Conservative Holdings, Aggressive Trades: Learning, Equilibrium Flows, and Risk Premia

Thomas Dangl Lorenzo Garlappi Alex Weissensteiner
Vienna Univ. of Technology UBC Free Univ. Bozen

EEA ESEM 2023
Barcelona, August 28, 2023
Motivation

Periods of **high uncertainty** are frequently associated with:

- A **flow of risky assets** from institutional to individual investors'
 - Institutions **sell**/individuals **buy** when uncertainty is high

- An **increase in risk premia**
 - E.g. FOMC, macro, or earning announcements
Existing explanations

- Flows:
 - Portfolio constraints, information asymmetry...
 - Liquidity provision by individual investors
 - “Attention-induced” trading

- Risk premium:
 - Rational expectations: counter-cyclical **objective** risk premium (habits, long-run risks, disasters, ...)
 (survey: Cochrane, 2017)
 - Parameter uncertainty and **learning**: dynamics of **subjective risk premium** ("out-of-sample")
 (Lewellen and Shanken, 2002, Collin-Dufresne, Johannes, and Lochstoer, 2016b, Nagel and Xu, 2022, ...
This paper

- Alternative explanation for equilibrium flows and risk premia that relies on two channels:
 1. Learning about the underlying parameters of the economy
 * Economy with iid-normal dividend, unknown mean and variance
 2. Heterogeneity in agents’ confidence in parameter estimates
 * Ambiguity-neutral vs. Ambiguity-averse investors (Knightian uncertainty/robustness)

- Key channels to explain the effects of cash flow “surprises” on:
 - portfolio flows
 - risk premia
Main results

- **Equilibrium flows**
 - Ambiguity-averse: conservative holdings but aggressive trades after dividend surprises
 - Ambiguity-neutral: aggressive holdings but conservative after dividend surprises

- **Equilibrium risk premia**
 - Endogenously time-varying subjective risk-premium: increasing following large dividend surprises
 - Variance estimate increases after cash flow surprises
 - Skewness in objective risk premium:
 - Increases more after negative dividend surprises
 - Left-skewed price innovations

- **Methodology**: show how to handle learning about variance in an infinite-horizon OLG economy
 - Bayesian updating with “truncated” priors

- **Empirically**: provide support of predictions using institutional investors data
Outline

- Intuition in a simple **two-period** model
- An **infinite-horizon** overlapping generations (OLG) model
 - (Unknown mean, **known variance** \implies no portfolio flows)
 - Unknown mean, **unknown variance** \implies portfolio flows
- **Empirical** evidence
- Conclusion
Two-period model – Economy

- **Risky asset** in finite supply: produces perishable dividends $\tilde{d} \sim N(\mu, \sigma^2)$
 - μ unknown
 - σ known

- **Riskless asset** in infinite supply—exogenous risk-free rate r

- No initial consumption

- At initial date agents have observed a history of t dividends
 - time series average: m and **standard error** $s = \frac{\sigma}{\sqrt{t}}$

- **Two types** of CARA agents with same risk aversion $\gamma > 0$
 - Type-S: **ambiguity neutral** (Subjective Expected Utility)
 - Type-A: **ambiguity averse**
Two-period model – Beliefs

- Type S subjective distribution of the dividend ("single-prior")
 \[\tilde{d} \sim^S \mathcal{N} \left(\mu^S, \sigma^2 \left(\frac{t + 1}{t} \right) \right), \quad \text{where} \quad \mu^S = m \]

- Type A subjective distribution of the dividend ("multi-prior")
 \[\tilde{d} \sim^A \mathcal{N} \left(\mu^A, \sigma^2 \left(\frac{t + 1}{t} \right) \right), \quad \text{where} \quad \mu^A \in \mathcal{P} \equiv [m - \kappa s, m + \kappa s] \]

with $\kappa > 0$ coefficient of ambiguity aversion

- Classical statistics, $\kappa = \text{quantile of a distribution}$ (see, e.g., Bewley, 2011)
- κ captures heterogeneity between agents: $\kappa = 0 \implies A = S$
- Note: size of set of priors \mathcal{P} depends on standard error s
Two-period model – Optimal portfolios

