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Motivation

Many applied papers in the reduced-form literature use the IV/2SLS

estimator to estimate:

Y = α + τW + X β + u, (1)

where W is an endogenous binary “treatment” and X is a vector of additional

covariates. Also, Z is a binary instrumental variable for W .

Following a series of papers by Imbens and Angrist (1994), Angrist and Imbens

(1995), and Angrist, Imbens, and Rubin (1996), most papers interpret an IV

estimate of τ as the local average treatment effect (LATE).

However, τ is actually equivalent to LATE when there are no covariates in the

model (Imbens and Angrist 1994); when X is nonempty, τ is a weighted

average of X -specific LATEs (Angrist and Imbens 1995) with rather

undesirable weights (S loczyński 2021).

This paper: Doubly Robust IV Estimation to estimate the LATE with

covariates
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Our contributions

• A new class of doubly robust estimators of LATE and LATT

• simple to implement

• avoids the shortcomings of other doubly robust methods

• Provide proofs of double robustness and valid asymptotic inference

• Hausman-type tests to assess the unconfoundedness of the treatment and

treastment heterogeneity

• Monte Carlo Experiment for comparison of several LATE-estimators

• Empirical Examples
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Instrumental Variable estimation of the LATE

• Imbens and Angrist (1994); Angrist et al. (1996) clarify the
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• Extensions: Abadie (2003); Frölich (2007); Tan (2006); Uysal (2011);
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A Doubly Robust Approach to Estimating LATE & LATT

A Test Comparing LATT and ATT Estimators

Simulations
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Recap of LATE



Recap of LATE

Potential outcomes: Y (1) is outcome if W = 1, Y (0) is outcome if W = 0;

what follows, Y = (1 −W )Y (0) +WY (1).

Treatment effect: Y (1i)− Y (0i) for individual i .

There are two potential treatments, too: W (1) is treatment if Z = 1,

W (0) is treatment if Z = 0; what follows, W = (1 − Z )W (0) + ZW (1).

Standard terminology: if W (1) = 1 and W (0) = 1, always takers; if

W (1) = 1 and W (0) = 0, compliers; if W (1) = 0 and W (0) = 1, defiers;

finally, if W (1) = 0 and W (0) = 0, never takers.

LATE

τLATE = E[Y (1)− Y (0) |W (1) > W (0)]. (2)

LATT

τLATT = E[Y (1)− Y (0) | W (1) > W (0),W = 1]. (3)
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Identifying Assumptions (Abadie, 2003; Frölich, 2007; Tan, 2006)

Assumption 1 (Exclusion Restriction):
For w ∈ {0, 1} and almost all x ∈ X ,

P[Y (w , 1) = Y (w , 0) |X = x ] = 1. □

Assumption 2 (Ignorability of Instrument):
Conditional on X , the potential outcomes are jointly independent of Z :

[Y (0) ,Y (1) ,W (0) ,W (1)] ⊥ Z |X . □

Assumption 3 (Monotonicity):
P[W (1) ≥ W (0)] = 1. □

Assumption 4 (Existence of Compliers):
P[W (1) > W (0)] > 0. □

Assumption 5 (Overlap for LATE):
For almost all x ∈ X

0 < P (Z = 1|X = x) < 1. □
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Identification & Estimation under Assumptions 1-5

Theorem I Frölich (2007), Tan (2006) (Identification of LATE):

Under Assumptions 1-5,

τLATE =
E [E (Y |X ,Z = 1)− E (Y |X ,Z = 0)]

E [E (W |X ,Z = 1)− E (W |X ,Z = 0)]
=

E[µ1(X )]− E[µ0(X )]

E[ρ1(X )]− E[ρ0(X )]
, (4)

where

E (Y |X ,Z = z) ≡ µz (X ) (5)

and

E (W |X ,Z = z) = E[W (z) |X ] = ρz (X ), for z ∈ {0, 1}. □ (6)

Theorem II (Proof in the paper) (Identification of LATT):

Under Assumptions 1-5’,

τLATT =
E (Y |Z = 1)− E[µ0(X )|Z = 1]

E (W |Z = 1)− E[ρ0(X )|Z = 1]
. □ (7)

S loczyński, Uysal and Wooldridge “DR-LATE” 7/20



Identification & Estimation under Assumptions 1-5
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A Doubly Robust Approach to

Estimating LATE & LATT



General Idea

• We propose an IPWRA (inverse probability weighted regression

adjustment) type doubly robust estimator for the LATE and LATT

parameter.

• It combines inverse probability weighting (IPW) and regression adjustment

(RA) using a particular quasi-maximum likelihood estimator.

