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Abstract. We introduce continuous-time models of concentration in the active fund 
management industry, where managers with heterogeneous dynamic unobservable abilities 
compete for investments of risk-neutral or risk-averse investors. Dynamics of managers’ 
inferred abilities determine dynamics of equilibrium fund sizes thus concentration, measured 
by the Herfindahl-Hirschman Index (HHI). Positive performance shocks of managers, whose 
inferred abilities are sufficiently large (small) relative to those of other managers, exert positive 
(negative) impacts on HHI, but managers’ higher performance variations mitigate these 
impacts. Higher stock market volatility decreases HHI when the fund size distribution is 
skewed to the right. Our empirical results support our theory. 
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1 Introduction 

Active fund management industry (AFMI) investors seek excess returns over passive 

indices by allocating wealth, based on preference, to AFMI managers, who implement costly 

portfolio strategies and charge fees [e.g., Berk and Green (2004) and Berk (2005)]. This implies 

that in AFMI buyers (investors) determine the quantity of production (investment amount). The 

producers (fund managers), with fixed prices (management fees), stimulate production 

quantities to increase profits. These features make AFMI different from classical production 

industries, in which producers determine product prices and production quantities, and buyers 

decide the quantities they buy. These special features also make the analysis of AFMI 

concentration different from those of classical production industries. Current literature has 

shown that AFMI concentration has significant impact on AFMI size and performance 

[Feldman, Saxena, and Xu (2020, 2023)], implying that AFMI concentration dynamics exert 

significant effects on AFMI over time. As AFMI manages a huge amount of wealth,1 studying 

AFMI industrial organization, in particular its dynamic concentration, offers significant 

economic insights. However, there have been few studies of AFMI concentration dynamics. 

Our goal is to fill this gap. 

We develop a continuous-time framework to model AFMI with multiple heterogeneous 

active equity funds. Fund managers’ abilities to create excess returns over a passive benchmark 

return (gross alpha) are dynamic and unobservable for both investors and managers. Both infer 

these abilities by observing fund returns (hereafter, we call the estimates of these abilities as 

inferred abilities).2 AFMI has decreasing returns to scale in the sense that funds’ total costs are 

increasing and convex in the size of assets under active management. Managers set constant 

management fees and, over time, maximize fund profits by dynamically choosing the size of 

wealth they actively manage to determine fund net alphas.3  Risk-neutral investors supply 

 
1 According to the Investment Company Institute (ICI), the total net assets of worldwide regulated open-end funds 
(including mutual funds, exchange-traded funds, and institutional funds) were $63.1 trillion in 2020. See the 2021 
Investment Company Fact Book at the ICI website, https://www.ici.org/system/files/2021-05/2021_factbook.pdf, 
accessed on October 12th, 2021. 
2 The active funds’ observable gross alphas follow Itô processes in which the drift terms depend on the dynamic 
unobservable manager ability levels. These ability levels also follow Itô processes. Their diffusions are (locally, 
imperfectly) correlated with those of funds’ gross alpha processes. 
3 Berk and Green (2004) shows that the case in which the fund manager actively manages the whole fund and 
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capital with infinite elasticity to funds that offer positive expected net alphas; due to decreasing 

returns to scale, investments drive expected net alphas to zero. 

Fund managers differentiate themselves by their inferred abilities. In equilibrium, a 

fund’s size and, thus, profit is increasing and convex in its manager’s inferred ability.4 This 

implies that in equilibrium, better managers manage larger funds and receive larger rewards. 

In our model and AFMI models in current literature, such as Berk and Green (2004), 

Choi, Kahraman, and Mukherjee (2016), Brown and Wu (2016), and Feldman and Xu (2022), 

many common measures of AFMI’s industrial organization are less informative than the 

concentration measure that we use. For example, as fund costs are transferred to investors as 

deductions in fund returns, a fund’s profit margin (the difference of revenue and costs, divided 

by the revenue) and Lerner Index (the difference of fee and marginal cost, divided by fee) are 

always equal to one. These results imply that profit margin and Lerner Index cannot effectively 

measure funds’ profitability and market power, respectively. This makes AFMI’s concentration 

dynamics a main attribute in studying the AFMI’s industrial organization dynamics. 

We use the Herfindahl-Hirschman index (HHI) to measure AFMI concentration, which 

is the sum of funds’ market shares squared,5  for several reasons. First, HHI reflects the 

combined influence of both unequal fund sizes and the concentration of activity in a few large 

funds, so it has advantage over other concentration measures, such as a concentration ratio, 

which only sums up the market shares of a few largest funds and ignores the information of 

other funds. Second, some regulatory agencies use HHI to measure concentration.6 Third, HHI 

 
chooses the management fee at each time is equivalent to the case in which the fund manager chooses the amount 
of the fund to actively manage at each time under a fixed management fee. As the latter case is more realistic, we 
focus on it to conduct our analyses. 
4 The intuition is that to maximize fund profit with a fixed fee, a fund manager tries to attract as much investment 
as possible by offering positive expected net alpha to investors. Under decreasing returns to scale, the manager’s 
inferred ability determines the expected net alphas that he/she can produce and then determines the equilibrium 
fund size. A manager with higher inferred ability puts a larger amount of the fund under active management to 
offer higher expected net alpha, and investors respond to this higher inferred ability more intensively when 
investing in this fund. 
5 A higher (lower) HHI implies a more (less) concentrated AFMI. The highest value of HHI is one, which implies 
a monopolistic AFMI. The lowest value of HHI is the inverse of the number of funds, which implies homogeneous 
funds in the AFMI. 
6 For example, the U.S. Census calculates industry concentration as HHI, used by regulatory agencies such as the 
Federal Trade Commission and Department of Justice [e.g., Ali, Klasa, and Yeung (2009) and Azar, Schmalz, and 
Tecu (2018)]. 
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is a common measure of concentration in current theoretical and empirical studies.7 Fourth, 

new concentration measures are calculated based on HHI. For example, the normalized 

Herfindahl-Hirschman index adjusts the effects of the number of rivals [Cremers, Nair, and 

Peyer (2008)], and the modified Herfindahl-Hirschman index captures the concentrations of 

producers and of shareholders’ ownership [O’Brien and Salop (2000), Azar, Schmalz, and Tecu 

(2018), and Koch, Panayides, and Thomas (2021)]. 

We show that managers’ relative inferred abilities, sensitivities of gross alphas to 

abilities, and fund size factors (each of which equals the inverse of the product of a fund’s 

management fee and decreasing returns to scale parameter), together determine the equilibrium 

AFMI HHI (hereafter, briefly, HHI). The heterogeneity in these parameters and their values 

relative to each other are relevant in studying HHI. More importantly, fund managers’ inferred 

abilities are dynamic, which drive the dynamics of HHI over time. 

Our first prediction on HHI dynamics is that if a manager’s inferred ability is 

sufficiently large (small) relative to those of other managers, 8  then an increase in this 

manager’s inferred ability due to positive performance shock and/or positive ability drift, has 

a positive (negative) impact on the dynamics of HHI. The reason is that if a manager’s inferred 

ability is sufficiently large, then the fund’s equilibrium size is sufficiently large compared to 

other funds. Even higher inferred ability attracts more investments to this fund, making AFMI 

more concentrated. On the other hand, if a manager’s inferred ability is sufficiently small, then 

the fund’s equilibrium size is sufficiently small relative to other funds. A higher inferred ability 

attracts more investment to this fund, making its size closer to that of other funds and making 

AFMI less concentrated. 

Our second prediction is that, if a manager’s inferred ability is sufficiently large (small) 

relative to the inferred abilities of other managers, then a higher performance variation of this 

manager mitigates the positive (negative) impact induced by a positive shock in this manager’s 

 
7 See, for example, theoretical models, such as Bustamante and Donangelo (2017) and Corhay, Kung, and Schmid 
(2020), that study firm concentration, and Feldman, Saxena, and Xu (2020, 2023) that study AFMI concentration; 
and see empirical models, such as Cornaggia, Mao, Tian, and Wolfe (2015), that study labor concentration and 
industry concentration, Spiegel and Tookes (2013) and Gu (2016) that study product market concentration, and 
Giannetti and Saidi (2019) that study credit concentration. 
8 The inferred ability level that is sufficiently large (small) is determined by an interesting relation involving the 
fund size, AFMI size, and the sum of squares of AFMI fund sizes. Please see Corollary RN2.1 below. 
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performance on the dynamics of HHI. The reason is that if a manager’s performance variation 

is higher, then investors allocate smaller weights to this manager’s performance shocks when 

learning about his or her ability. Consequently, investment flows react less intensively to a 

positive shock in this manager’s performance, which mitigates the positive (negative) impact 

of this positive shock on the dynamics of HHI. 

We further extend our model to allow sensitivities of gross alphas to manager abilities 

to be decreasing functions of stock market volatility. We make this assumption because higher 

stock market volatility increases market stress and redemption risk, which induces managers 

to prepare a larger cash buffer and impedes managers in implementing strategies to create 

abnormal returns [Jin, Kacperczyk, Kahraman, and Suntheim (2022)]. This setting makes our 

framework a nonlinear one and enables us to study the effect of stock market volatility on HHI.9 

Under this setting, given the same inferred manager abilities, higher stock market volatility 

decreases fund expected gross alphas, thus equilibrium fund sizes. As changes in large funds’ 

sizes exert a large impact on the dynamics of HHI, the aggregate effect of higher stock market 

volatility on the dynamics of HHI is negative when extremely large funds exist. In other words, 

we predict that if the distribution of fund sizes is skewed to the right, then HHI decreases with 

stock market volatility. This is our third prediction. 

Moreover, we examine a special case in which managers’ unobservable abilities are 

constant and associate with gross alphas within a linear framework. In this case, as time goes 

to infinity, AFMI reaches a steady state in which investors know managers’ abilities (managers’ 

inferred abilities stay unchanged).10  Consequently, investments in funds stay unchanged, 

making HHI constant. As this result are incompatible with empirical findings that HHI is 

dynamic in the long term, as shown by Feldman, Saxena, and Xu (2020, 2023) and the 

empirical section of this paper, linear frameworks with constant manager abilities, such as those 

of Berk and Green (2004), Choi, Kahraman, and Mukherjee (2016), and Brown and Wu (2016), 

 
9 In our baseline model, the coefficients of the Itô processes of observable gross alphas and unobservable manager 
abilities are constant, so it is a linear framework requiring linear filtering techniques to solve it. Linear frameworks 
in the current literature, such as Berk and Green (2004) and their followers, cannot directly model the effects of 
economic factors on gross alphas/manager abilities as we do in our nonlinear framework. Our nonlinear 
framework requires nonlinear filtering techniques to solve it. 
10 The reason is that, over time, the estimation precisions of inferred abilities monotonically increase and the 
sensitivities of inferred abilities to performance shocks monotonically decrease to zero. 
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do not explain the empirical dynamics of HHI. Thus, it is important to study HHI with dynamic 

manager abilities, especially under a nonlinear framework. 

We show that our results hold for the case where investors are mean-variance risk averse 

who maximize portfolio instantaneous Sharpe ratios. In equilibrium, investors’ risk 

considerations decrease fund sizes. However, the way to compare fund sizes relative to those 

of others does not depend on investors’ risk considerations, so the dynamics of HHI relates to 

managers’ relative inferred abilities in a way similar to that in the case of risk-neutral investors. 

We also demonstrate that our model is compatible with effects of fund entrances and 

exits on HHI. We allow the total number of funds to change over time and funds exit (enter) 

the market if their managers’ inferred abilities decrease (increase) to zero.11  We show that 

under this setting, fund entrances and exits do not immediately affect the dynamics of HHI, but 

they change the set of funds in AFMI, a change that exerts impacts on the dynamics of HHI as 

captured by our model. 

Further, we show that when we measure HHI at the fund family level (such that HHI is 

the sum of fund families’ market shares squared), the earlier three predictions on fund-level 

HHI dynamics still hold if similar requirements on the fund families’ aggregate inferred 

abilities/family sizes are satisfied.12 

In addition, we show that if HHI changes proportionally gross alpha sensitivities to 

abilities and fund size factors, then the effects of HHI on these parameters do not affect funds’ 

relative sizes, such that our earlier results of HHI still hold. Thus, our equilibrium is compatible 

with those in the current literature where AFMI concentration affects equilibrium fund alphas 

and sizes [e.g., Pastor and Stambaugh (2012), and Feldman, Saxena, and Xu (2020, 2023)]. 

To empirically test our theoretical predictions, we use the active equity mutual fund 

data from the Center for Research in Security Prices (CRSP). Our sample period is January 

1990 to December 2020, and we use monthly data. First, we define the large-fund group as the 

 
11 In other words, funds’ survival levels of their managers’ inferred abilities are zero. These survival levels can 
be regarded as those endogenously chosen by profit-maximizing managers. The reason is that funds with positive 
inferred abilities earn positive equilibrium profits and optimally choose to stay in the market to earn the profits, 
whereas without short selling of assets, funds with negative inferred abilities optimally choose to put zero assets 
under active management to avoid losses and exit AFMI. 
12 In particular, in the first two predictions, we require that the manager is in a fund family with sufficiently large 
(small) aggregate inferred ability relative to that of other fund families. In the third prediction, we require the 
distribution of fund family sizes to be skewed to the right. See the detailed analysis in Section 2.9. 
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five funds that have the largest sizes, and the small-fund group as the funds with fund size 

values from the fifth percentile to the tenth percentile. These funds are likely to be sufficiently 

large and sufficiently small, respectively, relative to other funds, and can be used to test our 

theoretical predictions. Second, we define the shocks in these two groups’ performances 

relative to those of other funds as the changes of these groups’ market shares, because funds’ 

market shares indicate their managers’ inferred abilities relative to those of other funds, as 

shown in our model. 

Third, to measure fund performance, we use 24-month rolling windows to estimate one-

month-ahead fund net alphas, using the five-factor model developed by Fama and French (2015) 

and the four-factor model developed by Fama and French (1993) and Carhart (1997). Then, we 

develop three measures of performance variation. Following Amihud and Goyenko (2013), our 

first measure is the 1 − 𝑅ଶ in each rolling-window regression, which is equal to the residual 

sum of squares divided by the total sum of squares.13 As the residuals in each factor model 

regression can be regarded as the in-sample estimates of abnormal returns, 1 − 𝑅ଶ can be 

regarded as the in-sample estimate of fund performance variation (normalized by total variation 

of the dependent variable). Our second and third measures of performance variation are the 

standard deviation of fund net alpha and of fund gross alpha, respectively, where fund gross 

alpha is fund net alpha plus annual expense ratio divided by 12. These two measures are the 

performance volatility measures used by Huang, Wei, and Yan (2021). Forth, similar to the 

current literature, such as Jin, Kacperczyk, Kahraman, and Suntheim (2022), we choose the 

option-implied volatility index (VIX) as our measure of stock market volatility. 

We first show that the flow–net alpha sensitivity significantly decreases with the VIX 

level and significantly decreases with our measures of performance variation. This empirical 

evidence supports our assumptions that sensitivities of gross alphas to manager abilities 

decrease with stock market volatility and that investors, when learning about the manager’s 

ability, rely less on fund performance if the fund’s performance is more volatile. We also show 

that in our sample some extremely large funds and fund families exist in the market, and funds 

in a large-fund (small-fund) group are in fund families that are very large (small) relative to 

 
13 Amihud and Goyenko (2013) demonstrate that this 1 − 𝑅ଶ measure is highly related to fund performance. 
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other fund families. Then, by our theory, our three predictions should hold whether we measure 

HHI at the fund level or fund family level. 

In testing our predictions, we first measure HHI at the fund level, and regress the change 

in HHI on the lagged changes in the VIX level and in the market shares of the large-fund group 

and small-fund group. We find that an increase in VIX significantly decreases HHI, showing 

that higher stock market volatility exerts a negative aggregate impact on HHI. Also, an increase 

in the large-fund group’s market share significantly increases HHI, showing that a positive 

shock in this group’s relative performance induces positive impact on the change of HHI. This 

positive impact is smaller when this group’s performance variation is higher, as the interaction 

term of the large-fund group’s change of market share and performance variation is 

significantly negative. Also, the coefficient of the change in the market share of the small-fund 

group is negative but insignificant; however, the interaction term of the small-fund group’s 

change of market share and performance variation is significantly positive. This implies that 

this group’s performance variation is likely to mitigate the impact of the shocks in this group’s 

relative performance on the dynamics of HHI. In addition, we find consistent results when we 

measure HHI at the fund family level. Our results are robust to different measures of change in 

stock market volatility, different classifications of the large-fund group and small-fund group, 

and different estimation methods of the regression models. In general, our empirical results are 

consistent with our theoretical predictions. 

The above findings have relevant implications. As shown above, AFMI concentration 

is higher if stock market volatility is lower and/or if large funds perform better with lower 

performance variation. This higher concentration would increase fund net alphas and AFMI 

size, on average, as shown by Feldman, Saxena, and Xu (2020). Thus, investors should 

incorporate stock market volatility and the performance and performance variation of large 

funds into their decision of fund investments. 

We offer additional empirical evidence of HHI that support our theory and that are 

consistent with those in the literature. For example, we show the aggregate size of funds that 

enter (exit) the market is negligible compared to the AFMI size, which supports our framework 

that fund entrance (exit) does not exert immediate impact on HHI dynamics. Also, we show 

that HHI of the U.S. active equity mutual fund market, whether measured at the fund or fund 
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family level, fluctuates over the last few decades and does not converge, consistent with a 

framework with dynamic unobservable manager abilities and inconsistent with a framework 

with constant such abilities where HHI converges. Moreover, we find that from the early 1990s 

to the early 2000s, the number of funds and fund families keep increasing whereas HHIs at the 

fund and fund family levels keep decreasing. This is consistent with the fact that in this period, 

AFMI incumbents that have a high overlap in their portfolio holdings with those of new 

entrants experience lower fund flows and lower alphas [Wahal and Wand (2011)], and with the 

fact that there is a decrease in fund manager performance in similar periods [Kosowski, 

Timmermann, Wermers, and White (2006) and Fama and French (2010)]. The reason is that as 

new funds hold portfolios similar to those of the incumbents, it is more difficult for funds to 

outperform each other, so managers’ inferred abilities become close to each other, inducing 

close fund and fund family sizes and lower HHIs. 

Contribution to the Literature 

This paper makes multiple contributions to the literature. First, to our best knowledge, 

we develop the first model of equilibrium dynamic AFMI concentration under a framework of 

multiple heterogeneous managers with dynamic unobservable abilities. We theoretically show 

how AFMI concentration (competitiveness) evolves with different factors over time and show 

that our results hold 1) whether investors are risk neutral or mean-variance risk averse, 2) under 

funds’ entrances and exits, and 3) when AFMI concentration exerts impacts on alpha 

production and fund size factors. Our paper offers new insights compared to the current 

literature on AFMI competitiveness [e.g., Pastor and Stambaugh (2012), and Feldman, Saxena, 

and Xu (2020, 2023)], which studies one-period fixed-point equilibrium AFMI concentration. 

