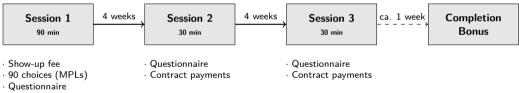
 Debt Aversion: Willingness to pay a premium to avoid being in debt (after controlling for other preferences)

Preview: Yes, people are willing to ...

- ▶ 90 binary choices over lotteries and intertemporal prospects
 - binary choices from 7 multiple price lists (MPLs)
 - 3 standard MPLs to elicit risk and time preferences
 - 4 new MPLs that consist of saving and debt contracts
- One "decision that counts" randomly chosen

Saving contract example

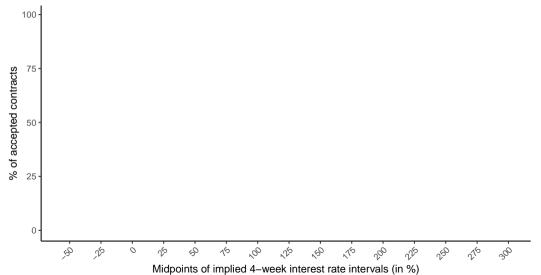
Decision 38/90



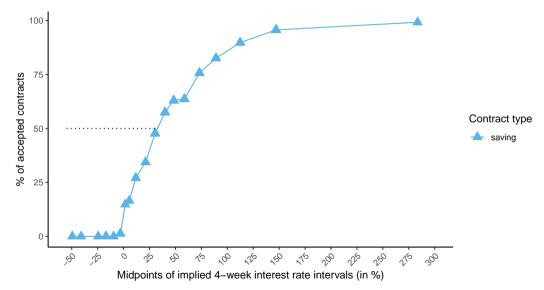
Debt contract example

Decision 65/90

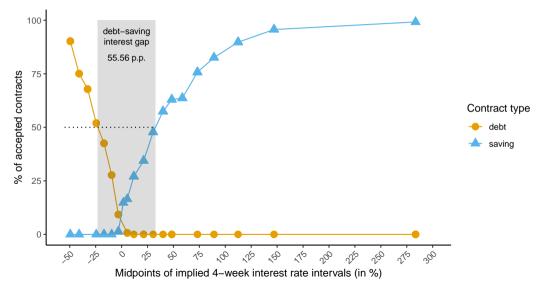
Figure: Timeline of the experiment



· Contract payments


Procedures

- Saving and debt are actual, real-time contracts with the experimenter
- If participants accept a contract, they agree to actually pay money to the experimenter
 - Saving: Pay at earlier date, receive at later date
 - Debt: Receive at earlier date, pay at later date
- ▶ At Date 1, participants may pay from show-up fee (\in 15 for all three dates)
- At later sessions, pay in cash or via Paypal
- ▶ n=127, in Maastricht (2019-2021 / BEElab)
- ► Average earnings: €43

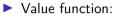

A glimpse at the data...

A glimpse at the data...

A glimpse at the data...

Theory General model

• Two period model ($\tau \in \{t, T\}$, $0 \le t < T$):


$$U(x_t, x_T) = \mathbb{E} \left[\phi(t) v(x_t) + \phi(T) v(x_T) - \mathbb{1}_{debt} c(x_t, x_T) \right]$$

$$\mathbb{1}_{debt} = \begin{cases} 1 & \text{if } x_t > 0 \text{ and } x_T < 0 \\ 0 & \text{otherwise.} \end{cases}$$

- $\phi(\tau)$ is the discount function.
- \blacktriangleright v(x) value function evaluating monetary gains and losses.
- $c(x_t, x_T)$ denotes the cost of being in debt.

Theory

Debt aversion

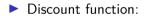
$$v(x) = \begin{cases} u(x) & \text{if } x \ge 0 \\ -\lambda u(-x) & \text{if } x < 0 \end{cases} \qquad \qquad \lambda > 1 \equiv \text{loss aversion}$$

Cost of being in debt:

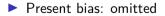
$$c(x_t, x_T) = (1 - \gamma)\phi(T)v(x_T)$$
 $\gamma > 1 \equiv \text{debt aversion}$

Saving contracts:

$$U(x_t < 0, x_T > 0) = -\lambda \phi(t) u(-x_t) + \phi(T) u(x_T)$$


Debt contracts:

$$U(x_t > 0, x_T < 0) = \phi(t)u(x_t) - \gamma\lambda\phi(T)u(-x_T)$$



Atemporal utility function (CRRA):

$$u(x) = \frac{(x)^{1-\alpha}}{1-\alpha}$$
 $\alpha > 0 \equiv \text{risk aversion}$

$$\phi(\tau) = \frac{1}{(1+\delta)^{\tau}} \qquad \qquad \delta > 0 \equiv {\rm discounting}$$

