Debt Aversion

Theory and Experiment

Thomas Meissner \& David Albrecht

Maastricht University

EEA ESEM

August 2023

Introduction

Motivation

- Debt aversion: intrinsic unwillingness to take on debt, even if economically reasonable
- Suboptimal investment
- Tertiary education (Field, 2009; Caetano et al. 2019)
- Energy-efficient technologies (Schleich et al., 2021)
- Entrepreneurs (Nguyen et al. 2020, Paaso et al. 2021)
- Suboptimal consumption
- Consumption/saving experiments (Meissner, 2016; Duffy and Orland, 2020, Ahrens et al. 2022)
- Suboptimal portfolio choice
- Debt repayment experiments (Martínez-Marquina and Shi, 2022; Ozyilmaz, 2022)

Introduction

What we do

- This project:

1. Model of debt aversion
2. Experiment involving real debt contracts
3. Structural estimation of debt aversion

- Debt preferences will be jointly considered with:
- Risk aversion
- Loss aversion
- Time preferences
- All these preferences may affect how people save and borrow and therefore need to be controlled for

Introduction

Identification

- Compare willingness to accept different saving and debt contracts
- structural similarity: gain and loss of money, temporally separated
- Debt Aversion: Willingness to pay a premium to avoid being in debt (after controlling for other preferences)

Introduction

Identification

- Compare willingness to accept different saving and debt contracts
- structural similarity: gain and loss of money, temporally separated
- Debt Aversion: Willingness to pay a premium to avoid being in debt (after controlling for other preferences)

Preview: Yes, people are willing to ...

Experiment

- 90 binary choices over lotteries and intertemporal prospects
- binary choices from 7 multiple price lists (MPLs)
- 3 standard MPLs to elicit risk and time preferences
- 4 new MPLs that consist of saving and debt contracts
- One "decision that counts" randomly chosen

Experiment

Saving contract example

Decision
 $38 / 90$

Experiment

Debt contract example

Experiment

Timeline

Figure: Timeline of the experiment

$\begin{gathered} \text { Session } 1 \\ 90 \mathrm{~min} \end{gathered}$	4 weeks	$\begin{gathered} \text { Session } 2 \\ 30 \mathrm{~min} \end{gathered}$	4 weeks	$\underset{30 \mathrm{~min}}{\text { Session } 3}$	ca. 1 week	Completion Bonus

Show-up fee

- 90 choices (MPLs)

Questionnaire

- Contract payments

Questionnaire
Contract payments

Questionnaire
Contract payments

Experiment

Procedures

- Saving and debt are actual, real-time contracts with the experimenter
- If participants accept a contract, they agree to actually pay money to the experimenter
- Saving: Pay at earlier date, receive at later date
- Debt: Receive at earlier date, pay at later date
- At Date 1, participants may pay from show-up fee ($€ 15$ for all three dates)
- At later sessions, pay in cash or via Paypal
- $\mathrm{n}=127$, in Maastricht (2019-2021 / BEElab)
- Average earnings: €43

A glimpse at the data...

A glimpse at the data...

A glimpse at the data...

Theory

General model

- Two period model $(\tau \in\{t, T\}, 0 \leq t<T)$:

$$
\begin{aligned}
U\left(x_{t}, x_{T}\right) & =\mathbb{E}\left[\phi(t) v\left(x_{t}\right)+\phi(T) v\left(x_{T}\right)-\mathbb{1}_{\text {debt }} c\left(x_{t}, x_{T}\right)\right] \\
& \mathbb{1}_{\text {debt }}= \begin{cases}1 & \text { if } x_{t}>0 \text { and } x_{T}<0 \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

- $\phi(\tau)$ is the discount function.
- $v(x)$ value function evaluating monetary gains and losses.
- $c\left(x_{t}, x_{T}\right)$ denotes the cost of being in debt.

Theory

Debt aversion

- Value function:

$$
v(x)=\left\{\begin{array}{ll}
u(x) & \text { if } x \geq 0 \\
-\lambda u(-x) & \text { if } x<0
\end{array} \quad \lambda>1 \equiv\right. \text { loss aversion }
$$

- Cost of being in debt:

$$
c\left(x_{t}, x_{T}\right)=(1-\gamma) \phi(T) v\left(x_{T}\right) \quad \gamma>1 \equiv \text { debt aversion }
$$

- Saving contracts:

$$
U\left(x_{t}<0, x_{T}>0\right)=-\lambda \phi(t) u\left(-x_{t}\right)+\phi(T) u\left(x_{T}\right)
$$