- **Type-S portfolio problem**

\[
\max_{\theta_S} \mathbb{E} \left[-\frac{1}{\gamma} e^{-\gamma \tilde{W}^S} \right], \quad \text{s.t.} \quad \tilde{W}^S = W^S(1 + r) + \theta_S(\tilde{d} - p(1 + r))
\]

- **Type-A portfolio problem** (Gilboa and Schmeidler (1989))

\[
\max_{\theta^A} \min_{\mu^A \in \mathcal{P}} \mathbb{E}^\mathcal{A} \left[-\frac{1}{\gamma} e^{-\gamma \tilde{W}^A} \right], \quad \text{s.t.} \quad \tilde{W}^A = W^A(1 + r) + \theta^A(\tilde{d} - p(1 + r))
\]

\[
\mathcal{P} = [m - \kappa s, m + \kappa s]
\]
Two-period model - Demand and Equilibrium

- Portfolio demand
- p^*
- $m - \kappa s$
- $1 + r$
- $m + \kappa s$
- $1 + r$

- S's demand, θ^S
- A's demand, θ^A
- Aggregate demand
- Aggregate supply

- $p^* < \frac{m - \kappa s}{1 + r}$: both participate
- $p^* > \frac{m - \kappa s}{1 + r}$: A does not participate
Two-period model – Equilibrium

- **Equilibrium price**: \(p^* \) s.t. \(\theta^A + \theta^S = 1 \)

\[
p^* = \frac{1}{1 + r} m - \lambda,
\]

with

\[
\lambda = \begin{cases}
\frac{\gamma}{2} \left(\frac{t+1}{t} \right) \sigma^2 + \frac{\kappa}{2} \frac{\sigma}{\sqrt{t}} & \text{if } \kappa \leq \kappa^* \text{ (A&S participate)} \\
\gamma \left(\frac{t+1}{t} \right) \sigma^2 & \text{if } \kappa > \kappa^* \text{ (Only S participates)}
\end{cases}
\]

- Agent A participates only if ambiguity aversion \(\kappa \) is **sufficiently low** \((\kappa \leq \kappa^*) \)

- If agents A participate, risk premium **linear-quadratic** in \(\sigma \)
 - Ambiguity aversion has a **first-order effect** on asset prices
 - A is locally not risk neutral ("First-order risk aversion")

- \(\lambda \) is S’s **subjective risk premium**: \(\lambda = \mu^S - (1 + r)p^*, \mu^S = m \)
Two-period model – Equilibrium portfolio holdings

- **Equilibrium risky holdings:** Replace equilibrium \(p^* \) in agents’ risky asset demands

\[
\theta^A = \frac{1}{2} - \frac{\kappa}{2\gamma} \left(\frac{\sqrt{t}}{t+1} \right) \frac{1}{\sigma} \\
\theta^S = \frac{1}{2} + \frac{\kappa}{2\gamma} \left(\frac{\sqrt{t}}{t+1} \right) \frac{1}{\sigma}
\]

- An **increasing** dividend **volatility** \(\sigma \) leads to:
 - an increase in \(\theta^A \) (“aggressive A trades”)
 - a decline in \(\theta^S \) (“conservative S trades”)

Note: equilibrium portfolio weights \(\theta \)s **independent** of beliefs about dividend **mean** \(\mu \)
Equilibrium Portfolios

Ambiguity-averse equilibrium holdings θ^A increase with dividend volatility

Ambiguity-neutral equilibrium holdings θ^S decrease with dividend volatility
Intuition

- Because of ambiguity aversion \(A \) holds less risky asset than \(S \)
 - \(A \) has more marginal “risk capacity” than \(S \)
 - \(A \)’s risky-asset demand shows less risk sensitivity