Second, novel to the literature, we provide empirical evidence of how relative fund 

performances, performance variations, and stock market volatility drive AFMI HHI dynamics. 

This evidence supports our theory. Our empirical findings relate to current literature on AFMI 

performance, volatility, and market stress [e.g., Amihud and Goyenko (2013), Huang, Wei, and 

Yan (2021), Jin, Kacperczyk, Kahraman, and Suntheim (2022)]. 

Third, we theoretically and empirically study AFMI HHIs at the fund and fund family 

levels to offer more insights than those implied by the current literature [e.g., Pastor and 

Stambaugh (2012), and Feldman, Saxena, and Xu (2020, 2023)], which studies only the fund-
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level competitiveness. Our HHI at the fund family level is consistent with the current findings 

that member funds in a fund family can cooperate to compete in the market [e.g., Evans, Prado, 

and Zambrana (2020), Eisele, Nefedova, Parise, and Peijnenburg (2020), and Xu (2023)]. 

Forth, our model explains stylized findings in AFMI concentration, size, and 

performance in a compatible way, such as those by Kosowski, Timmermann, Wermers, and 

White (2006), Fama and French (2010), and Wahal and Wand (2011). 

Finally, we further demonstrate that a nonlinear framework of manager abilities and 

gross alphas explain and predict AFMI HHI dynamics better than a linear framework. We show 

that using our nonlinear framework, we can easily model effects of economic factors, such as 

stock market volatility, on the dynamics of HHI; linear frameworks that are commonly used in 

the current literature, such as those of Berk and Green (2004), Dangl, Wu, and Zechner (2008), 

Choi, Kahraman, and Mukherjee (2016), and Brown and Wu (2016), cannot do this. This result 

provides guidelines for future research on the dynamics of AFMI concentration and supports 

the spirit of Feldman and Xu (2022), which introduces this type of nonlinear framework in 

studying AFMI phenomena. 

The rest of this paper is organized as follows. Section 2 introduces our model. Section 

3 provides our empirical study. Section 4 concludes and discusses future research on this area. 

2 A Model of AFMI Concentration 

We introduce a rational equilibrium model to study the dynamics of AFMI 

concentration. In our model, investors can invest in multiple independent heterogeneous active 

funds, each with one manager, and in a passive benchmark portfolio. This multiple-fund setting 

is similar to the one in Brown and Wu (2016). Within a continuous-time framework, we study 

the active fund managers and investors over a time interval, at times 𝑡 , 𝑡 ∈ [0,𝑇] , where 𝑇 ,𝑇 > 0 is a constant, allowed to be sufficiently large (i.e., 𝑇 → ∞) when we study the steady 

state in some special cases. Our baseline model uses a linear framework as shown in Section 

2.1 to study the dynamics of AFMI concentration. Then, we extend our framework to a 

nonlinear one as shown in Section 2.5 to study how the dynamics of stock market volatility 

affects that of AFMI concentration. Sections 2.4 to 2.8 study AFMI concentration at the fund 

level, whereas Section 2.9 studies AFMI concentration at the fund family level. Other settings 
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of our model are similar to those in the current literature.14 

2.1 Observable Fund Returns and Unobservable Manager Abilities: Filtering 

There are 𝑛, 𝑛 ≥ 2, active funds in the market, which create returns for investors by 

investing their wealth in the stock market. Let 𝛏𝐭, 0 ≤ 𝑡 ≤ 𝑇 be an 𝑛 × 1 vector of active 

funds’ gross share prices, i.e., share price before fund costs and fees, where the 𝑖th element is 𝜉௜,௧ , 𝑖 = 1, … ,𝑛 . Then, 𝐈ି𝟏(𝛏𝐭)𝐝𝛏𝐭  is the 𝑛 × 1  vector of the instantaneous fund gross 

returns, where 𝐈(𝛏𝐭) is an 𝑛 × 𝑛 diagonal matrix with 𝜉௜,௧ as the 𝑖th diagonal element. The 𝑛 × 1 vector 𝐝𝛏𝐭 has its 𝑖th element as 𝑑𝜉௜,௧, which is the differential of 𝜉௜,௧, 𝑖 = 1, … ,𝑛. 

Hereafter, a vector with 𝐝 on the left has a similar definition. For simplification, we assume 

that active funds have beta loads of one on the passive benchmark portfolio. To focus on the 

active funds’ returns, similar to Feldman and Xu (2022), we normalize the passive benchmark 

portfolio’s return to zero so that the vector of instantaneous fund gross returns in excess of the 

passive benchmark is also 𝐈ି𝟏(𝛏𝐭)𝐝𝛏𝐭. Hereafter, we call 𝐈ି𝟏(𝛏𝐭)𝐝𝛏𝐭 the funds’ instantaneous 

gross alphas, or briefly, gross alphas. 

Fund gross alphas depend on the 𝑛 × 1  vector of fund managers’ instantaneous 

abilities, 𝛉𝐭, 0 ≤ 𝑡 ≤ 𝑇, to beat the benchmark, where the 𝑖th element is 𝜃௜,௧, 𝑖 = 1, … ,𝑛. 

We call them, briefly, abilities. These abilities are unobservable to both fund managers and 

investors. Fund managers and investors learn about 𝛉𝐭 by observing the history of fund gross 

alphas 𝐈ି𝟏(𝛏𝐭)𝐝𝛏𝐭 , 0 ≤ 𝑠 ≤ 𝑡  (or equivalently by observing 𝛏𝐬 , 0 ≤ 𝑠 ≤ 𝑡 ). We assume a 

complete probability space (Ω,ℱ,ℙ)  with filtration ሼℱ௧ሽ଴ஸ௧ஸ் . The 𝑛 × 1  vectors of 

independent Wiener processes, 𝐖𝟏,𝐭  and 𝐖𝟐,𝐭 , 0 ≤ 𝑡 ≤ 𝑇 , are adapted to this filtration, 

where their 𝑖th elements are 𝑊ଵ௜,௧ and 𝑊ଶ௜,௧, 𝑖 = 1, … ,𝑛, respectively.15 The unobservable 𝛉𝐭 and the observable 𝛏𝐭 evolve as follows: 

 𝐝𝛉𝐭 = (𝐚𝟎 + 𝐚𝟏𝛉𝐭)𝑑𝑡 + 𝐛𝟏𝐝𝐖𝟏,𝐭 + 𝐛𝟐𝐝𝐖𝟐,𝐭, (1) 

 𝐈ି𝟏(𝛏𝐭)𝐝𝛏𝐭 = 𝐀𝛉𝐭𝑑𝑡 + 𝐁𝐝𝐖𝟐,𝐭, (2) 

with initial conditions 𝛉𝟎  and 𝛏𝟎 , respectively. The 𝑛 × 1  constant vector 𝐚𝟎  has its 𝑖 th 

 
14 Similar to Berk and Green (2004), Brown and Wu (2016), and Feldman and Xu (2022), managers and investors 
are symmetrically informed; the model is in partial equilibrium; managers’ actions do not affect the passive bench-
mark returns; and we do not model sources of managers’ abilities to outperform the passive benchmarks portfolios. 
15 For any 𝑖 and 𝑗, 𝑑𝑊ଵ௜,௧𝑑𝑊ଶ௝,௧ = 0; and for any 𝑖 ≠ 𝑗, 𝑑𝑊ଵ௜,௧𝑑𝑊ଵ௝,௧ = 0 and 𝑑𝑊ଶ௜,௧𝑑𝑊ଶ௝,௧ = 0. 
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element 𝑎௜,଴ , 𝑖 = 1, … ,𝑛 , whereas the 𝑛 × 𝑛  constant diagonal matrices 𝐚𝟏 , 𝐛𝟏 , 𝐛𝟐 , 𝐀 , 

and 𝐁  have their 𝑖 th diagonal elements 𝑎௜,ଵ , 𝑏௜,ଵ , 𝑏௜,ଶ , 𝐴௜ , and 𝐵௜ , 𝑖 = 1, … ,𝑛 , 

respectively. We assume that 𝐴௜ > 0, 𝑖 = 1, … ,𝑛 and, without loss of generality, we assume 𝐵௜ > 0, 𝑖 = 1, … ,𝑛. While abilities are unobservable to managers and investors, the evolution 

processes (“laws of motion”) and all parameter values are common knowledge. 

The above setting implies the following. First, manager abilities, 𝛉𝐭, follow dynamic 

processes. Second, the fund gross alphas, 𝐈ି𝟏(𝛏𝐭)𝐝𝛏𝐭, depend on the managers’ abilities and 

on random shocks. As 𝐴௜ > 0, 𝑖 = 1, … ,𝑛, a manager with positive (negative) ability tends to 

create positive (negative) fund gross alpha, and the larger 𝐴௜ is, the higher is the sensitivity of 

gross alpha to ability. As 𝐵௜, 𝑖 = 1, … ,𝑛 is the diffusion coefficient of fund 𝑖’s gross alpha, 

the larger 𝐵௜ is, the larger is the variation of fund 𝑖’s gross alpha. 16 Third, as 𝐚𝟏, 𝐛𝟏, 𝐛𝟐, 𝐀, and 𝐁 are diagonal matrices, over time a manager’s ability and gross alpha are independent 

of those of other managers.17 ,18  Fourth, where 𝑏௜,ଶ > 0 (𝑏௜,ଶ < 0) , manager 𝑖 ’s ability and 

fund gross alpha are instantaneously positively (negatively) correlated, as 𝑏௜,ଶ𝐵௜ > 0 (𝑏௜,ଶ𝐵௜ <0) . Where 𝑏௜,ଶ = 0 , and 𝑏௜,ଵ > 0 , manager 𝑖 ’s ability and gross alpha are instantaneously 

uncorrelated. A larger 𝑏௜,ଶ relative to 𝑏௜,ଵ implies a higher instantaneous correlation between 

manager 𝑖 ’s gross alpha and ability. Finally, as gross alphas are returns over the passive 

benchmark return, our setting incorporates any effects of innovations in the passive benchmark, 

such as those in the exchange traded fund (ETF) market, on funds’ performances.19 

To facilitate our analysis, we define the following terms: 

• ℱ௧𝛏 ≜  the 𝜎 -algebras generated by ሼ𝛏𝐬, 0 ≤ 𝑠 ≤ 𝑡ሽ , with ቄℱ௧𝛏ቅ଴ஸ௧ஸ்  as the 

corresponding filtration over 0 ≤ 𝑡 ≤ 𝑇; 

 
16 Notice that for fund 𝑖, 𝑖 = 1, … ,𝑛, the parameter 𝐵௜ determines the instantaneous variance of 𝑑𝜉௜,௧/𝜉௜,௧ at 
time 𝑡, as Var൫𝑑𝜉௜,௧/𝜉௜,௧|ℱ௧൯ = 𝐵௜ଶ𝑑𝑡, and determines the instantaneous quadratic variation of 𝑑𝜉௜,௧/𝜉௜,௧ at time 𝑡, as ൫𝑑𝜉௜,௧/𝜉௜,௧൯ଶ = 𝐵௜ଶ𝑑𝑡. Thus, we can regard 𝐵௜ as a parameter indicating fund 𝑖’s performance variation. 
17 For any 𝑖 ≠ 𝑗, 𝑑𝜃௜,௧𝑑𝜃௝,௧ = 0, 𝑑𝜃௜,௧൫𝑑𝜉௝,௧/𝜉௝,௧൯ = 0, and ൫𝑑𝜉௜,௧/𝜉௜,௧൯൫𝑑𝜉௝,௧/𝜉௝,௧൯ = 0. 
18 Existing literature shows that in some fund families, as funds are managed by the same team of managers, their 
abilities and alphas are correlated such that we can learn about the ability of a fund from another fund’s 
performance [e.g., Brown and Wu (2016) and Choi, Kahraman, and Mukherjee (2016)]. This correlation does not 
affect our model’s insight, so for simplicity, we assume independence in managers’ abilities and gross alphas. 
19 Existing literature, such as Cremers, Ferreira, Matos, and Starks (2016), shows that the innovation of the index 
fund/ETF market affects the performances of active funds. As index funds and ETFs serve as passive benchmarks 
of active funds in practice, our active funds’ gross alphas, 𝐈ି𝟏(𝛏𝐭)𝐝𝛏𝐭, capture any effects of index funds/ETFs 
on active funds’ performances. 
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• 𝐦𝐭 ≜ the 𝑛 × 1 vector of mean of 𝛉𝐭 conditional on the observations 𝛏𝐬, 0 ≤ 𝑠 ≤𝑡, i.e., 𝐦𝐭 ≜ E൫𝛉𝐭|ℱ௧𝛏൯; 
• 𝛄𝐭 ≜ the 𝑛 × 𝑛 covariance matrix of 𝛉𝐭 conditional on the observations 𝛏𝐬, 0 ≤ 𝑠 ≤𝑡, i.e., 𝛄𝐭 ≜ Eൣ(𝛉𝐭 −𝐦𝐭)(𝛉𝐭 −𝐦𝐭)′|ℱ௧𝛏൧. 
As 𝐦𝐭 is the expected abilities inferred from observable fund returns, hereafter, we briefly 

call 𝐦𝐭 as inferred abilities. We assume that the conditional distribution of 𝛉𝟎 given 𝛏𝟎 (the 

prior distribution) is Gaussian, 𝑁(𝐦𝟎,𝛄𝟎) , where 𝛄𝟎  is a 𝑛 × 𝑛  diagonal matrix, and 

elements of 𝛏𝟎, 𝐦𝟎, and 𝛄𝟎 have finite values. 

Managers and investors update their estimates of 𝛉𝐭 using their observations of 𝛏𝐭 in 

a Bayesian fashion (i.e., “optimal filtering”).20 These techniques used in numerous previous 

studies, such as Dothan and Feldman (1986), Feldman (1989, 2007), Berk and Stanton (2007), 

Dangl, Wu, and Zechner (2008), Brown and Wu (2013, 2016), and Feldman and Xu (2022). In 

our case, let ℱ௧𝛏𝟎,𝐖ഥ , 0 ≤ 𝑡 ≤ 𝑇 be the 𝜎-algebras generated by ሼ𝛏𝟎, 𝐖ഥ𝐬, 0 ≤ 𝑠 ≤ 𝑡ሽ. Then, 

 𝐖ഥ𝐭 = න 𝐁ି𝟏[𝐈ି𝟏(𝛏𝐭)𝐝𝛏𝐭 − 𝐀𝐦𝐬𝑑𝑠]௧
଴  (3) 

is an 𝑛 × 1 vector of independent Wiener process with respect to the filtration ቄℱ௧𝛏ቅ଴ஸ௧ஸ், 

with the 𝑖th element as 𝑊ഥ௜,௧ and with its initial value 𝐖ഥ𝟎 being a zero 𝑛 × 1 vector. The 𝜎 -algebras ℱ௧𝛏  and ℱ௧𝛏𝟎,𝐖ഥ   are equivalent. 𝐖ഥ𝐭  innovates the inferred abilities 𝐦𝐭 . The 

variables 𝐦𝐭, 𝛏𝐭, and 𝛄𝐭 are the unique, continuous, ℱ௧𝛏-measurable solutions of the system 

of equations 

 𝐝𝐦𝐭 = (𝐚𝟎 + 𝐚𝟏𝐦𝐭)𝑑𝑡 + 𝛔𝐦(𝛄𝐭)𝐝𝐖ഥ𝐭, (4) 

 𝐈ି𝟏(𝛏𝐭)𝐝𝛏𝐭 = 𝐀𝐦𝐭𝑑𝑡 + 𝐁𝐝𝐖ഥ𝐭, (5) 

 𝐝𝛄𝐭 = [𝐛𝟏𝐛𝟏 + 𝐛𝟐𝐛𝟐 + 2𝐚𝟏𝛄𝐭 − 𝛔𝐦(𝛄𝐭)𝝈𝒎ᇱ (𝛄𝐭)]𝑑𝑡, (6) 

where 

 𝛔𝐦(𝛄𝐭) ≜ (𝐛𝟐𝐁 + 𝐀𝛄𝐭)′𝐁ି𝟏, (7) 

 
20 This type of model is solved in Liptser and Shiryaev (2001a, Ch. 8; 2001b, Ch. 12). More general models with 
settings similar to those presented by Liptser and Shiryaev (2001a,b) allow model parameters to be functions of 
the stochastic gross alphas. 
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with initial conditions 𝛏𝟎 , 𝐦𝟎 , and 𝛄𝟎 . The random process (𝛉𝐭, 𝛏𝐭) , 0 ≤ 𝑡 ≤ 𝑇  is 

conditionally Gaussian given ℱ௧𝛏.21 

Taking a closer look at 𝐝𝛄𝐭 , we find that as 𝛄𝟎  and the parameter matrices in 

Equations (6) and (7) are diagonal, 𝛄𝐭 and 𝛔𝐦(𝛄𝐭) are diagonal. Then, we can define the 𝑖th 

diagonal element of 𝛄𝐭 as 𝛾௜,௧, 𝑖 = 1, … ,𝑛, which is the variance of 𝜃௜,௧ conditional on the 

observations of fund share prices, representing the imprecision of the estimate 𝑚௜,௧. We have 

 𝑑𝛾௜,௧ = ൣ𝑏௜,ଵଶ + 𝑏௜,ଶଶ + 2𝑎௜,ଵ𝛾௜,௧ − 𝜎௜,௠ଶ ൫𝛾௜,௧൯൧𝑑𝑡, (8) 

where 𝜎௜,௠൫𝛾௜,௧൯, 𝑖 = 1, … ,𝑛, is the 𝑖th diagonal element of 𝛔𝐦(𝛄𝐭) that 

 𝜎௜,௠൫𝛾௜,௧൯ ≜ ൫𝑏௜,ଶ𝐵௜ + 𝐴௜𝛾௜,௧൯/𝐵௜ . (9) 

As 𝛄𝐭 and 𝛔𝐦(𝛄𝐭) are diagonal, by Equation (4), 𝑚௜,௧ is unaffected by 𝑊ഥ௝,௧ or 𝛾௝,௧ for any 𝑖 ≠ 𝑗. Thus, a manager’s inferred ability and its precision are independent of those of other 

managers, which simplifies our analyses in the following sections.22 

To make economic sense, we assume a nonnegative 𝑏௜,ଶ, 𝑖 = 1, … ,𝑛, which induces a 

positive 𝜎௜,௠൫𝛾௜,௧൯  as shown in Equation (9) (because 𝐵௜  and 𝐴௜  are positive).23  In other 

words, under this setting, for each fund a positive (negative) shock in fund gross alpha induces 

an increase (a decrease) in the manager’s inferred ability.24 
 

21 The technical requirements to prove the theorems are regular conditions over the period 0 ≤ 𝑡 ≤ 𝑇, such as 
boundedness of parameter values, integrality of variables, and finite moments of variables. See the requirements 
of the corresponding theorems in Liptser and Shiryaev (2001a, 2001b). The intuition of these requirements is that, 
over a finite time period, almost surely manager abilities, fund gross alphas, and their variations should be finite 
so that the learning processes are well defined. These requirements are satisfied, due to our finite parameter values, 
finite initial values, and the finite horizon within which we study our model. In the real world, abilities that keep 
improving or deteriorating over a short period, or abilities that revert to a finite mean over a long period, would 
satisfy the technical requirements and follow our learning processes. 
22 If the parameter matrices in Equations (6) and (7) and/or the initial values are not diagonal, then a manager’s 
inferred ability could depend on innovation shocks to other funds and the precision of the inferred ability could 
depend on the correlations of this manager’s ability and gross alpha with those of other managers. Consequently, 
a fund’s equilibrium size, shown in the next sections, could depend on other fund managers’ inferred abilities. 
This complicates our discussions and does not affect our main insights, so we do not introduce this complexity. 
23 This is because a negative 𝑏௜,ଶ induces a negative instantaneous/idiosyncratic correlation, which can give rise 
to negative total correlation. If 𝛾௜,௧ weighs the positive systematic source of correlation, 𝐴௜, insufficiently high, 
then the negative instantaneous/idiosyncratic source of correlation 𝑏௜,ଶ𝐵௜ dominates. Thus, under these special 
parameter values, which we do not allow here, the dynamics 𝛾௜,௧ may induce correlation between inferred ability 
and performance shocks, which changes sign over time, resulting in a transient nonmonotonic relation between 
performance shocks and inferred ability even under the linear structure that we analyze in this section. For detailed 
analysis of this nonmonotonicity, see Feldman (1989, Proposition 4). 
24  In this linear structure, depending on parameter values, the dynamics of 𝑑𝛾௜,௧ , induces a 𝛾௜,௧  that 
 



 

14 
 

The above results imply that investors make their optimal decisions in two steps. First, 

they observe the history of the funds’ share prices, 𝛏𝐭, restructure the state space to consist of 

only observable processes while maintaining informational equivalence,25  and generate a 

posterior distribution of the fund manager abilities. In this way, they convert the problem from 

a non-Markovian one to an equivalent tractable Markovian one.26,27 Second, they use their 

posterior estimate, 𝐦𝐭, to predict the fund gross alphas in the forthcoming future, as shown by 

Equation (5). They use this prediction in solving their optimization problems. 