- Debt contracts:

$$
U\left(x_{t}>0, x_{T}<0\right)=\phi(t) u\left(x_{t}\right)-\gamma \lambda \phi(T) u\left(-x_{T}\right)
$$

Theory

Main specification

- Atemporal utility function (CRRA):

$$
u(x)=\frac{(x)^{1-\alpha}}{1-\alpha} \quad \alpha>0 \equiv \text { risk aversion }
$$

- Discount function:

$$
\phi(\tau)=\frac{1}{(1+\delta)^{\tau}} \quad \delta>0 \equiv \text { discounting }
$$

- Present bias: omitted

Results

Aggregate parameter estimates

- The average participant discounts the future, and is risk, loss and debt averse

Results

Aggregate parameter estimates

- The average participant discounts the future, and is risk, loss and debt averse
- Joint ML-estimation in random utility frame with logit Fechner error
- additional parameter of decision noise μ
- $\mu=0$ is deterministic choice, $\mu \rightarrow \infty$ is uniform randomization

	Point estimate	Standard Error	95% Conf. Interval
Risk aversion: α	0.6430	0.0344	$0.57,0.71$
Discounting: δ	0.0359	0.006	$0.02,0.05$
Debt Aversion: γ	1.0535	0.0112	$1.03,1.08$
Loss Aversion: λ	1.1074	0.0118	$1.08,1.13$
Fechner error: μ	0.4483	0.0402	$0.37,0.52$

n: 12,240, cluster: 127, log-likelihood: -4107,9

Results

- Average participant would be indifferent between accepting or rejecting:
$€ 20.93$ today €-15 in 4 weeks
- Counterfactual, debt-neutral person with the same preference parameters (except $\gamma=1$):
$€ 18.08$ today $\quad €-15$ in 4 weeks
\Rightarrow "Borrowing premium" of $€ 2.85$ ($=16 \%$ of the principal $€ 18.08$)

Further results

- 89% of participants are debt averse

```
- Distribution estimation
```

- the longer the indebtedness the higher the borrowing premium
- higher cognitive ability is associated with less debt aversion

Conclusion

- Debt aversion is a genuine preference, wide-spread and impacts choice
- We should care, e.g. as policy uses subsidized loans to spur wanted behaviour
- Real indebtedness in the lab is possible and interesting
- e.g. to study underlying mechanisms
- seemingly unrelated behavior when indebted

Conclusion

- Debt aversion is a genuine preference, wide-spread and impacts choice
- We should care, e.g. as policy uses subsidized loans to spur wanted behaviour
- Real indebtedness in the lab is possible and interesting
- e.g. to study underlying mechanisms
- seemingly unrelated behavior when indebted

Thank you

The working paper...

Appendix

Descriptive details

- (Mostly student) sample from behavioral econ lab at Maastricht University (NL)
- 74% undergrad; 25% Master
- various backgrounds from music to law, but clear mode in field of "Business and/or Economics"
- 61% female
- 22% German, 17% Dutch, 11% Belgian and 9% Italian

Example time preference choice

Decision $1 / 90$

Option A	
You will receive an amount of $14.00 €$ today	
today	in 4 weeks
+14	
Choose Option A	

Option B	
You will receive an amount of $18.00 €$ in 4 weeks	
today	in 4 weeks
	+18
Choose Option B	

Example risk preference choice

Decision $11 / 90$

Maximum likelihood estimation

- Random utility model (RUM): a decision maker chooses option B if $U\left(X^{B}\right)+\varepsilon^{B} \geq U\left(X^{A}\right)+\varepsilon^{A}$.

$$
P(B)=F\left(\frac{U\left(X^{B}\right)-U\left(X^{A}\right)}{\mu}\right)=F(\Delta U)
$$

- F is cumulative distribution function of $\left(\varepsilon^{A}-\varepsilon^{B}\right)$ and $\theta=(\alpha, \delta, \gamma, \lambda, \mu)$
- Fechner error with logit link, logistic distribution $F(\xi)=\left(1+\mathrm{e}^{-\xi}\right)^{-1}$
- Log-likelihood function:

$$
\begin{array}{r}
\ln L(\alpha, \beta, \delta, \gamma, \lambda, \mu)= \\
\sum_{i} \sum_{j}\left[\ln (F(\Delta U)) c_{i j}+\ln (1-F(\Delta U))\left(1-c_{i j}\right)\right]
\end{array}
$$

- $c_{i j}=0$ if individual i chooses A in choice j and $c_{i j}=1$ if individual i chooses B in choice j.