Aggregate parameter estimates

> The average participant discounts the future, and is risk, loss and **debt averse**

Aggregate parameter estimates

- ▶ The average participant discounts the future, and is risk, loss and **debt averse**
- Joint ML-estimation in random utility frame with logit Fechner error Details
 - \blacktriangleright additional parameter of decision noise μ
 - $\blacktriangleright \ \mu = 0$ is deterministic choice, $\mu \to \infty$ is uniform randomization

	Point estimate	Standard Error	95% Conf. Interval		
Risk aversion: α	0.6430	0.0344	0.57 , 0.71		
Discounting: δ	0.0359	0.006	0.02 , 0.05		
Debt Aversion: γ	1.0535	0.0112	1.03 , 1.08		
Loss Aversion: λ	1.1074	0.0118	1.08 , 1.13		
Fechner error: μ	0.4483	0.0402	0.37 , 0.52		

n: 12,240, cluster: 127, log-likelihood: -4107,9

► Average participant would be indifferent between accepting or rejecting: €20.93 today

 Counterfactual, debt-neutral person with the same preference parameters (except γ = 1): €18.08 today
€-15 in 4 weeks

⇒ "Borrowing premium" of €2.85 (=16% of the principal €18.08)

Decomposition

▶ 89% of participants are debt averse

Distribution estimation

the longer the indebtedness the higher the borrowing premium

higher cognitive ability is associated with less debt aversion

Conclusion

- > Debt aversion is a genuine preference, wide-spread and impacts choice
- ▶ We should care, e.g. as policy uses subsidized loans to spur wanted behaviour
- Real indebtedness in the lab is possible and interesting
 - e.g. to study underlying mechanisms
 - seemingly unrelated behavior when indebted

Conclusion

- > Debt aversion is a genuine preference, wide-spread and impacts choice
- ▶ We should care, e.g. as policy uses subsidized loans to spur wanted behaviour
- Real indebtedness in the lab is possible and interesting
 - e.g. to study underlying mechanisms
 - seemingly unrelated behavior when indebted

Thank you

The working paper...

Appendix

Descriptive details

- (Mostly student) sample from behavioral econ lab at Maastricht University (NL)
 - 74% undergrad; 25% Master
 - various backgrounds from music to law, but clear mode in field of "Business and/or Economics"
 - ▶ 61 % female
 - 22% German, 17% Dutch, 11% Belgian and 9% Italian

◆ Back to Design ◆ Back to Results

Example time preference choice

Decision 1/90

▶ Back

Example risk preference choice

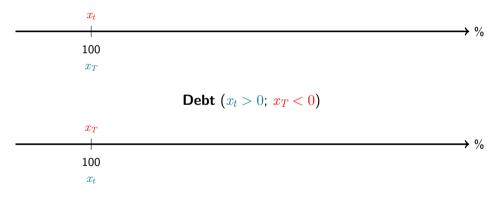
Decision 11/90

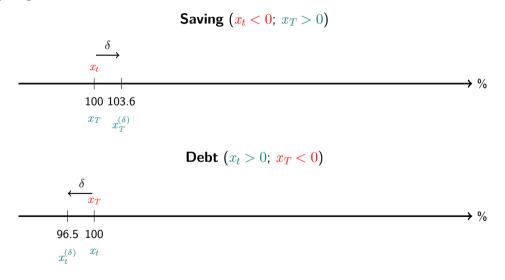
→ Back

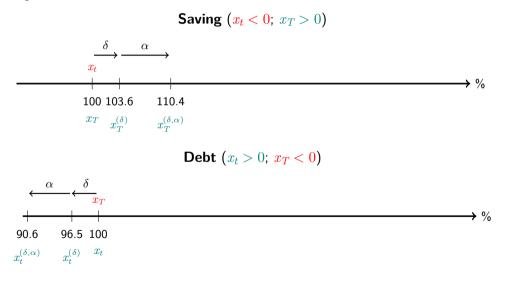
Maximum likelihood estimation

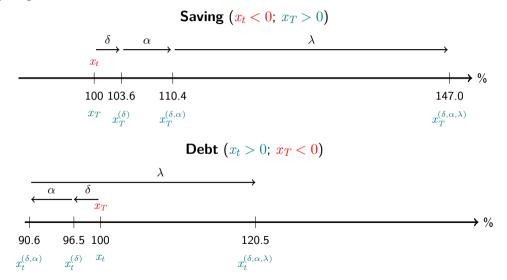
► Random utility model (RUM): a decision maker chooses option B if U(X^B) + ε^B ≥ U(X^A) + ε^A.