2.2 Investors’ Optimizations and Fund Managers’ Optimizations 

Using the above filter to re-represent the state space ሼ𝛉𝐭, 𝛏𝐭ሽ in terms of observable 

variables ሼ𝛏𝐭,𝐦𝐭, 𝛄𝐭ሽ, we solve investors’ and fund managers’ optimization problems. 

We assume that there are infinitely many small risk-neutral investors in the market and 

that each investor’s investment decision does not affect the funds’ returns and sizes, although 

all investors together do affect these variables. An investor’s portfolio return depends on three 

components:  fund gross alphas, management fees, and fund costs. Similar to Berk and Green 

(2004), Feldman, Saxena, and Xu (2020, 2023), Feldman and Xu (2022), and other related 

models, we assume the following. Each fund manager chooses the amount of the fund to 

actively manage at each time 𝑡  under fixed management fees 𝑓௜ , 𝑖 = 1, … ,𝑛 . There are 

decreasing returns to scale at the fund level. For fund 𝑖, 𝑖 = 1, … ,𝑛, at time 𝑡, fund costs 

variable 𝐶௜൫𝑞௜,௧௔ ൯ is an increasing and convex function of the fund amount that is under active 

management 𝑞௜,௧௔ , such that 

 𝐶௜൫𝑞௜,௧௔ ൯ = 𝑐௜𝑞௜,௧௔ ଶ. (10) 

Of 𝑞௜,௧, the total asset managed by fund 𝑖 (i.e., fund 𝑖’s size), the amount 𝑞௜,௧ − 𝑞௜,௧௔  (𝑞௜,௧ −
 

monotonically increases, decreases, or stays unchanged over time. Consequently, 𝜎௜,௠൫𝛾௜,௧൯ , monotonically 
increases, decreases, or stays unchanged, respectively, over time. Also, 𝛾௜,௧ monotonically converges to its steady 
state, where 𝑑𝛾௜,௧ = 0. Consequently, 𝜎௜,௠൫𝛾௜,௧൯ also has a steady state at which it converges monotonically. 
25 See Feldman (1992) for demonstration of this type of informational equivalence. 
26 Notice that in these optimization processes, the unobservable manager abilities 𝛉𝐭 is replaced by its observable 
conditional mean, 𝐦𝐭, updated by a new Wiener process 𝐖ഥ𝐭, and that 𝐦𝐭 is continuously updated as a function 
of the dynamic conditional covariance matrix 𝛄𝐭. Hence, investors’ problems become Markovian, which makes 
the problems tractable (allowing a state vector solution). 
27  The elliptical nature our conditionally Gaussian structure allows closure of the filter after two conditional 
moments. Otherwise, all the conditional higher moments would be part of the filter, and the choice of which higher 
moments to ignore would be a function of the desired precision. 
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𝑞௜,௧௔ ≥ 0) is invested in the passive benchmark, earning the passive benchmark portfolio return 

and inducing no fund costs. The amount 𝑞௜,௧௔  generates fund gross alphas. 

At time 𝑡, let the price of fund 𝑖’s asset under management net of fund costs and fees 

be 𝑆௜,௧ , 0 ≤ 𝑡 ≤ 𝑇 . Then, the active fund’s net return is 𝑑𝑆௜,௧/𝑆௜,௧ . As we normalize the 

passive benchmark portfolio’s return to zero, the active fund’s net return in excess of the passive 

benchmark is 𝑑𝑆௜,௧/𝑆௜,௧ − 0 = 𝑑𝑆௜,௧/𝑆௜,௧. Hereafter, we call 𝑑𝑆௜,௧/𝑆௜,௧ fund 𝑖’s instantaneous 

net alpha, or briefly net alpha. Based on the above discussion, we have, 

 𝑑𝑆௜,௧𝑆௜,௧ = 𝑞௜,௧௔𝑞௜,௧ 𝑑𝜉௜,௧𝜉௜,௧ − 𝐶௜൫𝑞௜,௧௔ ൯𝑞௜,௧ 𝑑𝑡 − 𝑓௜𝑑𝑡. (11) 

Similar to Berk and Green (2004) and Feldman and Xu (2022), we assume that risk-neutral 

investors supply capital with infinite elasticity to funds that have positive expected fund net 

alphas, driving the conditional expectation of fund net alphas to zero at each time 𝑡. Thus, we 

have the following condition in equilibrium: 

 E ቈ𝑑𝑆௜,௧𝑆௜,௧ ቤ ℱ௧𝛏቉ = 0,  ∀𝑡, 𝑖 = 1, … ,𝑛. (12) 

Taking conditional expectation on Equation (11) and setting it to zero, we have 

 𝑞௜,௧௔𝑞௜,௧ 𝐴௜𝑚௜,௧ − 𝑐௜𝑞௜,௧௔ ଶ𝑞௜,௧ − 𝑓௜ = 0. (13) 

Rearranging, 

 𝑓௜𝑞௜,௧ = 𝐴௜𝑚௜,௧𝑞௜,௧௔ − 𝑐௜𝑞௜,௧௔ ଶ. (14) 

As any fund costs are deducted from investment returns before the returns are transferred to 

investors [as shown by the fund net alpha Equation (11)], the term 𝑓௜𝑞௜,௧ is manager 𝑖’s profit. 

Manager 𝑖 wants to maximize profit 𝑓௜𝑞௜,௧ by choosing 𝑞௜,௧௔ . Then, manager 𝑖’s problem is 

 max௤೔,೟ೌ 𝑓௜𝑞௜,௧ = max௤೔,೟ೌ 𝐴௜𝑚௜,௧𝑞௜,௧௔ − 𝑐௜𝑞௜,௧௔ ଶ (15) 

subject to the constraint 

 0 ≤ 𝑞௜,௧௔ ≤ 𝑞௜,௧ ,  ∀ 𝑖 = 1, … ,𝑛. (16) 

As in Berk and Green (2004) and Feldman and Xu (2022), we define 𝑚௜,௧, 𝑖 = 1, … ,𝑛, 

such that if 𝑚௜,௧ < 𝑚௜,௧, fund 𝑖 receives no investments from investors and exits the market. 
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Hereafter, we briefly call 𝑚௜,௧, 𝑖 = 1, … ,𝑛 the survival levels. Here we assume 𝑚௜,௧ ≥ 0.28 

The optimal amount under active management and the optimal total assets under management, 𝑞௜,௧௔∗ and 𝑞௜,௧∗ , are not trivial where 𝑚௜,௧ ≥ 𝑚௜,௧; otherwise, they are both zero. 

Solving investors’ and managers’ problems, we obtain the equilibrium optimal solutions 

for funds surviving in the market 

 𝑞௜,௧௔∗ = 𝐴௜𝑚௜,௧2𝑐௜ , (17) 

 𝑞௜,௧∗ = ൫𝐴௜𝑚௜,௧൯ଶ4𝑐௜𝑓௜ . (18) 

To simplify the notations, we define fund 𝑖’s size factor as 𝑋௜ such that 

 𝑋௜ ≜ 14𝑐௜𝑓௜ . (19) 

The higher the decreasing returns to scale parameter 𝑐௜ and the higher the management fee 𝑓௜ 
are, the lower is fund 𝑖’s size factor and, then, the lower is the equilibrium fund size 𝑞௜,௧∗ . Then, 

 𝑞௜,௧∗ = 𝑋௜൫𝐴௜𝑚௜,௧൯ଶ. (20) 

Proof. See the Internet Appendix. □ 

2.3 Equilibrium Market Power and Market Structure 

We demonstrate that AFMI concentration is the key measure to study AFMI’s industrial 

organization, while other common measures are less informative in equilibrium. 

As investors receive net alphas from funds, any fund costs are transferred to investors 

as reductions in fund net alphas so that fund managers bear no costs in operation. Then, in 

equilibrium, for 𝑖 = 1, … ,𝑛, manager 𝑖’s profit is the revenue 𝑓௜𝑞௜,௧∗ , and the profit rate on 

each dollar under management is 𝑓௜, a constant. A manager’s profit margin, i.e., the difference 

between revenue and costs, divided by the revenue, is always one ൣ൫𝑓௜𝑞௜,௧∗ − 0൯ 𝑓௜𝑞௜,௧∗ൗ = 1൧. 
Also, if we calculate a manager’s profit markup, i.e., revenue divided by costs, we find that the 

 
28 The reason is that given updated information, for fund 𝑖, the expected instantaneous gross alpha accumulated 
in 𝑑𝑡  is E൫𝑑𝜉௜,௧/𝜉௜,௧|ℱ௧𝛏൯ = 𝐴௜𝑚௜,௧𝑑𝑡 , with 𝐴௜ > 0 . If 𝑚௜,௧ < 0 , the expected instantaneous gross alpha is 
negative. With positive fund costs and fees, the expected instantaneous net alpha earned by investors in 𝑑𝑡 would 
be substantially smaller than zero, so they would switch their investments to the passive benchmark portfolio. 
Thus, we do not allow 𝑚௜,௧ < 0 for a surviving fund. 



 

17 
 

profit markup ൣ= 𝑓௜𝑞௜,௧∗ 0⁄ ൧  is positive infinity. This does not imply that the manager has 

infinite profitability. Notice again that it is the investors who determine the quantity of 

production (fund sizes), and investors choose the quantity to capture any positive expected net 

alpha. As a manager’s profit rate is fixed at its constant management fee, he or she needs to 

attract investments as much as possible by maximizing the expected fund net alpha; as the 

manager’s ability to create the fund net alpha is limited, the equilibrium profit is limited. 

A fund’s market power can be measured by its Lerner Index, which is the difference 

between fee and marginal cost, divided by fee. From the above discussion, we can see that a 

fund’s Lerner Index is always one [= (𝑓௜ − 0) 𝑓௜⁄ ]. 
The above results show that in this framework and those with similar settings 

commonly used by the current literature, there are no dynamics in the common measures of a 

manager’s profitability and market power. The values of these measures do not offer 

information on the dynamics of AFMI. In contrast, the market structure of AFMI is dynamic, 

as funds’ relative sizes change over time. Thus, to understand the dynamics of AFMI industrial 

organization, we need to focus on the dynamics of its market structure, in particular, the 

dynamics of AFMI concentration. 

2.4 Equilibrium AFMI Concentration 

We use the Herfindahl-Hirschman Index (HHI) to measure AFMI concentration for the 

reasons discussed in our Introduction section. Let 𝐪𝐭∗ be the 𝑛 × 1 vector of the equilibrium 

fund sizes with the 𝑖th element as 𝑞௜,௧∗ . Based on Equation (20), we have, 

 𝐪𝐭∗ = 𝐀𝟐𝐈𝟐(𝐦𝐭)𝐗,  (21) 

where 𝐈(𝐦𝐭) is a 𝑛 × 𝑛 diagonal matrix with the 𝑖th element as the 𝑖th element of 𝐦𝐭, and 𝐗 is a 𝑛 × 1 vector with the 𝑖th element as 𝑋௜. Then, the 𝑛 × 1 vector of the equilibrium 

fund market shares, 𝐰𝐭∗, is 

 𝐰𝐭∗ = 𝐪𝐭∗𝐪𝐭∗′𝟏, (22) 

where 𝟏 is an 𝑛 × 1 vector of ones. By definition, the equilibrium AFMI HHI (henceforth 

we briefly call it HHI) is 

 𝐻𝐻𝐼௧∗ ≜ 𝐰𝐭∗′𝐰𝐭∗ = 𝐪𝐭∗′𝐪𝐭∗(𝐪𝐭∗′𝟏)ଶ. (23) 
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We measure HHI at the fund level in Sections 2.4 to 2.8, and then we study HHI measured at 

the fund family level in Section 2.9. Substituting Equations (21) into Equation (23), we have 

the following result. 

Proposition RN1. HHI and Relative Inferred Abilities 

In equilibrium, HHI relates to managers’ inferred abilities as follows 

 𝐻𝐻𝐼௧∗ = 𝐗′𝐀𝟒𝐈𝟒(𝐦𝐭)𝐗[𝐗′𝐀𝟐𝐈𝟐(𝐦𝐭)𝟏]ଶ = ∑ 𝑋௜ଶ൫𝐴௜𝑚௜,௧൯ସ௡௜ୀଵቂ∑ 𝑋௜൫𝐴௜𝑚௜,௧൯ଶ௡௜ୀଵ ቃଶ (24) 

and we can denote 𝐻𝐻𝐼௧∗ ≜ 𝐻𝐻𝐼௧∗(𝐦𝐭). □ 

Proposition RN1 shows that funds’ size factors, sensitivities of gross alphas to abilities, 

and managers’ relative inferred abilities together determine HHI. If managers are homogeneous 

such that these factors are the same for all managers, then funds’ sizes are the same and 𝐻𝐻𝐼௧∗ 
is constant at its minimum value 1/𝑛 . If managers are heterogeneous such that these 

parameters are different for different managers, then 𝐻𝐻𝐼௧∗ can take any value between 1/𝑛 

and its maximum value 1, where AFMI is monopolistic. To offer more insights to the market 

equilibrium, we focus on the case of heterogeneous managers in this paper. As 𝐦𝐭 is the only 

variable in Equation (24), 𝐻𝐻𝐼௧∗ can be regarded as a function driven by 𝐦𝐭. 
Notice that Feldman, Saxena, and Xu (2020) (hereafter, FSX), in a one-period model, 

also derive the endogenous HHI, which is a function of the constant decreasing returns to scale 

parameters in the fixed-point equilibrium, as shown in their Equation (33). Our continuous-

time model not only derives this result because the constant decreasing returns to scale 

parameters are captured by the fund size factors in our model, but also suggests that investors’ 

expectations of managers’ (relative) abilities are relevant in determining fund sizes, thus HHI. 

As these expectations are dynamic over time, HHI is also dynamic over time; factors affecting 

the dynamics of these expectations also affect that of HHI. Thus, our model offers new and 

important insights into HHI over the FSX model. The following proposition shows how the 

changes of investors’ inferences of manager abilities influence the dynamics of HHI. 

Proposition RN2. Dynamics of HHI and Changes in Relative Inferred Abilities 

HHI evolves as follows 
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 𝑑𝐻𝐻𝐼௧∗ = 𝜕𝐻𝐻𝐼௧∗𝜕𝐦𝐭′ 𝐝𝐦𝐭 + 12𝐝𝐦𝐭ᇱ 𝜕ଶ𝐻𝐻𝐼௧∗𝜕𝐦𝐭′𝜕𝐦𝐭 𝐝𝐦𝐭 = 𝜕𝐻𝐻𝐼௧∗𝜕𝐦𝐭′ 𝛔𝐦(𝛄𝐭)𝐝𝐖ഥ𝐭 + 𝜕𝐻𝐻𝐼௧∗𝜕𝐦𝐭′ (𝐚𝟎 + 𝐚𝟏𝐦𝐭)𝑑𝑡
+ 12 𝐭𝐫𝐚𝐜𝐞 ቈ𝝈𝒎ᇱ (𝛄𝐭) 𝜕ଶ𝐻𝐻𝐼௧∗𝜕𝐦𝐭′𝜕𝐦𝐭 𝛔𝐦(𝛄𝐭)቉ 𝑑𝑡. 

(25) 

To facilitate our discussion, we rewrite 𝑑𝐻𝐻𝐼௧∗ in scalar form: 

 𝑑𝐻𝐻𝐼௧∗ = ෍ቈ𝜕𝐻𝐻𝐼௧∗𝜕𝑚௜,௧ 𝑑𝑚௜,௧ + 12 𝜕ଶ𝐻𝐻𝐼௧∗𝜕𝑚௜,௧ଶ ൫𝑑𝑚௜,௧൯ଶ቉௡
௜ୀଵ  

= ෍ቈ𝜕𝐻𝐻𝐼௧∗𝜕𝑚௜,௧ 𝜎௜,௠൫𝛾௜,௧൯𝑑𝑊ഥ௜,௧ + 𝜕𝐻𝐻𝐼௧∗𝜕𝑚௜,௧ ൫𝑎௜,଴ + 𝑎௜,ଵ𝑚௜,௧൯𝑑𝑡௡
௜ୀଵ + 12𝜕ଶ𝐻𝐻𝐼௧∗𝜕𝑚௜,௧ଶ 𝜎௜,௠ଶ 𝑑𝑡቉ , 

(26) 

where 

 𝜕𝐻𝐻𝐼௧∗𝜕𝑚௜,௧ = 4𝑋௜𝐴௜ଶ𝑚௜,௧ × 𝑞௜,௧∗ ∑ 𝑞௝,௧∗௡௝ୀଵ − ∑ 𝑞௝,௧∗ଶ௡௝ୀଵ൫∑ 𝑞௝,௧∗௡௝ୀଵ ൯ଷ , (27) 

and 

 𝜕ଶ𝐻𝐻𝐼௧∗𝜕𝑚௜,௧ଶ = 4𝑋௜𝐴௜ଶ × 

⎣⎢⎢
⎢⎡3𝑞௜,௧∗ ∑ 𝑞௝,௧∗௡௝ୀଵ + 6𝑞௜,௧∗ ൫∑ 𝑞௝,௧∗ଶ௡௝ୀଵ ൯൫∑ 𝑞௝,௧∗௡௝ୀଵ ൯ − 8𝑞௜,௧∗ଶ − ∑ 𝑞௝,௧∗ଶ௡௝ୀଵ൫∑ 𝑞௝,௧∗௡௝ୀଵ ൯ଷ ⎦⎥⎥

⎥⎤. (28) 

Proof. Apply Itô’s Lemma on 𝐻𝐻𝐼௧∗(𝐦𝐭)  and substitute Equation (4) into the expression, 

using the property of independence of 𝑊ഥ௜,௧, 𝑖 = 1, … ,𝑛. □ 

Proposition RN2 shows how HHI changes with inferred abilities over time. We 

summarize the key insights directly from Proposition RN2 in the following two corollaries, 

followed by explanations and intuitions. 