• The resulting estimator for the LATE/LATT is consistent

• if model specification related to IPW part is correct, or

• if the model specifications related to RA part are correct,

i.e. it is doubly robust.
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Estimation Procedure DR LATE

Specify Parametric Models:

• Instrument propensity score:

P (Zi = 1|Xi ) = G (Xi , γ)

• Conditional means:

P(Wi = 1|Xi ,Zi = z) ≡ ρz (Xi ) ⇒ Λ (ωz + Xi δz )

E(Yi |Xi ,Zi = z) ≡ µz (Xi ) ⇒ m (αz + Xi βz ), for z = 0, 1

! Choose m(·) considering the nature of Y from LEF with canonical link

function.

Estimation:

1. Estimate γ ⇒ G (Xi , γ̂).

2. Estimate (ωz , δz ) and (αz , βz ) by a weighted QMLE with weights

1/ [1 − G (Xi , γ̂)] for z = 0 and and 1/G (Xi , γ̂) for z = 1.
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DR Estimators of τLATE

• Hence, we obtain the DR estimator of τLATE as

τ̂DRLATE

τ̂DRLATE =
N−1 ∑N

i=1

[
m

(
α̂1 + Xi β̂1

)
−m

(
α̂0 + Xi β̂0

)]
N−1 ∑N

i=1

[
Λ
(
ω̂1 + Xi δ̂1

)
− Λ

(
ω̂0 + Xi δ̂0

)] . □

• Under standard regularity conditions, τ̂DRLATE is consistent for τLATE

• if the model for P(Z = 1|X ) is correct, or

• if the models for µz (X ) and ρz (X ) are correct.
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Estimation Procedure DR LATT

Specify Parametric Models:

• Instrument propensity score:

P (Zi = 1|Xi ) = G (Xi , γ)

• Conditional means (only for z = 0):

P(Wi = 1|Xi ,Zi = 0) ≡ ρ0(Xi ) ⇒ Λ (ω0 + Xi δ0)

E(Yi |Xi ,Zi = 0) ≡ µ0(Xi ) ⇒ m (α0 + Xi β0)

Estimation:

1. Estimate γ ⇒ G (Xi , γ̂).

2. Estimate (ω0, δ0) and (α0, β0) by a weighted QMLE with weights

G (Xi , γ̂)/ [1 − G (Xi , γ̂)]

3. Obtain the DR estimator of τLATT as

τ̂DRLATT =
Ȳ1 −N−1

1 ∑N
i=1 Zim(α̂0 + Xi β̂0)

W̄1 −N−1
1 ∑N

i=1 ZiΛ(ω̂0 + Xi δ̂0)
, (8)

where Ȳ1 = N−1
1 ∑N

i=1 ZiYi and W̄1 = N−1
1 ∑N

i=1 ZiWi . □
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Doubly Robustness

• Doubly robustness of the denominator follows the doubly robustness of the

ATE by weighted regression adjustment (see Wooldridge; 2007)

• For the numerator, it is a different story because µ0(X ) and µ1(X ) are

not the potential outcome conditional means; rather, these are the

conditional mean functions for the (observed) Z = 0 and Z = 1

subpopulations, respectively.

• The trick is to write Y with a zero conditional mean error term:

Y = (1 − Z )µ0(X ) + Zµ1(X ) +U, E (U |X ,Z ) = 0,

S loczyński, Uysal and Wooldridge “DR-LATE” 12/20



A Test Comparing LATT and ATT

Estimators



A Test Comparing LATT and ATT Estimators

• Under one-sided noncompliance, LATT is the same as ATT (Donald et al.,

2014)

• We can test the null hypothesis that treatment is unconfounded given X !

• We propose to use doubly robust estimators of the ATT (DR ATT) that

do not use an instrument and compare that with the DR LATT estimates.

• The ATT parameter is

τATT = E [Y (1)− Y (0) | W = 1] . (9)

• Let τ̂DRATT be the DR estimator of the ATT.
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A Test Comparing LATT and ATT Estimators

• A formal comparison is based on the statistic

τ̂DRLATT − τ̂DRATT

se (τ̂DRLATT − τ̂DRATT )
. (10)

• The standard error se (τ̂DRLATT − τ̂DRATT ) does not simplify, but,

bootstrapping is computationally feasible, or one can extend the

calculations for the asmyptotics to obtain an analytical standard error.

• Even without one-sided noncompliance, a similar test can also be

constructed to assess treatment effect heterogeneity by comparing DR

LATE and DR LATT, or IV and DR LATE, or IV and DR LATT estimates.