- Following an increase in variance:
 - \(A \) requires less return compensation than \(S \) to keep the same portfolio
 - As a “response to an increase” in volatility (handwaving argument, more rigorous later)
 - \(\Rightarrow A \) buys and \(S \) sells risky asset

- Ambiguity aversion (\(A \) agents) implies
 - “conservative” holdings: \(\theta^A < \theta^S \) BUT
 - “aggressive” trades: \(\Delta \theta^A > 0, \Delta \theta^S < 0 \)

- Caveat: comparative statics w.r.t. \(\sigma \neq \) portfolio flows!
An Overlapping-Generations (OLG) model

- **Infinite horizon.** Two types of agents:
 - Ambiguity averse: A
 - Ambiguity neutral (subjective expected utility): S

- Agents live for **two periods** with overlapping generations, CARA utility.

- Risky and risk-free assets. No first-period consumption.

- iid dividend process $d_t \sim \mathcal{N}(\mu, \sigma^2)$:
 - μ, σ constant but **unknown**

- Portfolios of generation-t: θ^i_t, $i = A, S$

- Inter-generational **flows**

$$\Delta \theta^i_t = \theta^i_t - \theta^i_{t-1}, \quad i = A, S$$
Why learning about volatility?

- For **tractability**, literature focused mainly on uncertainty about mean, not variance
 - High-frequency observations \Rightarrow variance estimated precisely (Merton 1980)

- Learning about variance relevant if information arrives in “**chunks**”, e.g., FOMC announcements

- Weitzman (2007, AER): “for asset pricing implications […] the most critical issue involved in Bayesian learning […] is the unknown variance”
 - Fat tails of predictive distribution can reverse macro-finance puzzles (risk premium, riskfree, volatility)
Why not stochastic volatility?

- Starkly different implication for equilibrium flows.

- **Stochastic and observable volatility**
 - any new dividend observation reduces the standard error of the mean and hence its confidence interval

- **Unobservable volatility and learning**
 - a change in the estimated variance implies a change in the perceived information quality of all historically observed dividends
 - any new dividend observation can both increase or decrease the standard error of the mean
Two issues

1) OLG with **unknown variance** \implies subjective d_{t+1} is Student-t (fat tails!)
 - $\mathbb{E}_t[u(d_{t+1})] = \mathbb{E}_t \left[-\frac{1}{\gamma} e^{-\gamma d_{t+1}} \right]$ does not exist!! (see Geweke, 2001)
 - Solution: Assume $\sigma \in [\sigma, \bar{\sigma}]$, precision $\phi = 1/\sigma^2$ is **truncated Gamma**
 - Bakshi and Skoulakis (2010) provide Bayesian updating theory that preserves **conjugacy**
Two issues

1) OLG with unknown variance \implies subjective d_{t+1} is Student-t (fat tails!)

- $E_t[u(d_{t+1})] = E_t \left[-\frac{1}{\gamma} e^{-\gamma d_{t+1}} \right]$ does not exist!! (see Geweke, 2001)

- Solution: Assume $\sigma \in [\sigma, \bar{\sigma}]$, precision $\phi = 1/\sigma^2$ is truncated Gamma

 * Bakshi and Skoulakis (2010) provide Bayesian updating theory that preserves conjugacy
Two issues

1) OLG with unknown variance \(\Rightarrow \) subjective \(d_{t+1} \) is Student-t (fat tails!)

 - \(\mathbb{E}_t[u(d_{t+1})] = \mathbb{E}_t \left[-\frac{1}{\gamma} e^{-\gamma d_{t+1}} \right] \) does not exist!! (see Geweke, 2001)

 - Solution: Assume \(\sigma \in [\sigma, \bar{\sigma}] \), precision \(\phi = 1/\sigma^2 \) is truncated Gamma

 * Bakshi and Skoulakis (2010) provide Bayesian updating theory that preserves conjugacy

\[\begin{align*}
\text{normal} & \quad \text{t} & \quad \text{dampened t} \\
\text{density} & \quad \text{density} \\
-8\sigma & \quad -3\sigma & \quad -3\sigma
\end{align*}\]
Two issues (cont.)