Corollary RN2.1. Size of Inferred Ability and Impact on Dynamics of HHI 

If 𝑚௜,௧ > 𝑚௜,௧, then we have the following. 
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a. If 𝑚௜,௧ is sufficiently large (small) such that 𝑞௜,௧∗ > ∑ ௤ೕ,೟∗మ೙ೕసభ∑ ௤ೕ,೟∗೙ೕసభ  (𝑞௜,௧∗ < ∑ ௤ೕ,೟∗మ೙ೕసభ∑ ௤ೕ,೟∗೙ೕసభ ), then an 

increase in 𝑚௜,௧ has a positive (negative) impact on 𝑑𝐻𝐻𝐼௧∗. 
b. If 𝑚௜,௧  is sufficiently large or sufficiently small such that 3𝑞௜,௧∗ ∑ 𝑞௝,௧∗௡௝ୀଵ +

଺௤೔,೟∗ ቀ∑ ௤ೕ,೟∗మ೙ೕసభ ቁቀ∑ ௤ೕ,೟∗೙ೕసభ ቁ − 8𝑞௜,௧∗ଶ − ∑ 𝑞௝,௧∗ଶ௡௝ୀଵ < 0 , then 𝐻𝐻𝐼௧∗  is concave in 𝑚௜,௧ . Over the next 

infinitesimal period 𝑑𝑡, this concavity has a negative impact on 𝑑𝐻𝐻𝐼௧∗. If all 𝑚௜,௧ 
for 𝑖 = 1, … ,𝑛  are sufficiently close to each other, making 𝑞௜,௧∗   for 𝑖 = 1, … ,𝑛 

sufficiently close such that 3𝑞௜,௧∗ ∑ 𝑞௝,௧∗௡௝ୀଵ + ଺௤೔,೟∗ ቀ∑ ௤ೕ,೟∗మ೙ೕసభ ቁቀ∑ ௤ೕ,೟∗೙ೕసభ ቁ − 8𝑞௜,௧∗ଶ − ∑ 𝑞௝,௧∗ଶ௡௝ୀଵ > 0, then 

the 𝐻𝐻𝐼௧∗ is convex in 𝑚௜,௧. Over 𝑑𝑡, this convexity has a positive impact on 𝑑𝐻𝐻𝐼௧∗. 
Proof. See the Internet Appendix. □ 

To understand Corollary RN2.1a, we observe from Equation (27) that if fund 𝑖 ’s 

inferred ability 𝑚௜,௧  is sufficiently large (small) relative to those of other funds, such that 𝑞௜,௧∗ > ∑ ௤ೕ,೟∗మ೙ೕసభ∑ ௤ೕ,೟∗೙ೕసభ  (𝑞௜,௧∗ < ∑ ௤ೕ,೟∗మ೙ೕసభ∑ ௤ೕ,೟∗೙ೕసభ ), then డுுூ೟∗డ௠೔,೟  is positive (negative). Then, as shown in Equation 

(26), an increase in manager 𝑖’s inferred ability, due to a sufficiently large drift term in inferred 

ability, 𝑎௜,଴ + 𝑎௜,ଵ𝑚௜,௧, or a sufficiently large innovation shock in performance, 𝑑𝑊ഥ௜,௧, has a 

positive (negative) impact on the change in HHI, 𝑑𝐻𝐻𝐼௧∗. 
The intuition is that, if manager 𝑖’s inferred ability is sufficiently large relative to other 

managers’ inferred abilities, then fund 𝑖’s size is sufficiently large relative to other funds’ sizes, 

and fund 𝑖 dominates in the market. A higher inferred ability attracts more investment to fund 𝑖 , making it larger and making AFMI more concentrated at fund 𝑖 . On the other hand, if 

manager 𝑖’s inferred ability is sufficiently small relative to other managers’ inferred abilities, 

then fund 𝑖’s size is sufficiently small relative to other funds’ sizes. A higher inferred ability 

attracts more investment to fund 𝑖, making its size closer to those of other funds and then 

making AFMI less concentrated. 

To understand Corollary RN2.1b, consider the second-order partial derivative shown in 

Equation (28). If manager 𝑖’s inferred ability 𝑚௜,௧ is sufficiently large (small) relative to those 

of other managers, such that 𝑞௜,௧∗  is sufficiently large (small) relative to 𝑞௝,௧∗ ’s for 𝑗 ≠ 𝑖, then 
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డమுுூ೟∗డ௠೔,೟మ < 0 and 𝐻𝐻𝐼௧∗ is concave in 𝑚௜,௧. Then, over the next infinitesimal period 𝑑𝑡, this 

concavity has a negative impact on 𝑑𝐻𝐻𝐼௧∗. If all managers’ inferred abilities are sufficiently 

close to each other’s such that funds’ sizes are sufficiently close, making 𝐻𝐻𝐼௧∗ close to its 

minimum value 1/𝑛 , then డమுுூ೟∗డ௠೔,೟మ > 0  and 𝐻𝐻𝐼௧∗  is convex in 𝑚௜,௧ . Then, over the next 

infinitesimal period 𝑑𝑡, this convexity has a positive impact on 𝑑𝐻𝐻𝐼௧∗. 
The intuition is that if fund 𝑖’s market share is sufficiently large (small) due to manager 𝑖’s sufficiently large (small) inferred ability, then AFMI is concentrated at fund 𝑖 (at other 

funds). Although a higher (lower) inferred ability of manager 𝑖  can make AFMI more 

concentrated at fund 𝑖 (at other funds), it becomes more and more difficult to increase the 

concentration in this way. On the other hand, if all managers’ inferred abilities are close, such 

that funds’ sizes are close, then a larger and a smaller inferred ability of manager 𝑖 both can 

make fund 𝑖’s size deviate from other funds’ sizes, making AFMI more concentrated. It is 

easier to make fund 𝑖’s size deviate from other funds’ sizes and to increase HHI if the absolute 

change in manager 𝑖’s inferred ability is larger in this case. 

For illustration, we simulate HHI over different levels of inferred abilities in the Internet 

Appendix. 

Corollary RN2.2. Interaction Effect of Performance Shock and Performance Variation 

If 𝑚௜,௧ > 𝑚௜,௧, then we have the following result. If 𝑚௜,௧ is sufficiently large (small) such that 𝑞௜,௧∗ > ∑ ௤ೕ,೟∗మ೙ೕసభ∑ ௤ೕ,೟∗೙ೕసభ   (𝑞௜,௧∗ < ∑ ௤ೕ,೟∗మ೙ೕసభ∑ ௤ೕ,೟∗೙ೕసభ  ), then a positive 𝑑𝑊ഥ௜,௧  exerts a positive (negative) impact on 𝑑𝐻𝐻𝐼௧∗, and a higher 𝐵௜ mitigates this positive (negative) impact. □ 

Corollary RN2.2 shows that the interaction effect of 𝑑𝑊ഥ௜,௧  and 𝐵௜  on 𝑑𝐻𝐻𝐼௧∗  is 

negative (positive) if 𝑚௜,௧  is sufficiently large (small) relative to 𝑚௝,௧ ’s for 𝑗 ≠ 𝑖 . This is 

because 𝜎௜,௠൫𝛾௜,௧൯ > 0, and a higher 𝐵௜ decreases 𝜎௜,௠൫𝛾௜,௧൯, as shown in Equation (9). Also, 

a higher 𝐵௜ does not affect డுுூ೟∗డ௠೔,೟ , as implied by Equation (27). Thus, a higher 𝐵௜ decreases 

the absolute value of డுுூ೟∗డ௠೔,೟ 𝜎௜,௠൫𝛾௜,௧൯, which is the coefficient of 𝑑𝑊ഥ௜,௧ in the expression of 𝑑𝐻𝐻𝐼௧∗, as shown in Equation (26). If 𝑚௜,௧ is sufficiently large (small) relative to 𝑚௝,௧’s for 
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𝑗 ≠ 𝑖, then డுுூ೟∗డ௠೔,೟  and thus డுுூ೟∗డ௠೔,೟ 𝜎௜,௠൫𝛾௜,௧൯ are positive (negative). Then, a smaller absolute 

value of డுுூ೟∗డ௠೔,೟ 𝜎௜,௠൫𝛾௜,௧൯ induced by a higher 𝐵௜ makes డுுூ೟∗డ௠೔,೟ 𝜎௜,௠൫𝛾௜,௧൯ smaller (larger). 

The intuition of the above result is as follows. A positive shock in manager 𝑖 ’s 

performance induces higher manager 𝑖 ’s inferred ability thus higher fund 𝑖 ’s size. If this 

manager’s inferred ability is sufficiently large (small) relative to those of other managers, a 

higher manager 𝑖 ’s inferred ability increases (decreases) HHI, as mentioned in the earlier 

discussion. In this case, this positive performance shock increases (decreases) HHI. Moreover, 

if manager 𝑖 ’s performance variation is higher, then investors allocate smaller weights on 

manager 𝑖 ’s performance shocks when learning about her ability. Consequently, a positive 

shock in manager 𝑖’s performance induces smaller impact on her inferred ability, and thus 

induces a positive (negative) impact with a smaller absolute value on HHI. 

2.5 Equilibrium AFMI Concentration and Stock Market Volatility: Extension to a 

Nonlinear Framework 

We analyze how stock market volatility affects manager abilities and then AFMI 

concentration by extending our linear framework shown in Equations (1) and (2) to a nonlinear 

one. Higher stock market volatility increases market stress and redemption risk. The 

consequential higher redemption from investors and the need of larger cash buffers to manage 

the higher redemption risk impede managers when implementing investment strategies to 

produce abnormal returns, making fund gross alphas less related to manager abilities and more 

related to luck [see, for example, Jin, Kacperczyk, Kahraman, and Suntheim (2022)]. Thus, we 

assume that sensitivities of gross alphas to manager abilities is a decreasing function of stock 

market volatility. Let 𝜆௧ be a variable that captures the impact of stock market volatility on 

the sensitivities of gross alphas to manager abilities, i.e., 𝐴௜ ≜ 𝐴௜(𝜆௧) and డ஺೔(ఒ೟)డఒ೟ < 0, 𝑖 =1, … ,𝑛, following 

 𝑑𝜆௧ = 𝜇ఒ𝑑𝑡 + 𝜎ఒ𝑑𝑧௧ . (29) 

While, in general, 𝜇ఒ  and 𝜎ఒ  could be functions of 𝜆௧  and other market variables,29  for 

 
29 For example, 𝜆௧ could follow an autoregressive process. As long as 𝜇ఒ and 𝜎ఒ are adapted to ሼℱ௧ሽ଴ஸ௧ஸ், 
the specific forms of 𝜇ఒ and 𝜎ఒ do not affect our model’s main insight. 
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brevity and simplicity, we assume that 𝜇ఒ and 𝜎ఒ are constant, and that 𝑧௧ is a Brownian 

motion adapted to ሼℱ௧ሽ଴ஸ௧ஸ் and independent of 𝐖𝟏,𝐭 and 𝐖𝟐,𝐭. The learning about manager 

abilities is unaffected by 𝜆௧ because 𝜆௧ is unaffected by unobservable manager abilities, 𝛉𝐭, 
and 𝑧௧  is independent of 𝐖𝟏,𝐭  and 𝐖𝟐,𝐭 . Thus, 𝜆௧  is independent of 𝑚௜,௧ , 𝑖 = 1, … ,𝑛 . 

Using the analysis in Section 2.4, we derive the dynamics of HHI below. 

Proposition RNV. Dynamics of HHI and Changes in Stock Market Volatility 

HHI evolves as follows (in scalar form): 

 𝑑𝐻𝐻𝐼௧∗ = 𝑑𝑋௧ + ൭෍ 𝜕𝐻𝐻𝐼௧∗𝜕𝐴௜(𝜆௧)𝜕𝐴௜(𝜆௧)𝜕𝜆௧௡
௜ୀଵ ൱ 𝑑𝜆௧ 

+ 12෍൥𝜕ଶ𝐻𝐻𝐼௧∗𝜕𝐴௜(𝜆௧)ଶ ቆ𝜕𝐴௜(𝜆௧)𝜕𝜆௧ ቇଶ + 𝜕𝐻𝐻𝐼௧∗𝜕𝐴௜(𝜆௧)𝜕ଶ𝐴௜(𝜆௧)𝜕𝜆௧ଶ ൩௡
௜ୀଵ 𝜎ఒଶ𝑑𝑡, (30) 

where 𝑑𝑋௧ equals the 𝑑𝐻𝐻𝐼௧∗ in Equation (26) with 𝐴௜ replaced by 𝐴௜(𝜆௧), 

 𝜕𝐻𝐻𝐼௧∗𝜕𝐴௜(𝜆௧) = 4𝑋௜𝑚௜,௧ଶ 𝐴௜(𝜆௧) × 𝑞௜,௧∗ ∑ 𝑞௝,௧∗௡௝ୀଵ − ∑ 𝑞௝,௧∗ଶ௡௝ୀଵ൫∑ 𝑞௝,௧∗௡௝ୀଵ ൯ଷ , (31) 

and 

 𝜕ଶ𝐻𝐻𝐼௧∗𝜕𝐴௜(𝜆௧)ଶ = 4𝑋௜𝑚௜,௧ଶ × 

⎣⎢⎢
⎢⎡3𝑞௜,௧∗ ∑ 𝑞௝,௧∗௡௝ୀଵ + 6𝑞௜,௧∗ ൫∑ 𝑞௝,௧∗ଶ௡௝ୀଵ ൯൫∑ 𝑞௝,௧∗௡௝ୀଵ ൯ − 8𝑞௜,௧∗ଶ − ∑ 𝑞௝,௧∗ଶ௡௝ୀଵ൫∑ 𝑞௝,௧∗௡௝ୀଵ ൯ଷ ⎦⎥⎥

⎥⎤. (32) 

Proof. Apply Itô’s Lemma on 𝐻𝐻𝐼௧∗(𝐦𝐭, 𝜆௧) , using the property that 𝜆௧  is independent of 𝑚௜,௧, 𝑖 = 1, … ,𝑛. □ 

Proposition RNV shows how the dynamics of stock market volatility affects that of 

HHI. We summarize the key insights directly from Proposition RNV in the following corollary. 

Corollary RNV. Dynamics of HHI, Changes in Stock Market Volatility, and Fund Sizes 

If 𝑚௜,௧ > 𝑚௜,௧ and 𝑚௜,௧ is sufficiently large (small) such that 𝑞௜,௧∗ > ∑ ௤ೕ,೟∗మ೙ೕసభ∑ ௤ೕ,೟∗೙ೕసభ  (𝑞௜,௧∗ < ∑ ௤ೕ,೟∗మ೙ೕసభ∑ ௤ೕ,೟∗೙ೕసభ ), 

then we have డுுூ೟∗డ஺೔(ఒ೟) డ஺೔(ఒ೟)డఒ೟ < 0  ( డுுூ೟∗డ஺೔(ఒ೟) డ஺೔(ఒ೟)డఒ೟ > 0 ). When ∑ డுுூ೟∗డ஺೔(ఒ೟) డ஺೔(ఒ೟)డఒ೟௡௜ୀଵ < 0 
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(∑ డுுூ೟∗డ஺೔(ఒ೟) డ஺೔(ఒ೟)డఒ೟௡௜ୀଵ > 0), an increase in 𝜆௧ exerts a negative (positive) impact on 𝑑𝐻𝐻𝐼௧∗. □ 

To understand Corollary RNV, notice that డ஺೔(ఒ೟)డఒ೟ < 0, 𝑖 = 1, …𝑛, so given the same 

inferred manager abilities, a higher 𝜆௧ decreases fund expected gross alphas and consequently 

decreases all funds’ equilibrium sizes. If fund 𝑖 ’s inferred ability 𝑚௜,௧  is sufficiently large 

(small) relative to those of other funds, such that 𝑞௜,௧∗ > ∑ ௤ೕ,೟∗మ೙ೕసభ∑ ௤ೕ,೟∗೙ೕసభ   (𝑞௜,௧∗ < ∑ ௤ೕ,೟∗మ೙ೕసభ∑ ௤ೕ,೟∗೙ೕసభ  ), then the 

decrease in fund 𝑖’s size exerts a negative (positive) impact on HHI, as shown in the earlier 

discussions. In other words, when 𝑚௜,௧  is sufficiently large (small), we have డுுூ೟∗డ஺೔(ఒ೟) > 0 

( డுுூ೟∗డ஺೔(ఒ೟) < 0), so డுுூ೟∗డ஺೔(ఒ೟) డ஺೔(ఒ೟)డఒ೟ < 0 ( డுுூ೟∗డ஺೔(ఒ೟) డ஺೔(ఒ೟)డఒ೟ > 0). Then, whether HHI increases with 𝜆௧ 
depends on whether the aggregate effect, ∑ డுுூ೟∗డ஺೔(ఒ೟) డ஺೔(ఒ೟)డఒ೟௡௜ୀଵ , is positive. From Equation (31), 

we can see that if fund 𝑖 is extremely large relative to other funds, due to its large 𝑋௜, 𝐴௜(𝜆௧), 

and/or 𝑚௜,௧ , then డுுூ೟∗డ஺೔(ఒ೟)  is positive with a large absolute value, which drives the value of ∑ డுுூ೟∗డ஺೔(ఒ೟) డ஺೔(ఒ೟)డఒ೟௡௜ୀଵ   when the magnitude of డ஺೔(ఒ೟)డఒ೟   is similar to those of other funds.30  As 

డ஺೔(ఒ೟)డఒ೟ < 0, we would have a negative ∑ డுுூ೟∗డ஺೔(ఒ೟) డ஺೔(ఒ೟)డఒ೟௡௜ୀଵ  when some extremely large funds 

exist. In other words, when the distribution of funds’ sizes is highly skewed to the right (which 

is the case in reality31), the effect of the decrease in extremely large funds’ sizes due to an 

increase in stock market volatility dominates those of small funds, inducing a lower HHI. 