Results

Decomposing the influence on indifference contracts

$$
\text { Saving }\left(x_{t}<0 ; x_{T}>0\right)
$$

Debt $\left(x_{t}>0 ; x_{T}<0\right)$

Results

Decomposing the influence on indifference contracts
Saving $\left(x_{t}<0 ; x_{T}>0\right)$

Debt $\left(x_{t}>0 ; x_{T}<0\right)$

Results

Decomposing the influence on indifference contracts
Saving $\left(x_{t}<0 ; x_{T}>0\right)$

Debt $\left(x_{t}>0 ; x_{T}<0\right)$

Results

Decomposing the influence on indifference contracts
Saving ($\left.x_{t}<0 ; x_{T}>0\right)$

Results

Decomposing the influence on indifference contracts
Saving ($\left.x_{t}<0 ; x_{T}>0\right)$

Debt $\left(x_{t}>0 ; x_{T}<0\right)$

Results

Distributions of preference parameters

- $P(\gamma>1) \sim 89 \%$, large majority is debt averse

Results

Distributions of preference parameters

	α	δ	γ	λ	μ
Risk aversion: α	$0.0317^{* * *}$				
Discounting: δ	$-0.0013^{* * *}$	$0.0013^{* * *}$			
Debt aversion: γ	0.0004	0.0005	$0.0027^{* * *}$		
Loss aversion: λ	$-0.0159^{* * *}$	$0.0042^{* * *}$	$0.0039^{* * *}$	$0.0249^{* * *}$	
Fechner error: μ	$-0.0297^{* * *}$	$-0.0041^{* * *}$	$-0.0053^{* * *}$	$0.0263^{* * *}$	$0.0435^{* * *}$

Table: Estimated variance-covariance matrix

Extension

Debt duration

- Additional parameter of debt duration aversion (ζ)
- Short debt (4 weeks): $U\left(x_{t}, x_{T=t+1}\right)=\phi(t) u\left(x_{t}\right)-\gamma \lambda \phi(T) u\left(-x_{T}\right)$
- Long debt (8 weeks): $U\left(x_{t}, x_{T=t+2}\right)=\phi(t) u\left(x_{t}\right)-\gamma \zeta \lambda \phi(T) u\left(-x_{T}\right)$

	Point estimate	Standard Error	95\% Conf. Interval
Risk aversion: α	0.640	0.034	$0.573,0.706$
Discounting: δ	0.043	0.007	$0.028,0.058$
Debt Aversion: γ	1.063	0.013	$1.037,1.090$
Debt Duration Aversion: ζ	1.851	0.292	$1.279,2.423$
Loss Aversion: λ	1.101	0.012	$1.077,1.124$
Fechner error: μ	0.448	0.040	$0.369,0.527$

n: 12,240, cluster: 127, log-likelihood: -4096

Extension

So what?

- Average participant would be indifferent between accepting or rejecting:

$$
\begin{array}{ll}
\text { €20.67 today } & €-15 \text { in } 4 \text { weeks } \\
\text { €21.11 today } & €-15 \text { in } 8 \text { weeks }
\end{array}
$$

- Counterfactual, debt-neutral person with the same preference parameters (except $\gamma=1$):

$$
\begin{array}{ll}
\text { €17.43 today } & €-15 \text { in } 4 \text { weeks } \\
\text { €15.51 today } & €-15 \text { in } 8 \text { weeks }
\end{array}
$$

\Rightarrow 4-week "Borrowing premium" of $€ 3.24$ ($=18.6 \%$ of $€ 17.43$)
$\Rightarrow 8$-week "Borrowing premium" of $€ 5.60(=36.1 \%$ of $€ 15.51)$

Results

Observable heterogeneity

	α risk aversion	δ discounting	γ debt aversion	λ loss aversion	μ fechner error
Age	$0.035^{* *}$	-0.003	-0.006	$-0.012^{* * *}$	$-0.038^{* * *}$
Cognitive ability	-0.007	-0.012	-0.022^{*}	-0.015	-0.034
Female	0.161^{*}	-0.008	0.010	-0.063^{*}	-0.283^{*}
Financial literacy	-0.033	0.003	-0.003	-0.006	0.009
Agreeableness	-0.027	0.005	0.004	0.013^{*}	0.010
Conscientiousness	-0.040	-0.005	-0.016	0.005	0.055
Extraversion	-0.005	-0.003	0.001	-0.005	0.003
Negative emotionality	0.043	-0.002	-0.007	-0.015	-0.037
Openmindedness	0.021	0.001	0.004	-0.014	-0.008
Constant	-0.199	$0.107^{* *}$	$1.176^{* * *}$	$1.414^{* * *}$	$1.424^{* * *}$

N: 12240, Log. Likelihood: -3695, BIC: 7860