2) OLG with constant parameters \((\mu, \sigma)\) \implies\ learning eventually irrelevant

- Perpetual learning is relevant when there is “leakage” in information transfer from generation \(t\) to generation \(t + 1\)

- Model information leakage as shocks that “blur” priors on \(\mu\) and \(\sigma\)

- Similar to “fading memory” (Nagel and Xu, 2021) or “age-related experiential learning” (Malmendier and Nagel, 2016, Collin-Dufresne, Johannes, and Lochstoer, 2016a, Ehling, Graniero, and Heyerdahl-Larsen, 2018, Malmendier, Pouzo, and Vanasco, 2020)
Two issues (cont.)

2) **OLG with constant parameters** \((\mu, \sigma) \Rightarrow \) learning eventually irrelevant

▶ **Perpetual learning** is relevant when there is “leakage” in information transfer from generation \(t\) to generation \(t+1\)

▶ Model information leakage as shocks that “blur” priors on \(\mu\) and \(\sigma\)

▶ Similar to “fading memory” (Nagel and Xu, 2021) or “age-related experiential learning” (Malmendier and Nagel, 2016, Collin-Dufresne, Johannes, and Lochstoer, 2016a, Ehling, Graniero, and Heyerdahl-Larsen, 2018, Malmendier, Pouzo, and Vanasco, 2020)

⇒ **OLG with unknown variance and perpetual learning**

\[
\begin{align*}
 m_t &= \frac{n_{t-1}}{n_t} m_{t-1} + \frac{1}{n_t} d_t \\
 b_t &= b_{t-1} + \frac{n_{t-1}}{n_t} (d_t - m_{t-1})^2 \\
 m_{t+1} &= \frac{n_t}{n_{t+1}} m_t + \frac{1}{n_{t+1}} d_{t+1} \\
 b_{t+1} &= b_t + \frac{n_t}{n_{t+1}} (d_{t+1} - m_t)^2 \\
 d_{t+2} &\sim^i t_{\nu_{t+1}}^{D}[\mu_{t+1}^{i}, b_{t+1}, \frac{n_{t+1}+1}{n_{t+1}}]
\end{align*}
\]
OLG with unknown variance and perpetual learning: Equilibrium portfolios and risk premia

As in the two-pd model, an increase in $\hat{\sigma} \equiv \sqrt{b_t/n}$ leads to:

- an increase in θ_t^A (“aggressive A trades”) and a decrease in θ_t^S
- an increase in risk premium

Portfolios, θ_t^S, θ_t^A

Risk premium $\Lambda(b_t)$
Equilibrium portfolios and dividend surprises

- **Dividend surprise:** \(e^{i}_{t+1} = d_{t+1} - \mu^i_t \). **Deviation** from subjective mean belief

- Equilibrium flows large positive and negative surprises \(\implies A \) buys and \(S \) sells the risky asset
Equilibrium portfolio flows and risk premia vs. dividend surprises

- Large surprises \Rightarrow A buys ($\Delta\theta_t^A > 0$)
- Large surprises \Rightarrow high risk premium Λ_t (right axis)
Return predictability

- **Objective** risk premium. Using the equilibrium price $p_t = \frac{1}{r}m_t - \Lambda(b_t)$, we have

$$\Lambda_t^{\text{obj}} \equiv \frac{\mu}{r} - p_t = \begin{cases} \frac{1}{r}(\mu - m_t) + \Lambda(t), & \text{if known variance} \\ \frac{1}{r}(\mu - m_t) + \Lambda(b_t), & \text{if unknown variance} \end{cases}$$

b_t: measure of variance

- $\mu - m_t$ detectable **ex-post** but not exploitable **ex-ante** (Lewellen and Shanken, 2002)

- **Subjective** risk premium $\Lambda(b_t)$ **not countercyclical**, increases with estimated **volatility** (Nagel and Xu, 2022)

- **Skewness**: asymmetry of Λ_t^{obj} response to news shocks:
 - Bad news \Rightarrow High b_t and low m_t \Rightarrow amplification effect on Λ_t^{obj}
 - Good news \Rightarrow High b_t and high m_t \Rightarrow dampening effect on Λ_t^{obj}
Empirical analysis (in progress . . .)