The analysis in this section stresses that a nonlinear frame allowing coefficients of 

processes of manager abilities and gross alphas to be functions of observable economic factors 

can model how the dynamics of these factors affect that of HHI. Linear frameworks of manager 

abilities and gross alphas that are used in the existing literature, such as Berk and Green (2004) 

and their followers, cannot directly incorporate the effects of economic factors on manager 

abilities and gross alphas and, consequently, cannot easily model these effects on the dynamics 

of HHI as we do here. We study only the effect of the stock market volatility on HHI in this 

section; the effects of other economic factors that might affect HHI, such as technological and 
 

30  As the change in stock market volatility affects active equity funds in a similar way, it is likely that the 
magnitudes of డ஺೔(ఒ೟)డఒ೟ , 𝑖 = 1, … ,𝑛 are close to each other. 
31 We also show that the distribution of funds’ sizes is highly skewed to the right in our sample in Section 3. 
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regulatory changes, are left for future research. 

2.6 Constant Manager Abilities and HHI 

We illustrate a special case of HHI in which manager abilities are constant under the 

linear framework shown in Section 2.1. In this case, 𝐚𝟎 is an 𝑛 × 1 zero vector and 𝐚𝟏, 𝐛𝟏, 

and 𝐛𝟐 are 𝑛 × 𝑛 zero matrices, making 𝐝𝛉𝐭 a zero vector. We have 

 𝐝𝐦𝐭 = 𝛔𝐦(𝛄𝐭)𝐝𝐖ഥ𝐭, (33) 

 𝛔𝐦(𝛄𝐭) ≜ (𝐀𝛄𝐭)′𝐁ି𝟏, (34) 

 𝛄𝐭 = [𝐈 + 𝛄𝟎𝐀𝐁ି𝟐𝐀𝑡]ିଵ𝛄𝟎, (35) 

where 𝐈 is an 𝑛 × 𝑛 identity matrix. Theorem 12.8 of Liptser and Shiryaev (2001b) provides 

the proof of the above results. These results show that for fund 𝑖, 𝑖 = 1, … ,𝑛, we have that 

the imprecision of the estimate 𝑚௜,௧ , 𝛾௜,௧ = ఊ೔,బ஻೔మ஻೔మା஺೔మఊ೔,బ௧  decreases to zero over time 

monotonically, so the sensitivity of inferred ability to performance shocks, 𝜎௜,௠൫𝛾௜,௧൯ ≜൫𝐴௜𝛾௜,௧൯/𝐵௜, also decreases to zero monotonically. Thus, we have the following proposition. 

Proposition CA. Constant Manager Abilities and Steady State of HHI 

If 𝛉𝐭  is a constant vector and 𝑚௜,௧ > 𝑚௜,௧  for 𝑖 = 1, … ,𝑛 , then over time, 𝛾௜,௧  and 𝜎௜,௠൫𝛾௜,௧൯  decrease monotonically to zero. As 𝑡 → ∞ , for 𝑖 = 1, … ,𝑛 , 𝑑𝑚௜,௧ =𝜎௜,௠൫𝛾௜,௧൯𝑑𝑊ഥ௜,௧ → 0 and 𝑚௜,௧, becomes constant, making 𝐻𝐻𝐼௧∗ a constant. □ 

Proposition CA shows the steady state of this constant-ability framework. The intuition 

is that as managers’ abilities are unobservable constants, estimation precisions improve 

monotonically over time, inducing inferred abilities to be increasingly less sensitive to funds’ 

gross alpha realizations. As time goes to infinity, people know managers’ abilities, thus do not 

change their estimates. Then, investors stop changing their investments flows to funds (i.e., 

fund sizes stay unchanged), making HHI stay unchanged. As empirical HHI does not converge 

to a constant in the long term, as shown in Feldman, Saxena, and Xu (2020, 2023) and our 

following empirical section, theoretical models with this framework, such as Berk and Green 

(2004), Choi, Kahraman, and Mukherjee (2016), and Brown and Wu (2016), lack the 

explanatory and predictive power of HHI dynamics. For illustration, we simulate HHI in the 
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cases of constant ability and of dynamic ability in the Internet Appendix. 

2.7 Mean-Variance Risk-Averse Investors and HHI 

To study the effect of investors’ risk aversion on HHI, we start with the linear 

framework in Section 2.1 and assume that investors are mean-variance risk averse and 

maximize their portfolios’ instantaneous Sharpe ratios.32 This setting is also similar to the one 

in Pastor and Stambaugh (2012), Feldman, Saxena, and Xu (2020, 2023), and Feldman and Xu 

(2022). 

As risk-averse investors trade off risk and return, we need to redefine our model. First, 

we cannot normalize the passive benchmark portfolio return to zero as the level of this return 

is relevant.33 Here, we define the share price of the passive benchmark portfolio at time 𝑡 as 𝜂௧, and assume that the passive benchmark portfolio return 𝑑𝜂௧/𝜂௧ follows 

 𝑑𝜂௧𝜂௧ = 𝜇௣𝑑𝑡 + 𝜎௣𝑑𝑊௣,௧ , (36) 

where 𝜇௣ and 𝜎௣ are positive known constants and 𝑊௣,௧ is a Wiener Process. 

Next, for 𝑖 = 1, … ,𝑛, we still define 𝑑𝜉௜,௧/𝜉௜,௧, as the fund gross alphas, which follow 

the process defined in Equations (1) and (2), and define 𝑑𝑆௜,௧/𝑆௜,௧ as the fund net alphas. As 

the active funds have beta loading of one on the passive benchmark portfolio, the fund gross 

return is 𝑑𝜉௜,௧/𝜉௜,௧ + 𝑑𝜂௧/𝜂௧ and the fund net return is 𝑑𝑆௜,௧/𝑆௜,௧ + 𝑑𝜂௧/𝜂௧. 
For simplification, we assume that the risk source of the benchmark return is 

independent of that of gross alphas, so 

 𝑑𝑊௣,௧𝑑𝑊ഥ௜,௧ = 0,  ∀𝑡, 𝑖 = 1, … ,𝑛. (37) 

Also, we normalize the risk-free return to zero.34 All other settings are the same as before. 

An investor invests in 𝑛  active funds and the passive benchmark to maximize the 

portfolio’s instantaneous Sharpe ratio: 

 
32 These investors’ optimal portfolios are growth optimal and are the same as those of investors with Bernoulli 
logarithmic preferences, who maximize expected utility. See the discussions of mean-variance risk-averse 
investors in Feldman and Xu (2022). 
33 As mean-variance risk-averse investors’ preferences are defined over their whole portfolios, they do not form 
their decision based on a marginal analysis of the active funds’ risk alone. [See, for example, Equation (46), which 
collapses if the passive benchmark return is normalized to zero.] 
34 Alternatively, we can regard 𝑑𝜂௧/𝜂௧ as the passive benchmark portfolio return in excess of the risk-free return. 
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 max௪೟ E ൤𝑑𝑝௧𝑝௧ ฬ ℱ௧𝛏൨ටVar ൤𝑑𝑝௧𝑝௧ ฬ ℱ௧𝛏൨ (38) 

subject to 

 𝐯𝐭′𝟏 = 1, (39) 

 0 ≤ 𝑣௜,௧ ≤ 1,  ∀ 𝑖 = 1, … ,𝑛 + 1, (40) 

where 𝐯𝐭 is the (𝑛 + 1) × 1 portfolio weight vector, with the 𝑖th element 𝑣௜,௧, 𝑖 = 1, … ,𝑛 

as the weight allocated to the 𝑖 th active fund, and the last element 𝑣௡ାଵ,௧  as the weight 

allocated to the passive benchmark portfolio. Condition (40) is to prevent short selling of active 

funds or the passive benchmark portfolio. Also, 𝑝௧ is the portfolio’s value, and 𝑑𝑝௧/𝑝௧ is the 

investor’s instantaneous portfolio return. We define 𝐑𝐭 as the (𝑛 + 1) × 1 net return vector 

of these 𝑛 + 1 assets, which has elements 

 𝑅௜,௧ = 𝑑𝑆௜,௧𝑆௜,௧ + 𝑑𝜂௧𝜂௧ , 𝑖 = 1, … ,𝑛, (41) 

 𝑅௡ାଵ,௧ = 𝑑𝜂௧𝜂௧ . (42) 

Then, the investor’s portfolio net return is 

 𝑑𝑝௧𝑝௧ = 𝐯𝐭′𝐑𝐭. (43) 

Let the optimal weight allocations be 𝐯𝐭∗. As investors face the same risk-return tradeoff 

and have the same objective function, they all make the same optimal decision of 𝐯𝐭∗. We define 

the part of the total wealth of all investors allocated to financial assets (i.e., allocated to the 

active fund and the passive benchmark portfolio) as 𝑉, 𝑉 ∈ (0, +∞), 0 ≤ 𝑡 ≤ 𝑇. To simplify 

our analyses and focus on how managers’ heterogeneity affects the dynamics of HHI, we 

assume that 𝑉 is constant and exogenous to both investors and managers.35 Then, the amount 

of wealth allocated to fund 𝑖, i.e., fund 𝑖’s size, is 𝑞௜,௧∗ = 𝑣௜,௧∗ 𝑉, 𝑖 = 1, … ,𝑛. 

As in the risk-neutral case, we can write the fund manager’s profit as a function of 𝑞௜,௧௔ , 

i.e., 𝑔௜൫𝑞௜,௧௔ ൯ , where 𝑔௜  is a (smooth, increasing, concave) function, shown in the Internet 

Appendix. Then, manager 𝑖’s problem is 

 
35 In reality, this wealth not only depends on the returns from financial assets, but also depends on production 
activities, research and development expenditures, consumptions, taxes, and many other aspects of the economy 
that we do not model here. Also, it can change over time and its dynamics can affect the dynamics of HHI. To 
simplify our model, we do not introduce these complexities of this wealth value. 
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 max௤೔,೟ೌ 𝑓௜𝑞௜,௧ = max௤೔,೟ೌ 𝑔௜൫𝑞௜,௧௔ ൯ (44) 

subject to 

 0 ≤ 𝑞௜,௧௔ ≤ 𝑞௜,௧ ,  ∀ 𝑖 = 1, … ,𝑛. (45) 

By solving the investors’ and managers’ problems, we obtain the equilibrium fund size: 

 𝑞௜,௧∗ = ൫𝐴௜𝑚௜,௧൯ଶ𝑉𝜎௣ଶ4𝑓௜൫𝐵௜ଶ𝜇௣ + 𝑐௜𝑉𝜎௣ଶ൯. (46) 

We define the size factor of fund 𝑖 when investors are mean-variance risk-averse as 

 𝑋௜ோ஺ ≜ 𝑉𝜎௣ଶ4𝑓௜൫𝐵௜ଶ𝜇௣ + 𝑐௜𝑉𝜎௣ଶ൯ = 14𝑓௜𝑐௜ + 4𝑓௜𝐵௜ଶ𝜇௣𝑉𝜎௣ଶ . (47) 

Similar to the results of 𝑋௜, a larger decreasing returns to scale parameter, 𝑐௜, and a higher 

management fee, 𝑓௜, both decrease the size factor 𝑋௜ோ஺. Additionally, higher 𝐵௜ଶ and 𝜇௣ both 

decrease 𝑋௜ோ஺, and higher 𝑉 and 𝜎௣ଶ both increase 𝑋௜ோ஺. The intuition is that, holding other 

parameters unchanged, mean-variance risk-averse investors invest more (less) in fund 𝑖 if the 

risk of the passive benchmark’s return 𝜎௣ଶ (the risk of fund 𝑖’s gross alpha 𝐵௜ଶ) is higher. Also, 

investors invest more in fund 𝑖 if they have more wealth 𝑉 to invest, and switch from fund 𝑖 to the passive benchmark if the benchmark’s mean return 𝜇௣ is higher. Further, we can see 

that, holding other parameters unchanged, 𝑋௜ோ஺ is smaller than 𝑋௜. In other words, compared 

to AFMI with risk-neutral investors, AFMI with mean-variance risk-averse investors has 

smaller equilibrium fund sizes. This is because investors’ risk considerations reduce their 

investment to risky active funds. Using this new definition of fund 𝑖’s size factor, we have 

 𝑞௜,௧∗ = ൫𝐴௜𝑚௜,௧൯ଶ𝑋௜ோ஺. (48) 

Proof. See the Internet Appendix. □ 

We substitute 𝑞௜,௧∗  shown above into the formula of 𝐻𝐻𝐼௧∗ and derive the following 

results, 

 𝐻𝐻𝐼௧∗ = 𝐗𝐑𝐀′𝐀𝟒𝐈𝟒(𝐦𝐭)𝐗𝐑𝐀[𝐗𝐑𝐀′𝐀𝟐𝐈𝟐(𝐦𝐭)𝟏]𝟐 = ∑ 𝑋௜ோ஺ଶ൫𝐴௜𝑚௜,௧൯ସ௡௜ୀଵቂ∑ 𝑋௜ோ஺൫𝐴௜𝑚௜,௧൯ଶ௡௜ୀଵ ቃଶ , (49) 

where 𝐗𝐑𝐀 is an 𝑛 × 1 vector with the 𝑖th element as 𝑋௜ோ஺. 
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We can see that the form of 𝐻𝐻𝐼௧∗ in (49) is the same as the one in (24) in the case of 

risk-neutral investors. The only difference is that here we use 𝐗𝐑𝐀 instead of 𝐗 as the size 

factors. Thus, the relation of the dynamics of 𝐻𝐻𝐼௧∗  and managers’ inferred abilities in 

Proposition RN1 still holds; consequently, the results of Proposition RN2 and Corollaries 

RN2.1 and RN2.2 hold. Also, if we allow 𝐴௜  to be a decreasing function of stock market 

volatility as we do in Section 2.5, then the results of Proposition RNV and Corollary RNV still 

hold. The intuition is that investors’ risk considerations decrease the equilibrium fund sizes, 

but 𝐻𝐻𝐼௧∗ depends on relative fund sizes, and the way to compare these sizes does not depend 

on investors’ risk considerations. Thus, the dynamics of 𝐻𝐻𝐼௧∗ relates to managers’ relative 

inferred abilities in a way similar to that of the risk-neutral case. 

The following proposition summarizes the results in this section. 

Proposition RA. HHI and Mean-Variance Risk-Averse Investors 

When investors are mean-variance risk averse, 𝑞௜,௧∗ , 𝑖 = 1, … ,𝑛, are smaller than those when 

investors are risk neutral, and funds’ size factors 𝑋௜ோ஺, 𝑖 = 1, … ,𝑛, not only decrease with 𝑐௜ 
and 𝑓௜ , but also increase with 𝑉  and 𝜎௣ଶ  and decrease with 𝐵௜ଶ  and 𝜇௣ . Besides the size 

factors, the other results of Propositions RN1, RN2, and RNV and Corollaries RN2.1, RN2.2, 

and RNV still hold. □ 

2.8 Fund Entrances and Exits and HHI 

Besides the dynamics of fund managers’ relative abilities, a fund’s entrance and exit 

could affect the dynamics of AFMI concentration. Although we do not analyze funds’ entrances 

and exits explicitly, we show that our framework is compatible with the effects of them, if we 

allow the total number of funds to change over time, i.e., 𝑛 = 𝑛௧, and require funds to exit the 

market if their managers’ inferred abilities reduce to zero, i.e., the survival ability level 𝑚௜,௧ =0, 𝑖 = 1, … ,𝑛௧. 
Notice that in equilibrium, funds with positive (zero) inferred abilities earn positive 

(zero) profits, as implied by the equilibrium fund sizes in Equation (18) in the risk-neutral case 

and those in Equation (46) in the mean-variance risk-averse case. When 𝑚௜,௧ = 0 , 𝑖 =1, … ,𝑛௧, managers with positive inferred abilities optimally stay in the market to earn positive 
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profits. On the other hand, as managers cannot short sell investors’ wealth,36 managers with 

negative inferred abilities optimally choose to put zero assets under active management to 

avoid losses, thus exit the market. Therefore, the setting of 𝑚௜,௧ = 0 , 𝑖 = 1, … ,𝑛௧  is 

consistent with profit-maximizing managers, and these survival ability levels can be regarded 

as those endogenously chosen by fund managers. 

To see how our framework is compatible with the effects of funds’ entrances and exits, 

notice again that equilibrium fund sizes, 𝑞௜,௧∗ , are functions of managers’ inferred abilities, 𝑚௜,௧. 
As the value of 𝑚௜,௧ changes continuously, the value of 𝑞௜,௧∗  also changes continuously. When 𝑚௜,௧ decreases to zero, 𝑞௜,௧∗  and fund 𝑖’s market share decreases to zero, such that when the 

fund exits the market, the exit does not cause a jump in 𝐻𝐻𝐼௧∗. On the other hand, a potential 

entrant can be regarded as a fund with negative inferred ability. When its inferred ability 𝑚௜,௧ 
increases to zero, it enters the market with an equilibrium fund size 𝑞௜,௧∗  equal to zero. After 

that, if 𝑚௜,௧ increases, then 𝑞௜,௧∗  increases. As the changes in 𝑚௜,௧ and 𝑞௜,௧∗  are continuous, 

the entrance does not cause a jump in 𝐻𝐻𝐼௧∗. Then, in these two cases, 𝑑𝐻𝐻𝐼௧∗ can still be 

expressed by Equation (25), and the results from Section 2.3 to Section 2.7 are still valid. In 

other words, funds’ entrances (exits) do not affect 𝑑𝐻𝐻𝐼௧∗ instantaneously, but these funds 

affect 𝑑𝐻𝐻𝐼௧∗  after (before) that. This does not mean that fund entrances and exits are 

irrelevant to AFMI concentration in our model because they change the set of funds in AFMI, 

a change that exerts impacts on AFMI concentration that are captured by our result in Equation 

(25). 

However, if 𝑚௜,௧ > 0  for any 𝑖 = 1, … ,𝑛௧ , then fund 𝑖 ’s exit or entrance creates a 

jump in 𝐻𝐻𝐼௧∗ , and we need to incorporate this jump effect when analyzing 𝑑𝐻𝐻𝐼௧∗ . The 

reason is that when fund 𝑖 exits the market with 𝑚௜,௧ decreasing to 𝑚௜,௧, its equilibrium fund 

size 𝑞௜,௧∗  jumps from a value larger than (but not close to) zero to zero value, creating a jump 

in 𝐻𝐻𝐼௧∗. On the other hand, when fund 𝑖 enters the market with 𝑚௜,௧ increasing to 𝑚௜,௧, its 

equilibrium fund size 𝑞௜,௧∗  jumps from zero to a value larger than (but not close to) zero, also 

creating a jump in 𝐻𝐻𝐼௧∗. In these two cases, 𝑑𝐻𝐻𝐼௧∗ cannot be expressed by Equation (25) 

because the jump effects should be added. 

 
36 Managers can short sell some stocks when constructing a portfolio to pursue alphas, but they cannot short the 
whole portfolio or short the “active management amount”, as shown by the constraint 𝑞௜,௧௔ ≥ 0 for any 𝑖. 
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Section 3.3 of this paper offers evidence that the aggregate sizes of funds that enter and 

that exit the market are trivial compared to the total AFMI size. Thus, when these exits and 

entrances happen, they do not create jumps in AFMI concentration levels. Therefore, our model 

can sufficiently explain the dynamics of AFMI concentration when funds exit and enter. 