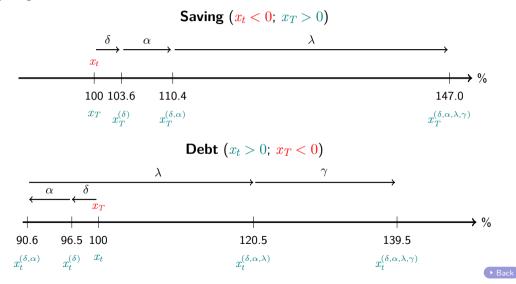
$$P(B) = F\left(\frac{U(X^B) - U(X^A)}{\mu}\right) = F(\Delta U)$$

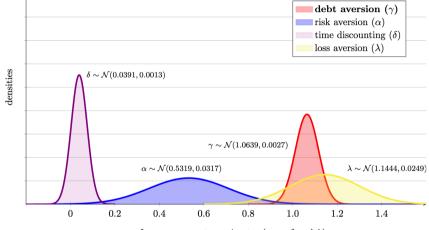

F is cumulative distribution function of (ε^A − ε^B) and θ = (α, δ, γ, λ, μ)
Fechner error with logit link, logistic distribution F(ξ) = (1 + e^{-ξ})⁻¹
Log-likelihood function:


$$ln \ L(\alpha, \beta, \delta, \gamma, \lambda, \mu) = \sum_{i} \sum_{j} \left[ln \left(F(\Delta U) \right) c_{ij} + ln(1 - F(\Delta U))(1 - c_{ij}) \right]$$


c_{ij} = 0 if individual i chooses A in choice j and c_{ij} = 1 if individual i chooses B in choice j.


Decomposing the influence on indifference contracts


Saving $(x_t < 0; x_T > 0)$



Distributions of preference parameters

preference parameter estimates (γ , α , δ and λ)

• $P(\gamma > 1) \sim 89\%$, large majority is debt averse

Back 🔪 🕨 Variance-Covariance Matrix

Distributions of preference parameters

	α	δ	γ	λ	μ
Risk aversion: α	0.0317^{***}				
Discounting: δ	-0.0013^{***}	0.0013^{***}			
Debt aversion: γ	0.0004	0.0005	0.0027^{***}		
Loss aversion: λ	-0.0159^{***}	0.0042^{***}	0.0039^{***}	0.0249^{***}	
Fechner error: μ	-0.0297^{***}	-0.0041^{***}	-0.0053^{***}	0.0263^{***}	0.0435^{***}

Table: Estimated variance-covariance matrix

Extension

Debt duration

-

- Additional parameter of debt duration aversion (ζ)
 - Short debt (4 weeks): $U(x_t, x_{T=t+1}) = \phi(t)u(x_t) \gamma\lambda\phi(T)u(-x_T)$
 - ► Long debt (8 weeks): $U(x_t, x_{T=t+2}) = \phi(t)u(x_t) \gamma \zeta \lambda \phi(T)u(-x_T)$

	Point estimate	Standard Error	95% Conf. Interval
Risk aversion: α	0.640	0.034	0.573,0.706
Discounting: δ	0.043	0.007	0.028,0.058
Debt Aversion: γ	1.063	0.013	1.037,1.090
Debt Duration Aversion: ζ	1.851	0.292	1.279,2.423
Loss Aversion: λ	1.101	0.012	1.077,1.124
Fechner error: μ	0.448	0.040	0.369,0.527

n: 12,240, cluster: 127, log-likelihood: -4096

Extension

So what?

Average participant would be indifferent between accepting or rejecting:

€20.67	today	€-15 in	4	weeks
€21.11	today	€-15 in	8	weeks

Counterfactual, debt-neutral person with the same preference parameters (except γ = 1):
€17.43 today
€-15 in 4 weeks
€15.51 today
€-15 in 8 weeks

⇒ 4-week "Borrowing premium" of $\in 3.24$ (=18.6% of $\in 17.43$)

 \Rightarrow 8-week "Borrowing premium" of €5.60 (=36.1% of €15.51)

Observable heterogeneity

	lpharisk aversion	δ discounting	γ debt aversion	λ loss aversion	μ fechner error
Age	0.035^{**}	-0.003	-0.006	-0.012^{***}	-0.038^{***}
Cognitive ability	-0.007	-0.012	-0.022^{*}	-0.015	-0.034
Female	0.161^{*}	-0.008	0.010	-0.063^{*}	-0.283^{*}
Financial literacy	-0.033	0.003	-0.003	-0.006	0.009
Agreeableness	-0.027	0.005	0.004	0.013^{*}	0.010
Conscientiousness	-0.040	-0.005	-0.016	0.005	0.055
Extraversion	-0.005	-0.003	0.001	-0.005	0.003
Negative emotionality	0.043	-0.002	-0.007	-0.015	-0.037
Openmindedness	0.021	0.001	0.004	-0.014	-0.008
Constant	-0.199	0.107^{**}	1.176^{***}	1.414^{***}	1.424^{***}

N: 12240, Log. Likelihood: -3695, BIC: 7860