Two key challenges:

1) How to map agents in the model to observable market participants?
 ▶ Individual more averse to uncertainty than institutions (Li, Tiwari, and Tong, 2017)
 ▶ Ambiguity aversion influenced by perceived competence (Heath and Tversky, 1991, Fox and Tversky, 1995)
 ▶ ⇒ Type-A ≈ retail investors, Type-S ≈ institutional investors

2) How to measure uncertainty/surprises?
 ▶ Use large market return realizations (Δp_t) as proxy for increase in uncertainty (e_t)
Data and methodology

Holdings:
- **Aggregate** level and flow data on corporate equity holdings of **households** and **financial sector**: 1952.Q1–2020.Q4 (Federal Reserve of St. Louis, FRED)
 - 13F reporting institutions, mutual, pension and insurance funds: 274,697 firm-quarter observations

Returns:
- CRSP return data of all NYSE, AMEX, and NASDAQ firms, 1965.01–2020.12

Surprises in firms’ future profitability:
- Deviation from standardized market returns over a rolling 20-quarter window
 (Mkt return from Kenneth French’s data library)

Subjective risk premium, conditional on surprises
- **Aggregate.** Households and financials holdings return in excess of the 3-month risk-free rate (FRED)
- **Cross sectional.** Fama-MacBeth regression using stock return data (CRSP)
Evidence – institutional investors portfolio flows

- Institutional investors **reduce** risky holdings after extreme surprises

“Surprise”: standardized market return $\Delta \theta_t^S$: change in risky asset holding of institutions
Evidence – subjective risk premium

- Large surprises (positive and negative) imply a high subjective risk premium

![Diagram showing lagged standardized market return, lag(z_r) for FRED and CRSP](image-url)
EUR STOXX 50 futures transactions on Eurex

January 2002 to December 2020

824 million trades at a frequency of milliseconds

Three trader types: Agency traders, proprietary traders, market makers

Argue that agency traders (trading for clients) are less ambiguity averse than proprietary traders and market makers

- Desire for robustness as a reaction of market makers’ inventory risk, Routledge and Zin (2009), Easley and O’Hara (2010) and Zhou (2021)

- Proprietary traders and market makers do less informed trades, Menkveld and Saru (2023)

Confirm our model predictions regarding flows and risk premia
Conclusions

- Develop a general equilibrium asset pricing model with
 - learning about the moments of the endowment process
 - heterogeneous confidence in parameter estimates

- Learning about variance (not just the mean)
 - key to understanding risk-premia and portfolio flows around dividend “surprises”

- Can explain features of both asset prices and flows
 - Individuals hold conservative portfolios but buy in response to positive and negative surprises
 - Endogenously time-varying risk premium

- Verify these predictions empirically

- Understanding the dynamics of flows in inelastic markets (“demand-based asset pricing”)
Additional Slides
Intuition–Type-\(S\) agents’ iso-portfolios

- **Iso-portfolios**: pairs \((\sigma, \lambda)\) s.t. \(S\)'s portfolio \(\theta^S\) is constant

- Agents \(S\) are “locally risk neutral” (second-order risk aversion)
Intuition–Type-A agents’ iso-portfolios

- If $\lambda < \kappa \sigma / \sqrt{t} \Rightarrow \text{no participation}$
- Agents A are “locally risk averse” (first-order risk aversion)
Intuition–Market clearing, $\theta^A + \theta^S = 1$

- A iso-lines always **flatter** than S at equilibrium ($\theta^A + \theta^S = 1$)
 - Agents A require a **smaller compensation** for bearing **extra risk** than S
Ambiguity averse agents increase θ^A as σ increases.

- A (S) iso-lines always intersect λ from above (below)

Bibliography II