2.9 AFMI Concentration Measured at the Fund Family Level 

Current literature shows that affiliated funds in a fund family could cooperate with each 

other when competing in the market. For example, they can strategically transfer performances 

among each other to manipulate investment flows and then optimize fund family values [see, 

for example, Evans, Prado, and Zambrana (2020), Eisele, Nefedova, Parise, and Peijnenburg 

(2020), and Xu (2023)]. Thus, it is also natural to measure AFMI concentration at the fund 

family level. Suppose the market has 𝑙 fund families and family 𝑘, 𝑘 = 1, … , 𝑙 manages 𝑛௞ 

funds, such that the total number of funds in the market, 𝑛 = ∑ 𝑛௞௟௞ୀଵ . Define 

 𝐻𝐻𝐼௧∗ ≜ 𝑸𝐭∗′𝑸𝐭∗(𝑸𝐭∗′𝟏)ଶ = ∑ 𝑄௞,௧∗ଶ௟௞ୀଵ൫∑ 𝑄௞,௧∗௟௞ୀଵ ൯ଶ, (50) 

where 𝑸𝐭∗ is the 𝑛 × 1 vector of the equilibrium fund family sizes with the 𝑘th element as 𝑄௞,௧∗ = ∑ 𝑞௜,௧∗௡ೖ௜ୀଵ . Hereafter, we briefly call the HHI defined in Equation (50) as family-level 

HHI and the one in Equation (23) as fund-level HHI. As 𝑞௜,௧∗  indicates manager 𝑖’s inferred 

ability, 𝑄௞,௧∗  indicates family 𝑘’s aggregate inferred ability. Following an analysis similar to 

those in the previous sections, we have results of the dynamics of family-level HHI as shown 

in the following proposition. 

Proposition FA. Dynamics of Family-Level HHI 

Suppose we define HHI as the one in Equation (50). Whether investors are risk-neutral or 

mean-variance risk-averse, if 𝑚௜,௧ > 𝑚௜,௧ and fund 𝑖 belongs to family 𝑘 whose aggregate 

inferred ability is sufficiently large (small) such that 𝑄௞,௧∗ > ∑ ொೕ,೟∗మ೗ೕసభ∑ ொೕ,೟∗೗ೕసభ  (𝑄௞,௧∗ < ∑ ொೕ,೟∗మ೗ೕసభ∑ ொೕ,೟∗೗ೕసభ ), then we 

have the following. 

a. An increase in 𝑚௜,௧ has a positive (negative) impact on 𝑑𝐻𝐻𝐼௧∗. 
b. A positive 𝑑𝑊ഥ௜,௧  exerts a positive (negative) impact on 𝑑𝐻𝐻𝐼௧∗ , and a higher 𝐵௜ 

mitigates this positive (negative) impact. 
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c. We have డுுூ೟∗డ஺೔(ఒ೟) డ஺೔(ఒ೟)డఒ೟ < 0  ( డுுூ೟∗డ஺೔(ఒ೟) డ஺೔(ఒ೟)డఒ೟ > 0 ). When ∑ డுுூ೟∗డ஺೔(ఒ೟) డ஺೔(ఒ೟)డఒ೟௡௜ୀଵ < 0 

(∑ డுுூ೟∗డ஺೔(ఒ೟) డ஺೔(ఒ೟)డఒ೟௡௜ୀଵ > 0 ), an increase in 𝜆௧  exerts a negative (positive) impact on 𝑑𝐻𝐻𝐼௧∗. 
Proof. See the Internet Appendix. □ 

Proposition FA shows that the factors, such as 𝑚௜,௧, 𝑊ഥ௜,௧, and 𝜆௧, affect the dynamics 

of family-level HHI in a way similar to the one when they affect the dynamics of fund-level 

HHI as shown in Sections 2.4 to 2.7, except in this case, fund families’ relative aggregate 

inferred abilities, captured by family sizes are relevant, instead of fund managers’ relative 

inferred abilities, captured by fund sizes. The reason is that when we measure AFMI 

concentration by family-level HHI, if a fund belongs to a family 𝑘 that is sufficiently large 

(small) such that 𝑄௞,௧∗ > ∑ ொೕ,೟∗మ೗ೕసభ∑ ொೕ,೟∗೗ೕసభ  (𝑄௞,௧∗ < ∑ ொೕ,೟∗మ೗ೕసభ∑ ொೕ,೟∗೗ೕసభ ), then an increase in this fund’s size, due to 

the changes in these factors, would increase family 𝑘 ’s size, making AFMI more (less) 

concentrated. Also, the way to compare fund family sizes does not depend on investors’ risk 

considerations, so the above results hold whether investors are risk neutral or mean-variance 

risk averse. 

2.10 Impact of AFMI Concentration on Alpha Productions and Fund Sizes 

Current literature, such as Pastor and Stambaugh (2012), and Feldman, Saxena, and Xu 

(2020, 2023), shows that the AFMI concentration level can affect fund alpha production. 

Suppose we incorporate this effect in our framework and assume that 𝐴௜ = 𝐴௜𝐻𝐻𝐼௧ , 𝑖 =1, … ,𝑛  in Equation (2). This setting implies that given the same manager ability, a more 

concentrated AFMI allows managers to produce higher gross alphas, as they can find more 

investment opportunities. This setting is consistent with the spirit of the model setting in 

Feldman, Saxena, and Xu (2020, 2023). Under this setting, we can see that the equilibrium 

HHIs in Equations (24) and (49) have the same forms as those without this setting (𝐻𝐻𝐼௧ in 

the numerator and denominator cancel out each other in each equation), and all our earlier 

results hold. Thus, when gross alpha sensitivities to manager abilities are proportional to HHI, 

then the effect of HHI on alpha production does not affect the dynamics of HHI. The intuition 

is that when a higher level of HHI increases each fund’s gross alpha proportionally, it increases 
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each fund’s equilibrium size but does not affect funds’ sizes relative to others. 

Similarly, if we assume that 𝑋௜ = 𝑋௜𝐻𝐻𝐼௧  and 𝑋௜ோ஺ = 𝑋ோ஺,௜𝐻𝐻𝐼௧ , 𝑖 = 1, … ,𝑛  in 

Equations (19) and (47), respectively, then the equilibrium HHIs in Equations (24) and (49) 

have the same forms as those without this setting, and all our earlier results hold. This setting 

implies that higher concentration affects managerial fees and the decreasing returns to scale, 

which consequently affect equilibrium fund sizes. This setting is also consistent with the spirit 

of the model setting in Feldman, Saxena, and Xu (2020, 2023). As a higher level of HHI affects 

each fund’s size proportionally, it does not affect funds’ sizes relative to others. 

In short, if HHI changes 𝐴௜ , 𝑋௜ , and 𝑋௜ோ஺ , 𝑖 = 1, … ,𝑛  proportionally, then all our 

earlier results hold, and our equilibrium is compatible with those in Feldman, Saxena, and Xu 

(2020, 2023), where AFMI concentration affects equilibrium fund alphas and sizes. However, 

if HHI affects these parameters disproportionally, then the equilibrium HHI dynamics is more 

complex, and we leave this issue for future study. 

3 Empirical Study 

Based on Corollaries RN2.1 and RN2.2, we have the following two predictions, 

respectively. For funds that are sufficiently large (small) relative to others, 

i. increase in these funds’ performances relative to those of other funds exerts positive 

(negative) impacts on fund-level HHI; 

ii. higher performance variations in these funds mitigate these positive (negative) impacts 

on fund-level HHI such that the interaction effects of shocks in relative performance 

and performance variations are negative (positive) in these funds. 

Also, based on Corollary RNV, we have the following prediction. 

iii. When the distribution of funds’ sizes is highly skewed to the right, an increase in stock 

market volatility decreases fund-level HHI. 

In addition, based on Proposition FA, when family-level HHI measures AFMI concentration, 

if the funds are in sufficiently large (small) fund families, then we have predictions similar to 

those shown above for these funds. We test these predictions empirically. 

3.1 Methodology 

We first develop the measures of fund performance and performance variation. We 
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estimate fund performance using empirical asset pricing models in the current literature, such 

as the five-factor model developed by Fama and French (2015) (hereafter, FF5) and the four-

factor model developed by Fama and French (1993) and Carhart (1997) (hereafter, FFC4). For 

each fund 𝑖, we estimate the following: 

 𝑟௜,௧ = ෍𝛽௜,௝𝐹௝,௧ெ
௝ୀଵ + 𝜀௜,௧ , (51) 

where 𝑟௜,௧ is fund 𝑖’s net return in excess of risk-free return, 𝐹௝,௧ is the return of factor 𝑗, 𝛽௜,௝ 
is the factor loading of fund 𝑖 to factor 𝑗, 𝑀 is the number of factors, and 𝜀௜,௧ is the residual. 

This model is estimated on a rolling-window basis. 

Our first measure of fund performance variation is the 1 − 𝑅ଶ of the regression model 

calculated as ∑ ൫ఌො೔,೟൯మ೟∑ ൫௥೔,೟ି௥̅೔൯మ೟  , where 𝜀௜̂,௧  is the estimated residual and 𝑟̅௜  is the average excess 

return of fund 𝑖 over the rolling window period. Notice that 𝜀௜̂,௧ = 𝑟௜,௧ − ∑ 𝛽መ௜,௝𝐹௝,௧ெ௝ୀଵ , where 𝛽መ௜,௝ is the estimate of factor loading to factor 𝑗 and 𝜀௜̂,௧ can be regarded as the in-sample 

estimate of abnormal net return, or net alpha. Consequently, 1 − 𝑅ଶ can be regarded as the in-

sample estimate of fund performance variation (normalized by total variation of the excess 

return). Amihud and Goyenko (2013) also find that the measure 1 − 𝑅ଶ in such regression 

models is highly related to fund performance. Similar to Amihud and Goyenko (2013), we use 

a 24-month rolling window to estimate the models for each fund 𝑖, and we denote the 1 − 𝑅ଶ 

estimated by the previous 24-month period (from 𝑡 − 1 to 𝑡 − 24) as 𝑂𝑀𝑅2௜,௧ିଵ. 

We estimate the (out-of-sample) fund net alpha at time 𝑡 as the 𝑁𝑒𝑡𝐴𝑙𝑝ℎ𝑎௜,௧ = 𝑟௜,௧ −∑ 𝛽መ௜,௝𝐹௝,௧ெ௝ୀଵ , where 𝛽መ௜,௝ is estimated using the observations in the previous 24 months. Our 

second measure of fund performance variation is the standard deviation of the net alphas in the 

previous 12 months, denoted as 𝑁𝑒𝑡𝐴𝑙𝑝ℎ𝑎_𝑆𝑡𝑑௜,௧ିଵ. For robustness, we also calculate the fund 

gross alpha as the fund net alpha plus the fund annual expense ratio divided by 12, and then 

calculate the standard deviation of this gross alpha in the previous 12 months as a measure of 

fund performance variation, denoted as 𝐺𝑟𝑜𝑠𝑠𝐴𝑙𝑝ℎ𝑎_𝑆𝑡𝑑௜,௧ିଵ. These two measures of fund 

performance variation are the performance volatility measures by Huang, Wei, and Yan (2021). 

We next choose the option-implied volatility index (VIX) as our measure of stock 
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market volatility. VIX not only measures stock market volatility but also captures investors’ 

expectation of such volatility, so current literature [e.g., Jin, Kacperczyk, Kahraman, and 

Suntheim (2022)], uses VIX to measure market stress and panic. Thus, we expect that at a 

higher VIX level, the stock market is more volatile and stressful, impeding fund managers to 

implement their investment strategies and consequently reducing the sensitivities of gross 

alphas to manager abilities. 

Fund-Level Analysis:  Flow-Performance Sensitivity, Stock Market Volatility, and 

Performance Variation 

As we assume that higher stock market volatility decreases the sensitivity of gross alpha 

to manager ability, we should find that the equilibrium fund flow–net alpha sensitivity 

decreases with stock market volatility. Also, as we assume Bayesian learning of manager 

abilities in our model, then higher performance variation should make investors rely less on 

fund performance when learning about manager abilities, consequently decreasing the 

equilibrium fund flow–net alpha sensitivity.37 Before we test our theoretical predictions, we 

provide evidence to support these model settings by empirically studying the flow–net alpha 

sensitivity. We test the following model: 

 𝐹𝑙𝑜𝑤௜,௧ = 𝛿଴ + 𝛿ଵ𝑁𝑒𝑡𝐴𝑙𝑝ℎ𝑎௜,௧ିଵ + 𝛿ଶ𝑁𝑒𝑡𝐴𝑙𝑝ℎ𝑎௜,௧ିଵ × 𝑉𝐼𝑋௧ିଵ+ 𝛿ଷ𝑉𝐼𝑋௧ିଵ + 𝛿ସ𝑁𝑒𝑡𝐴𝑙𝑝ℎ𝑎௜,௧ିଵ × 𝑃𝑒𝑟𝑓_𝑉𝑎𝑟௜,௧ିଵ+ 𝛿ହ𝑃𝑒𝑟𝑓_𝑉𝑎𝑟௜,௧ିଵ + 𝛿𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑠௜,௧ିଵ + 𝜙௧ + 𝜐௜+ 𝜀௜,௧ , 
(52) 

where 𝐹𝑙𝑜𝑤௜,௧ is the fund percentage flow calculated as the difference between the monthly 

growth rate of the fund’s total net asset under management (TNA) and the fund’s monthly net 

return, 𝑉𝐼𝑋௧ is the VIX value, and 𝑃𝑒𝑟𝑓_𝑉𝑎𝑟௜,௧ is a measure of fund performance variation, 

which is 𝑂𝑀𝑅2௜,௧, 𝑁𝑒𝑡𝐴𝑙𝑝ℎ𝑎_𝑆𝑡𝑑௜,௧, or 𝐺𝑟𝑜𝑠𝑠𝐴𝑙𝑝ℎ𝑎_𝑆𝑡𝑑௜,௧. We follow the literature [such 

as Brown and Wu (2016), Franzoni and Schmalz (2017), Harvey and Liu (2019), Jiang, Starks, 

 
37 In our model, we can easily show that the equilibrium fund flow–net alpha is 

ௗ௤೔,೟∗௤೔,೟∗ = ஺೔(ఒ೟)ఙ೔,೘൫ఊ೔,೟൯௙೔஻೔ ൬ௗௌ೔,೟ௌ೔,೟ ൰ +஺೔మ(ఒ೟)ఙ೔,೘మ ൫ఊ೔,೟൯ସ௙೔మ஻೔మ ൬ௗௌ೔,೟ௌ೔,೟ ൰ଶ + 2 ൤௔೔,బ௠೔,೟ + 𝑎௜,ଵ൨ 𝑑𝑡, 𝑖 = 1, … ,𝑛, by applying Itô’s Lemma on 𝑞௜,௧∗  to calculate 𝑑𝑞௜,௧∗  and 

then divide it by 𝑞௜,௧∗ . Then, the flow–net alpha sensitivity decreases with 𝐵௜ and increases with 𝐴௜(𝜆௧). This 
theoretical result is consistent with results in the literature, such as Feldman and Xu (2022). 
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and Sun (2021), Huang, Wei, and Yan (2021), and Feldman and Xu (2022)] to choose control 

variables. The vector 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑠௜,௧ିଵ includes the lagged values of the natural logarithm of the 

fund size (ln𝑆𝑖𝑧𝑒௜,௧ିଵ ); the natural logarithm of fund age (𝑙𝑛𝐴𝑔𝑒௜,௧ିଵ ); fund expense ratio 

(𝐸𝑥𝑝𝑒𝑛𝑠𝑒௜,௧ିଵ); fund turnover ratio (𝑇𝑢𝑟𝑛𝑜𝑣𝑒𝑟௜,௧ିଵ); the weighted average flow of the fund 

class based on the Lipper fund classification; i.e., the style flow, (𝑆𝑡𝑦𝑙𝑒𝐹𝑙𝑜𝑤௜,௧ିଵ); fund flow 

(𝐹𝑙𝑜𝑤௜,௧ିଵ); fund family net alpha (𝐹𝑎𝑚𝐴𝑙𝑝ℎ𝑎௜,௧ିଵ); and the natural logarithm of the number 

of active equity funds in the fund family (ln𝐹𝑎𝑚𝑁𝑜௜,௧ିଵ). Variables 𝜙௧ and 𝜐௜ represent year 

effects and fund effects, respectively. Detailed definitions and constructions of these variables 

are shown in the Data Appendix. When analyzing the flow–net alpha relations, we also include 

the interaction terms of ln𝑆𝑖𝑧𝑒௜,௧ିଵ  and 𝑙𝑛𝐴𝑔𝑒௜,௧ିଵ  with 𝑁𝑒𝑡𝐴𝑙𝑝ℎ𝑎௜,௧ିଵ  because existing 

literature shows that the flow–net alpha sensitivity is affected by fund size [Brown and Wu 

(2016)] and fund age [Feldman and Xu (2022)]. To account for potential time-series and cross-

sectional correlations in residuals, we cluster standard errors by year and by fund. 

If our assumptions are consistent with reality, we should find that 𝛿ଶ is significantly 

negative and 𝛿ସ is significantly negative. 