• We are preparing a Stata package which implements all these tests with

analytical standard errors.
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Simulations



DGP

• We simulated data to mimic certain statistical features of the data used by

Abadie (2003)

• 1,000 samples with N = 1,000 and the same number of samples with

N = 4,000 observations.

• Draw two random variables from a bivariate normal distribution matching

the empirical means and covariances of age and log income in the 401(k)

data.

• Our full set of covariates, X , includes three variables: income, age, and

age squared.

Z = 1l (Λ (γ0 + Xγx ) > Uz ) , (11)

W (1) = 1l (Λ (ω0 + X δ0) > U1) , (12)

Y (z) = αz + X βz + εz for z = 0, 1. (13)
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Estimation

• Estimate Instrument Propensity Score by a logit

• Estimate the parametric models for P(Wi = 1|Xi ,Zi = z)
• unweighted and weighted QMLE with a logit link

• Estimate the parametric models for E(Yi |Xi ,Zi = z)
• unweighted and weighted QMLE with the identity link

Estimation of the LATE by:

• IPW (uses only fitted IPS)

• RA (uses fitted E(Wi |Xi ,Zi = z) and E(Yi |Xi ,Zi = z) using unweighted

regression )

• IPWRA (uses fitted E(Wi |Xi ,Zi = z) and E(Yi |Xi ,Zi = z) using

weighted regression)

• AIPW (uses fitted E(Wi |Xi ,Zi = z) and E(Yi |Xi ,Zi = z) using

unweighted regression and fitted IPS for the IPW part)
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Estimation

In our Monte Carlo study, we consider estimators

(i) when the required models are all correctly specified,

(ii) when models for P(Wi = 1|Xi ,Zi = z) and E(Yi |Xi ,Zi = z) for z = 0, 1

are misspecified, and

(iii) when the model for the IPS (P (Zi = 1|Xi )) is misspecified.

Correct specifications for these estimators mean that we use the correct set of

covariates for all the regressions, and misspecification of a certain model means

that one of the regressors is omitted.
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Summary of Simulation Results

• Our proposed method is never substantially more biased than the

competing estimators

• Its RMSE is better than that of AIPW, which is the only alternative that

shares the double robustness property of IPWRA.
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Simulation Results

Table 1: Simulation Results for the Continuous Outcome Variable

All Correct ρz (Xi ) and µz (Xi ) misspecified G (x , γ) misspecified

Bias RMSE Cov. Bias RMSE Cov. Bias RMSE Cov.

N=1,000

IV 271.43 6,163.19 95.3 –1,544.41 6,395.32 94.5 271.43 6,163.19 95.3

RA 127.69 6,169.94 95.5 –1,724.20 6,445.16 94.2 127.69 6,169.94 95.5

IPW 162.49 6,958.60 95.8 162.49 6,958.60 95.8 –1,549.48 7,033.47 94.1

IPWRA 159.24 6,300.47 95.4 103.68 6,306.11 95.3 140.70 6,258.49 95.3

AIPW 195.36 6,418.33 95.6 170.13 6,439.62 95.4 170.75 6,304.15 95.4

N=4,000

IV 114.57 3,097.13 94.8 –1,734.22 3,565.59 89.7 114.57 3,097.13 94.8

RA –45.16 3,119.43 94.4 –1,907.94 3,662.62 89.2 –45.16 3,119.43 94.4

IPW –60.69 3,381.29 94.4 –60.69 3,381.29 94.4 –1738.43 3,782.54 91.2

IPWRA –74.71 3,155.63 94.8 –102.96 3,161.44 94.8 –69.52 3,152.04 94.6

AIPW –74.41 3,174.61 94.8 –95.49 3,183.18 94.8 –67.71 3,160.11 94.7

Notes: Results are based on 1,000 replications. “RMSE” is the root mean squared error of an estimator. “Cov.” is the coverage rate for a nominal

95% confidence interval. “IV” is the IV estimate of the coefficient on the endogenous treatment, controlling for X . The remaining estimators

are defined in the main text. To calculate the coverage rate, we use robust standard errors (IV) or standard errors that follow from the GMM

framewor. (remaining estimators).
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Outlook



Outlook

• We propose a new class of estimators for the LATE parameter:

• two ways protection against certain types of misspecification, i.e. doubly

robust

• fitted values are ensured to be in the logical range determined by the

response variable

• desirable finite sample properties

• We also propose a DR version of the Hausman test that can be used to

assess the unconfoundedness assumption and treatment heterogeneity
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