Market-Level Analysis:  Dynamics of HHI and Changes in Stock Market Volatility, 

Fund Performances, and Performance Variations 

We test our theoretical predictions using our measures of stock market volatility and 

fund performance variation. Because it is impractical to include all funds’ performances as 

explanatory variables in one regression model when empirically analyzing the dynamics of 

HHI,38 we test our model’s predictions based on a group of funds that have sufficiently large 

sizes and a group of funds that have sufficiently small sizes. We want to test how the changes 

of these funds’ performances affect the dynamics of HHI, holding other funds’ performances 

unchanged, so we need a measure of “relative change” in performance. Here we measure the 

changes in these funds’ performances relative to those in other funds by the changes in these 

funds’ market shares. The reason is that a fund’s equilibrium size is a positive function of the 

fund manager’s inferred ability shown in our theoretical model, and then market share, which 

 
38 In our data section, we show that we have more than three thousand funds in our sample but only 336 monthly 
observations of HHI. Thus, we cannot directly run a regression based on our theoretical result in Equation (30). 
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is a fund’s size relative to the sum of all fund sizes, indicates a fund manager’s inferred ability 

relative to the abilities of other managers. Consequently, change in a fund’s market share 

indicates change in relative inferred ability due to the change in the fund’s performance relative 

to that of other funds. Then, we test the following model: 

 𝑑𝑖𝑓_𝐻𝐻𝐼௧ = 𝛿଴ + 𝛿ଵ𝑑𝑖𝑓_𝑉𝐼𝑋௧ିଵ + 𝛿ଶ𝑑𝑖𝑓_𝑀𝑎𝑟𝑘𝑒𝑡𝑆ℎ𝑎𝑟𝑒௧ିଵ௅+ 𝛿ଷ𝑑𝑖𝑓_𝑀𝑎𝑟𝑘𝑒𝑡𝑆ℎ𝑎𝑟𝑒௧ିଵௌ+ 𝛿ସ𝑑𝑖𝑓_𝑀𝑎𝑟𝑘𝑒𝑡𝑆ℎ𝑎𝑟𝑒௧ିଵ௅ × 𝑃𝑒𝑟𝑓_𝑉𝑎𝑟௧ିଵ௅+ 𝛿ହ𝑑𝑖𝑓_𝑀𝑎𝑟𝑘𝑒𝑡𝑆ℎ𝑎𝑟𝑒௧ିଵௌ × 𝑃𝑒𝑟𝑓_𝑉𝑎𝑟௧ିଵௌ+ 𝛿଺𝑃𝑒𝑟𝑓_𝑉𝑎𝑟௧ିଵ௅ + 𝛿଻𝑃𝑒𝑟𝑓_𝑉𝑎𝑟௧ିଵௌ+ 𝛿଼𝑁𝑢𝑚𝐺𝑟𝑜𝑤𝑡ℎ௧ିଵ + 𝜙௧ + 𝜀௧ , 
(53) 

where 𝑑𝑖𝑓_𝐻𝐻𝐼௧ is the change in HHI from time 𝑡 − 1 to 𝑡 and 𝑑𝑖𝑓_𝑉𝐼𝑋௧ିଵ is the change 

in VIX from time 𝑡 − 2  to 𝑡 − 1 . The superscripts 𝐵  and 𝑆  denote the large-fund group 

and small-fund group, respectively. We define the large-fund group as the largest five funds 

(based on fund TNA values) and the small-fund group as the funds with fund TNA values from 

the fifth percentile to the tenth percentile because these funds are likely to be sufficiently large 

and sufficiently small, respectively, relative to other funds.39 We redefine the large-fund group 

and small-fund group in each month. The explanatory variable 𝑑𝑖𝑓_𝑀𝑎𝑟𝑘𝑒𝑡𝑆ℎ𝑎𝑟𝑒௧ିଵ௅  

(𝑑𝑖𝑓_𝑀𝑎𝑟𝑘𝑒𝑡𝑆ℎ𝑎𝑟𝑒௧ିଵௌ  ) is the change in market share of the large-fund group (small-fund 

group) from time 𝑡 − 2  to 𝑡 − 1 . Also, 𝑃𝑒𝑟𝑓_𝑉𝑎𝑟௧ିଵ௅   (𝑃𝑒𝑟𝑓_𝑉𝑎𝑟௧ିଵௌ  ) is the weighted 

average of the measure of performance variation within the large-fund group (small-fund group) 

at time 𝑡 − 1, using funds’ TNAs at this time as weights. We include 𝑁𝑢𝑚𝐺𝑟𝑜𝑤𝑡ℎ௧ିଵ as a 

control variable, which is the change in the number of funds in the market from time 𝑡 − 2 to 𝑡 − 1, divided by the number of funds at 𝑡 − 2. This variable controls the effects of fund exit 

and entrance on the dynamics of HHI. Also notice that in the model as shown in Equation (53), 

the dependent variable 𝑑𝑖𝑓_𝐻𝐻𝐼௧  and independent variables 𝑑𝑖𝑓_𝑉𝐼𝑋௧ିଵ , 𝑑𝑖𝑓_𝑀𝑎𝑟𝑘𝑒𝑡𝑆ℎ𝑎𝑟𝑒௧ିଵ௅  , 𝑑𝑖𝑓_𝑀𝑎𝑟𝑘𝑒𝑡𝑆ℎ𝑎𝑟𝑒௧ିଵௌ  , and 𝑁𝑢𝑚𝐺𝑟𝑜𝑤𝑡ℎ௧ିଵ  are the differences of 

the time-series variables 𝐻𝐻𝐼௧, 𝑉𝐼𝑋௧ିଵ, 𝑀𝑎𝑟𝑘𝑒𝑡𝑆ℎ𝑎𝑟𝑒௧ିଵ௅ , 𝑀𝑎𝑟𝑘𝑒𝑡𝑆ℎ𝑎𝑟𝑒௧ିଵௌ , and number 

 
39 Because the performances and sizes of funds with fund size values from the lowest five percentiles are very 
volatile and contain much noise, we choose the funds with fund size values from the fifth percentile to the tenth 
percentile to construct the small-fund group. We do robustness checks with different classifications of the large-
fund group and small-fund group, as shown in the following discussion of the empirical study. 
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of funds, respectively. By taking the differences in these time-series variables, we address the 

serial correlation issue in these variables.40 We also use Newey-West estimates of standard 

error with the maximum lag of 12 to be considered in the autocorrelation structure to further 

address the serial correlation issue. We include year dummies, whose effects are denoted by 𝜙௧  in the model, to control time-related effects of macroeconomic events, such as 

technological and regulatory changes. 

When we use fund-level HHI in the above model, without including explanatory 

variables 𝑃𝑒𝑟𝑓_𝑉𝑎𝑟௧ିଵ௅  , 𝑃𝑒𝑟𝑓_𝑉𝑎𝑟௧ିଵௌ  , 𝑑𝑖𝑓_𝑀𝑎𝑟𝑘𝑒𝑡𝑆ℎ𝑎𝑟𝑒௧ିଵ௅ × 𝑃𝑒𝑟𝑓_𝑉𝑎𝑟௧ିଵ௅  , and 𝑑𝑖𝑓_𝑀𝑎𝑟𝑘𝑒𝑡𝑆ℎ𝑎𝑟𝑒௧ିଵௌ × 𝑃𝑒𝑟𝑓_𝑉𝑎𝑟௧ିଵௌ , we expect 𝛿ଵ to be negative when the distribution of 

funds’ sizes is highly skewed to the right because, in this case, higher stock market volatility 

should induce negative impact on HHI; we expect 𝛿ଶ (𝛿ଷ) to be positive (negative) because 

shocks in the relative performance of the large-fund group (small-fund group), measured by 

the changes in the market share, should induce a positive (negative) impact on HHI. When 

including these four explanatory variables in this model, we expect 𝛿ସ (𝛿ହ) to be negative 

(positive) because performance variation of the large-fund group (small-fund group) should 

mitigate the positive (negative) impact of shocks in the relative performance of this group on 

HHI. When we use family-level HHI in the above model, if funds in the large-fund group 

(small-fund group) also belong to fund families that are sufficiently large (small) relative to 

others, then we have the same predictions on these coefficients. 

3.2 Data 

We collect our active fund data from the survivor-bias-free mutual fund database of the 

Center for Research in Security Prices (CRSP). Our sample period is January 1990 to 

December 2020, and we use monthly data.41 We exclude index funds, variable annuity funds, 

and ETFs, and then choose U.S. domestic equity-only mutual funds by using the Lipper fund 

 
40 The results of this analysis are in Table 4 and Table 5. Dickey–Fuller tests on the residuals of the regressions 
shown in these tables suggest that there is no unit root in the residuals, so our method sufficiently addresses the 
serial correlation issue in the time-series variables. 
41 Information on the Lipper fund classification and most of the information on the management company code 
to identify fund families begins in December of 1999. As we use a 24-month rolling window to estimate fund net 
alpha, and we need 12 months to estimate alpha standard deviation, our test period starts from January 1993. 
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classification.42 This equity fund filter is similar to many of the current empirical studies such 

as those of Amihud and Goyenko (2013), Brown and Wu (2016), Choi, Kahraman, and 

Mukherjee (2016), Huang, Wei, and Yan (2021), and Feldman and Xu (2022). 

We use the MFLINKS database to aggregate fund share class-level information to fund-

level information. In particular, we calculate a fund’s TNA by summing up its share classes’ 

TNA and calculate fund size as fund TNA normalized to the December 2020 dollar value43. We 

calculate a fund-level variable’s value as the weighted average of share class-level values using 

share classes’ TNAs as weights. Fund family is identified by the management company code,44 

and we use funds’ TNAs as weights in calculating fund family performance. 

To estimate the FFC4 model, we collect the risk-free rate and the corresponding factors 

from the Fama-French database in Wharton Research Data Services (WRDS). To estimate the 

FF5 model, we collect the factors from the Fama-French website. 45  We collect daily 

observations of VIX from WRDS and calculate the average value of VIX in each month to 

develop the monthly VIX values. To facilitate interpretation, we divide the VIX value by 100.46 

When conducting our market-level analysis on the dynamics of HHI, we include the 

observations of fund net alpha and 1 − 𝑅ଶ of the empirical asset pricing model in our sample 

only if observations of fund net returns are available and fund TNA is positive in all of the 

previous 24 months (i.e., the estimation window). We include the observations of fund net alpha 

(gross alpha) standard deviation only if observations of fund net alphas (gross alphas) are 

available in all the previous 12 months. We also exclude fund observations if the fund’s size 

(in the December 2020 dollar value) is below 15 million. 

 
42 We use funds in the following Lipper classes: Large-Cap Core, Large-Cap Growth, Large-Cap Value, Mid-Cap 
Core, Mid-Cap Growth, Mid-Cap Value, Small-Cap Core, Small-Cap Growth, Small-Cap Value, Multi-Cap Core, 
Multi-Cap Growth, and Multi-Cap Value. If a fund has a missing Lipper class in some months, we use its Lipper 
class in the previous months; if there is no information on a Lipper class in the previous months, we use its Lipper 
class in the later months. 
43 We divide a fund’s TNA by the total market capitalization of the U.S. equity market in that month, and then 
multiply it by the total market capitalization of the U.S. equity market in December 2020. The U.S. equity market 
information is offered by the CRSP US stock database, and we calculate the total market capitalization using only 
ordinary common shares, with the share type code in CRSP equal to 10 and 11. 
44 If a fund has a missing management company code in some months, we use the fund’s management company 
code in the previous months; if there is no information of management company code in the previous months, we 
use the fund’s management company code in the later months. 
45 The website address is https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html, accessed on 
July 19, 2022. 
46 In the database, a VIX value of 15, for example, means that the S&P500 index has an annualized volatility of 15% implied by the option prices. We use 15%, or equivalently 0.15, as the VIX value instead of 15. 
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In doing the fund-level analysis on the effects of stock market volatility and 

performance variation on the flow–net alpha sensitivity, we further require a fund to have at 

least 24 months’ observations of all the variables in Equation (52). We require a fund family to 

have at least two funds so that the fund family-level variables are meaningful. We also 

winsorize all the fund-level variables at the 1% and 99% levels when doing this analysis. 

The above criteria and process are similar to those in the fund management literature, such as 

Amihud and Goyenko (2013). 

We have 3,158 funds in our sample for our market-level analysis and have 2,437 funds 

for the fund-level analysis. The Data Appendix details the constructions of all the variables. 

3.3 Empirical Results 

Table 1 reports the summary statistics of the variables for our fund-level analysis on the 

flow–net alpha sensitivity. It shows that distributions of fund flow and style flow are slightly 

skewed to the right, whereas those of fund size and fund family size are highly skewed to the 

right with a large standard deviation, implying that some extremely large funds and fund 

families exist in the market. Also, on average, fund net returns are slightly positive, whereas 

fund net alphas are slightly negative whether estimated by FF5 or FFC4. On average, the values 

of 1 − 𝑅ଶ of FF5 and FFC4 are close to 0.08, implying that on average, around 8% of the 

total variation of fund net returns in excess of risk-free return is due to active management and 

cannot be explained by these models. The standard deviation of net alpha and that of gross 

alpha are very close to each other (the differences in the values of these two variables’ statistics 

exist in the sixth or seventh digit after the decimal), as the fund expense ratio is very stable. 

The VIX value is close to symmetric with a large variation, and it implies that on average, the 

S&P500 index has an annualized volatility of 20% in our sample period. 

Table 2 illustrates the results of the regression model in Equation (52). It shows that in 

all model specifications, the interaction term of fund net alpha and VIX is significantly negative, 

suggesting that a higher VIX level significantly decreases the flow–net alpha sensitivity. In all 

these model specifications, a one-percentage increase in VIX (i.e., the annualized volatility of 

the S&P500 index increases by 1% ), decreases the flow–net alpha sensitivity by around 0.002, holding other variables unchanged. Also, all the interaction terms of fund net alpha and 
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performance variation measure are negative and highly significant, suggesting that higher 

performance variation significantly reduces the flow–net alpha sensitivity. Particularly, the first 

three columns report the results for which fund performance and performance variation are 

estimated by the FF5 model. We find that, holding other variables unchanged, if 𝑂𝑀𝑅2௜,௧ିଵ 

increases by 0.01 , the flow–net alpha sensitivity decreases by 0.0016  on average [model 

specification (1)]; if 𝑁𝑒𝑡𝐴𝑙𝑝ℎ𝑎_𝑆𝑡𝑑௜,௧ିଵ  or 𝐺𝑟𝑜𝑠𝑠𝐴𝑙𝑝ℎ𝑎_𝑆𝑡𝑑௜,௧ିଵ  increases by 0.01 , the 

flow–net alpha sensitivity decreases by 0.0004  on average [model specifications (2) and 

(3)].47 The last three columns report the results for which fund performance and performance 

variation are estimated by the FFC4 model, and the results are highly consistently with those 

reported in the first three columns. 

The above results imply that higher stock market volatility decreases the sensitivity of 

gross alpha to manager ability, so we observe that it decreases the flow–net alpha sensitivity. 

The finding that a higher VIX level decreases the flow–net alpha sensitivity is consistent with 

that in Jin, Kacperczyk, Kahraman, and Suntheim (2022), and consistent with empirical 

findings that the flow–net alpha sensitivity decreases when the market is in extreme condition, 

more volatile, and accompanies with more economic uncertainty [Franzoni and Schmalz 

(2017), Harvey and Liu (2019), and Jiang, Starks, and Sun (2021)]. Also, these results imply 

that higher performance variation makes investors rely less on fund performance to infer 

manager abilities and react less intensively to fund performance. This finding is consistent with 

that in Huang, Wei, and Yan (2021). In short, our empirical results support the assumptions of 

our theory. Then, based on our theory, our measures of stock market volatility and performance 

variation should affect the dynamics of HHIs as stated in our empirical predictions. 

Table 3 reports the summary statistics of the variables for our market-level analysis on 

the dynamics of HHIs. It shows that on average, fund-level (family-level) HHI is around 0.01 

(0.06) in the U.S. active equity mutual fund market, showing that this market is competitive. 

The large-fund group, which contains only five funds, on average occupies 17% of the market 

share, whereas the small-fund group, which contains around seventy funds on average over 

 
47 The results of model specifications (2) and (3), and model specifications (5) and (6) are very close because the 
standard deviation of net alpha and that of gross alpha are very close to each other. The difference exists in the 
sixth digit after the decimal in the coefficients and standard errors. 
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time, occupies only 0.07% of the market share on average. Also, the small-fund group tends 

to have a larger performance variation than the large-fund group, as implied by its larger mean 

values of 1 − 𝑅ଶ, standard deviation of net alpha, and standard deviation of gross alpha. The 

change in VIX is small on average but variates a lot, implying that stock market volatility 

changes substantially over time. 

We also find that in our sample, in each month, the aggregate size of funds that enter 

(exit) the market is only 0.021%  (0.067% ) of the size of the active equity mutual fund 

market.48 This shows that when funds enter (exit) the market, their sizes are trivial and they 

have little instantaneous impact on the market concentration, although they affect the market 

concentration after (before) their entrance (exit). This also confirms that our continuous-time 

framework is compatible with the effects of fund enter and exit, as discussed in Section 2.8. 

To offer more insights before we report the test results, we plot fund-level and family-

level HHIs, the number of funds and fund families in the market, and market shares of the 

large-fund and small-fund groups in Figure 1. 

First, we can see that both fund-level and family-level HHIs fluctuate a great deal over 

the last few decades, and neither of them converges to a particular level. This finding is 

consistent with the framework with dynamic manager abilities but inconsistent with a linear 

framework with constant manager abilities, where HHI, whether at the fund level or family 

level, converges to a constant level. Therefore, the finding here is consistent with those of 

Feldman and Xu (2022).49 Second, fund-level HHI moves more closely with the market share 

of the large-fund group than with the inverse of the number of funds. As the market share value 

indicates the relative inferred ability of this group, this finding is consistent with our theoretical 

framework that the managers’ relative inferred abilities are more relevant than the number of 

funds when analyzing fund-level HHI. Also, the correlation of family-level HHI and the inverse 

of the number of fund families is only around 0.4. These results suggest that it is important to 

study heterogeneous managers for whom HHI (whether at the fund level or family level) 

 
48 We use the inception date of the first share class of a fund to define its time to enter the market and use the date 
of a fund’s last reported return to define its time to exit the market. 
49 Feldman and Xu (2022) shows that fund flows sensitivities to fund performance are nonmonotonic over time, 
which is consistent with a nonlinear filtering framework of dynamic unobservable managing abilities and 
inconsistent with a framework of constant unobservable managing abilities. 
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captures managers’ relative inferred abilities, instead of homogeneous managers because for 

them, HHI is simply the inverse of the number of competitors. 

Further, our theory can explain some of the results in this figure in a way that is 

compatible with the stylized facts shown in the literature. For example, Wahal and Wand (2011) 

show that from the late 1990s to 2005, incumbents in the mutual fund market that have a high 

overlap in their portfolio holdings with those of new entrants experience lower fund flows and 

lower alphas. Kosowski, Timmermann, Wermers, and White (2006) show that outperforming 

managers become scarce after 1990 and speculates that this might be due to the competition 

among the large number of new funds, which reduces the gains from trading. Fama and French 

(2010) also report a decline in the persistence of alphas after 1992 and speculates that the cause 

is either diseconomies of scale or the entry of hordes of mediocre funds that make it difficult 

to uncover truly informed managers. In Figure 1, we observe that the number of funds and fund 

families keep increasing from the early 1990s to the early 2000s, whereas fund-level and 

family-level HHIs keep decreasing in this period. If the new entrants in this period hold 

portfolios similar to those of the incumbents and/or outperformance become scarce in this 

period, then fund managers’ inferred abilities become more similar. By our theoretical results, 

similarities in managers’ inferred abilities and fund family’s aggregate inferred abilities lead to 

similarities in fund sizes and fund family sizes, so fund-level and family-level HHIs decrease. 

Table 4 reports the results of our analysis of the dynamics of fund-level HHI, results of 

the regression model in Equation (53). It shows that the coefficient of 𝑑𝑖𝑓_𝑉𝐼𝑋௧ିଵ  is 

significantly negative in all model specifications. In particular, results in column (1) (other 

columns) indicate that holding other variables unchanged, a one-percentage increase in VIX 

decreases fund-level HHI in the next month by around 0.0002  (0.0001 ). This finding is 

consistent with our prediction iii that when the distribution of funds’ sizes is highly skewed to 

the right (as shown in Table 1), an increase in stock market volatility decreases fund-level HHI. 

Also, in column (1) the coefficient of 𝑑𝑖𝑓_𝑀𝑎𝑟𝑘𝑒𝑡𝑆ℎ𝑎𝑟𝑒௧ିଵ௅  is significantly positive, 

implying that a positive shock in the large-fund group’s market share induces an increase in 

fund-level HHI in the next month. In particular, holding other variables unchanged, if the large-

fund group’s market share increases by 0.01, then fund-level HHI in the next month would 

increase by around 0.012. Also, the coefficient of 𝑑𝑖𝑓_𝑀𝑎𝑟𝑘𝑒𝑡𝑆ℎ𝑎𝑟𝑒௧ିଵௌ  is negative but is 
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insignificant. The insignificance is probably due to the noise in the small funds’ market shares. 

As change in market share indicates change in relative performance in AFMI in general, the 

results in column (1) are consistent with our prediction i that, for sufficiently large (small) funds, 

increase in their performances relative to those of other funds exerts positive (negative) impacts 

on fund-level HHI. 

Columns (2) to (4) offer the results when fund performance and performance variation 

measures are estimated by the FF5 model. The coefficients of the interaction terms of 𝑑𝑖𝑓_𝑀𝑎𝑟𝑘𝑒𝑡𝑆ℎ𝑎𝑟𝑒௧ିଵ௅  and the measures of the large-fund group’s performance variation are 

significantly negative. In particular, holding other variables unchanged, if 𝑂𝑀𝑅2௜,௧ିଵ௅  

increases by one basis point, then the impact of 𝑑𝑖𝑓_𝑀𝑎𝑟𝑘𝑒𝑡𝑆ℎ𝑎𝑟𝑒௧ିଵ௅   on 𝑑𝑖𝑓_𝐻𝐻𝐼௧ 
decreases by around 0.0014; if 𝑁𝑒𝑡𝐴𝑙𝑝ℎ𝑎_𝑆𝑡𝑑௜,௧ିଵ௅  or 𝐺𝑟𝑜𝑠𝑠𝐴𝑙𝑝ℎ𝑎_𝑆𝑡𝑑௜,௧ିଵ௅  increases by 

one basis point, then the impact of 𝑑𝑖𝑓_𝑀𝑎𝑟𝑘𝑒𝑡𝑆ℎ𝑎𝑟𝑒௧ିଵ௅  on 𝑑𝑖𝑓_𝐻𝐻𝐼௧ decreases by around 0.015 . Also, the coefficients of the interaction terms of 𝑑𝑖𝑓_𝑀𝑎𝑟𝑘𝑒𝑡𝑆ℎ𝑎𝑟𝑒௧ିଵௌ   and the 

measures of the small-fund’s performance variation are positive and marginally significant. 

The results in columns (5) to (7) when measures of fund performance and performance 

variation are estimated by the FFC4 model are consistent with those in columns (2) to (4). We 

also find that the coefficients of the interaction term of 𝑑𝑖𝑓_𝑀𝑎𝑟𝑘𝑒𝑡𝑆ℎ𝑎𝑟𝑒௧ିଵௌ   and 𝑁𝑒𝑡𝐴𝑙𝑝ℎ𝑎_𝑆𝑡𝑑௜,௧ିଵௌ  , and that of 𝑑𝑖𝑓_𝑀𝑎𝑟𝑘𝑒𝑡𝑆ℎ𝑎𝑟𝑒௧ିଵௌ   and 𝐺𝑟𝑜𝑠𝑠𝐴𝑙𝑝ℎ𝑎_𝑆𝑡𝑑௜,௧ିଵௌ   become 

more significant in these model specifications. In general, these results are consistent with our 

prediction ii that higher performance variations in sufficiently large (small) funds mitigate the 

positive (negative) impacts of the increase in their relative performance on fund-level HHI. 

In addition, 𝑁𝑢𝑚𝐺𝑟𝑜𝑤𝑡ℎ௧ିଵ  is significantly positive in all model specifications, 

implying that a larger growth rate in the fund number is associated with higher fund-level HHI 

in the following month. This is more evidence against a framework of homogeneous managers, 

where fund-level HHI is the inverse of the number of funds, and 𝑑𝑖𝑓_𝐻𝐻𝐼௧ should decrease 

with 𝑁𝑢𝑚𝐺𝑟𝑜𝑤𝑡ℎ௧ିଵ. When managers are heterogeneous, a larger number of funds can be 

associated with a higher HHI, as we show here. Thus, it is important to model heterogeneous 

managers, as we do in this paper. 

Table 5 reports the results of our analysis on the dynamics of family-level HHI. In our 
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sample, we find that all funds in the large-fund group belong to the largest ten fund families 

(around 97% of these fund observations even belong to the largest five fund families), and all 

funds in the small-fund group belong to fund families with size ranks of the bottom 20%. Thus, 

our funds in the large-fund (small-fund) group are also in fund families that are sufficiently 

large (small) relative to others, and based on our theoretical prediction, we should find similar 

results on the dynamics of family-level HHI. Table 5 confirms this. In particular, an increase 

in stock market volatility significantly decreases family-level HHI; increase in the 

performances of funds in the large-fund (small-fund) group exerts significantly positive 

(insignificantly negative) impacts on family-level HHI, and higher performance variations in 

these funds mitigate the positive (negative) impacts. 

Robustness 

We also do multiple robustness checks on our test results. We estimate the shocks in 

VIX as the out-of-sample residuals of an AR(1) model or an AR(2) model on VIX on a 24-

month rolling-widow basis, and use these shocks to measure the (unexpected) changes in VIX 

instead of 𝑑𝑖𝑓_𝑉𝐼𝑋௧ . We redefine the large-fund group as the largest ten funds. We also 

redefine the small-fund group as the funds with fund TNA values from the tenth percentile to 

the fifteenth percentile, or as those with fund TNA values from the fifth percentile to the 

fifteenth percentile. Furthermore, we use standard error clustered by year instead of Newey-

West estimates of standard error. We redo the tests and find results that are highly consistent 

with those in Table 4 and Table 5. For brevity, we omit the results of these robustness checks 

here. In summary, our empirical results are consistent with our theoretical predictions. 

4 Conclusion 

We introduce continuous-time rational models of dynamics of AFMI HHI in which 

unobservable fund manager abilities are heterogeneous and dynamic. In equilibrium, managers 

with higher inferred abilities receive larger fund sizes, so their relative inferred abilities 

determine HHI. Our model predicts that, when we measure HHI at the fund level, if a manager’s 

inferred ability is sufficiently large (small) relative to the inferred abilities of others, then an 

increase in this manager’s inferred ability exerts positive (negative) impact on HHI. Also, when 

funds’ performance variations are larger, investors rely less on the shocks of managers’ relative 
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performances to infer manager abilities, making investment flows less sensitive to these shocks. 

Consequently, the positive (negative) impacts of higher relative performances of sufficiently 

large (small) funds on HHI are mitigated and have smaller absolute magnitudes. 

In addition, in our nonlinear framework where sensitivities of gross alphas to manager 

abilities decrease with stock market volatility, higher stock market volatility decreases all funds’ 

equilibrium sizes. If there are extremely large funds, then the effect of higher stock market 

volatility on these funds dominates that of other funds, inducing a negative aggregate effect on 

HHI. Linear frameworks of manager abilities and gross alphas that are used in the current 

literature cannot directly model this effect and effects of other economic factors on the 

dynamics of HHI, as we do in our nonlinear frameworks. 

We also show a special case in which unobservable fund manager abilities are constant 

in a linear framework. In this case, as time goes to infinity, managers’ inferred abilities 

converge to their true ability levels and do not change, making both equilibrium fund sizes and 

HHI stay unchanged. All our results hold whether investors are risk neutral or mean-variance 

risk averse and whether there are fund entrances or exits. Moreover, when we measure HHI at 

the fund family level, we find results on the HHI dynamics similar to those when we measure 

HHI at the fund level, as long as similar requirements on the fund families’ aggregate inferred 

abilities/family sizes are satisfied. In addition, our results hold when HHI affects proportionally 

gross alpha sensitivities to abilities and fund size factors. 

Our empirical results are consistent with our theoretical findings. In particular, an 

increase in stock market volatility significantly decreases fund-level HHI. An increase in the 

large-fund group’s market share, which proxies this group’s relative performance, exerts a 

significantly positive impact on fund-level HHI; and a larger performance variation in this 

group significantly decreases such positive impact. An increase in the small-fund group’s 

market share tends to exert a negative effect on fund-level HHI, although this effect is 

insignificant. However, we find evidence that a larger performance variation in this group 

mitigates the effect of the group’s change in market share on fund-level HHI. In addition, funds 

in our large-fund (small-fund) group are also in sufficiently large (small) fund families, and we 

find similar empirical results when we measure HHI at the fund family level. 

Moreover, our empirical evidence that the sizes of funds that enter the market and that 
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exit the market are trivial compared to the AFMI size supports our framework that fund 

entrance and exit do not affect HHI dynamics immediately but change the set of funds. Also, 

the fluctuation of the empirical HHI (whether at the fund level or fund family level) over time 

is consistent with our theoretical results in which manager abilities are dynamic and 

unobservable, but it is inconsistent with a model with constant unobservable manager abilities 

in a linear framework. Also, the fact that the empirical HHI moves more closely with large 

funds’ market shares than the inverse of the number of competitors shows the importance of 

modeling heterogeneous managers, where HHI captures managers’ relative inferred abilities, 

instead of homogeneous managers, where HHI is simply the inverse of the number of 

competitors. In addition, our model explains the following literature findings in a compatible 

way: 1) from the 1990s to early 2000s, new entrants who have portfolio holdings similar to 

those of incumbents decrease fund performances and fund flows, 2) outperforming managers 

are scarce, and 3) HHI decreases during this period. 

Our paper sheds light on future research on the dynamics of AFMI concentration. In 

particular, future research in this area can focus on factors that affect fund managers’ relative 

inferred abilities. For example, current literature finds that fund family members can compete 

or cooperate with each other [see, for example, Evans, Prado, and Zambrana (2020), Eisele, 

Nefedova, Parise, and Peijnenburg (2020), and Xu (2023)]. Other literature shows that mutual 

funds compete in different dimensions, such as by trading assets in specific industries and style 

markets (defined by, for example, stock’s total capitalization and book-to-market-ratio), by 

selling fund shares in specific retail market segments (such as direct-sold and broker-sold), by 

concentrating research on stocks that are informationally intense, and by offering unique 

products [see, for example, Kacperczyk, Sialm, and Zheng (2005), Guercio and Reuter (2014), 

Hoberg, Kumar, and Prabhala (2018), Jiang, Shen, Wermers, and Yao (2018), and Kostovetsky 

and Warner (2020)]. Because the methods that fund managers use to compete in the market 

affect managers’ relative inferred abilities, these methods would consequently exert impacts on 

AFMI concentration. Our study also suggests that a nonlinear framework of gross alphas and 

manager abilities can directly model the effects of these factors and offer more insights to the 

market equilibrium. 

Although our paper studies the dynamics of AFMI concentration, our framework can 
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be extended to study the dynamics of concentration in other industries in which incomplete 

information exists:  producers’ performance depends on dynamic states that are unobservable 

to customers and producers. 

Data Appendix 

This section details the definitions and constructions of the variables. 

• 𝐹𝑙𝑜𝑤௜,௧ is the fund flow, which is the difference between the monthly growth rate of 

the fund’s TNA and the fund’s monthly net return. It is in decimal. 

• 𝑁𝑒𝑡𝐴𝑙𝑝ℎ𝑎௜,௧ is the fund net alpha, calculated as the fund’s net return in excess of risk-

free return minus the benchmark’s return, which is estimated by an empirical asset 

pricing model on a 24-month rolling-window basis. It is in decimal. 

• 𝑑𝑖𝑓_𝐻𝐻𝐼௧ is 𝐻𝐻𝐼௧ − 𝐻𝐻𝐼௧ିଵ, where 𝐻𝐻𝐼௧ is calculated as the sum of squares of all 

funds’ (fund families’) market shares in month 𝑡 when it is fund-level (family-level) 

HHI. It is in decimal. 

• 𝑑𝑖𝑓_𝑉𝐼𝑋௧  is 𝑉𝐼𝑋௧ − 𝑉𝐼𝑋௧ିଵ , where 𝑉𝐼𝑋௧  is the average value of the daily option-

implied volatility index values in month 𝑡, divided by 100. It is in decimal. 

• 𝑑𝑖𝑓_𝑀𝑎𝑟𝑘𝑒𝑡𝑆ℎ𝑎𝑟𝑒௧௅ (𝑑𝑖𝑓_𝑀𝑎𝑟𝑘𝑒𝑡𝑆ℎ𝑎𝑟𝑒௧ௌ) is the change in market share of the large-

fund group (small-fund group) from time 𝑡 − 1 to 𝑡. It is in decimal. 

• 𝑃𝑒𝑟𝑓_𝑉𝑎𝑟௧௅  (𝑃𝑒𝑟𝑓_𝑉𝑎𝑟௧ௌ ) is the weighted average of the measure of performance 

variation within the large-fund group (small-fund group) at time 𝑡, using funds’ net 

assets under management at this time as weights. A fund’s measure of performance 

variation, 𝑃𝑒𝑟𝑓_𝑉𝑎𝑟௜,௧, is 𝑂𝑀𝑅2௜,௧, 𝑁𝑒𝑡𝐴𝑙𝑝ℎ𝑎_𝑆𝑡𝑑௜,௧, or 𝐺𝑟𝑜𝑠𝑠𝐴𝑙𝑝ℎ𝑎_𝑆𝑡𝑑௜,௧. It is in 

decimal. 

• 𝑂𝑀𝑅2௜,௧ is the 1 − 𝑅ଶ of the empirical asset pricing model estimated on a 24-month 

rolling-window basis. It is in decimal. 

• 𝑁𝑒𝑡𝐴𝑙𝑝ℎ𝑎_𝑆𝑡𝑑௜,௧ is the fund net alpha standard deviation, calculated as using the fund 

net alphas in the last 12 months. It is in decimal. 

• 𝐺𝑟𝑜𝑠𝑠𝐴𝑙𝑝ℎ𝑎_𝑆𝑡𝑑௜,௧ is the fund gross alpha standard deviation, calculated as using the 

fund gross alphas in the last 12 months, where fund gross alpha is fund net alpha plus 

annual fund expense ratio divided by 12. It is in decimal. 

• 𝑁𝑢𝑚𝐺𝑟𝑜𝑤𝑡ℎ௧ is the change in the number of funds in the market from time 𝑡 − 1 to 𝑡, divided by the number of funds at 𝑡 − 1. It is in decimal. 
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• ln𝐴𝑔𝑒௜,௧ is the natural logarithm of fund age, which is calculated as the number of 

months since the inception of the fund’s oldest share class. 

• ln𝑆𝑖𝑧𝑒௜,௧ is the natural logarithm of the fund’s TNA in the December 2020 dollar, which 

is equal to the original TNA divided by the total market capitalization of the U.S. equity 

market at time 𝑡 , and then multiplied by the total market capitalization of the U.S. 

equity market in December 2020. TNA is in billion dollars. 

• 𝐸𝑥𝑝𝑒𝑛𝑠𝑒௜,௧ is fund expense ratio, the ratio of total investment that shareholders pay for 

the fund’s operating expenses, including 12b-1 fees. It is in decimal. 

• 𝑇𝑢𝑟𝑛𝑂𝑣𝑒𝑟௜,௧ is fund turnover ratio, calculated as the minimum of aggregated sales and 

aggregated purchases of securities, divided by the average 12-month total net assets 

under management of the fund. It is in decimal. 

• 𝑆𝑡𝑦𝑙𝑒𝐹𝑙𝑜𝑤௜,௧ is style flow, calculated as the weighted-average flow of the fund class 

based on Lipper fund classification, and is in decimal. 

• 𝐹𝑎𝑚𝐴𝑙𝑝ℎ𝑎௜,௧  is fund family net alpha, calculated as the weighted average of the 

members’ net alphas excluding the net alphas of fund 𝑖, where the lagged net asset 

under management is the weight. It is in decimal. 

• ln𝐹𝑎𝑚𝑁𝑜௜,௧ is the natural logarithm of the number of active equity funds that have net 

alpha observations in the family. The number of active equity funds is in integer. 

References 

Ali, A., Klasa, S., Yeung, E., 2009. The limitations of industry concentration measures 
constructed with compustat data: implications for finance research. Review of Financial 
Studies 22, 3839–3871. 

Amihud, Y., Goyenko, R., 2013. Mutual fund’s R2 as predictor of performance. Review of 
Financial Studies 26, 667–694. 

Azar, J., Schmalz, M. C., Tecu, I., 2018. Anticompetitive effects of common ownership. Journal 
of Finance 73, 1513–1565. 

Berk, J. B., 2005. Five myths of active portfolio management. The Journal of Portfolio 
Management 31, 27–31. 

Berk, J. B., Green, R. C., 2004. Mutual fund flows and performance in rational markets. Journal 
of Political Economy 112, 1269–1295. 

Brown, D., Wu, Y., 2013. Mutual fund families and performance evaluation. Unpublished 
working paper. 

Brown, D., Wu, Y., 2016. Mutual fund flows and cross-fund learning within families. Journal 
of Finance 71, 383–424. 



 

50 
 

Bustamante M. C., Donangelo, A., 2017. Product market competition and industry returns. 
Review of Financial Studies 30, 4216–4266. 

Carhart, M. M., 1997. On persistence in mutual fund performance. The Journal of Finance 52, 
57–82. 

Choi, D, Kahraman, B., Mukherjee, A., 2016. Learning about mutual fund managers. Journal 
of Finance 71, 2809–2860. 

Corhay, A., Kung, H., Schmid, L., 2020. Competition, markups, and predictable returns. 
Review of Financial Studies 33, 5906–5939. 

Cornaggia, J., Mao, Y., Tian, X., Wolfe, B., 2015. Does banking competition affect innovation? 
Journal of Financial Economics 115, 189–209. 

Cremers, M., Nair, V. B., Peyer, U., 2008. Takeover defenses and competition: The role of 
stakeholders. Journal of Empirical Legal Studies 5, 791–818. 

Cremers, M., Ferreira, M.A., Matos, P., Starks, L., 2016. Indexing and active fund management: 
International evidence. Journal of Financial Economics 120, 539–560. 

Dangl, T., Wu, Y., Zechner, J., 2008. Market discipline and internal governance in the mutual 
fund industry. Review of Financial Studies 21, 2307–2343. 

Dothan, M. U., Feldman, D., 1986. Equilibrium interest rates and multiperiod bonds in a 
partially observable economy. The Journal of Finance 41, 369–382. 

Eisele, A., Nefedova, T., Parise, G., Peijnenburg, K., 2020. Trading out of sight: An analysis of 
cross-trading in mutual fund families. Journal of Financial Economics 135, 359–378. 

Evans, R. B., Prado, M. P., Zambrana, R., 2020. Competition and cooperation in mutual fund 
families. Journal of Financial Economics 136, 168–188. 

Fama, E., French, K., 1993. Common risk factors in the returns on stocks and bonds. Journal 
of Financial Economics 33, 3–56. 

Fama, E., French, K., 2010. Luck versus skill in the cross-section of mutual fund returns. 
Journal of Finance 65, 1915–1947. 

Fama, E., French, K., 2015. A five-factor asset pricing model. Journal of Financial Economics 
116, 1–12. 

Feldman, D., 1989. The term structure of interest rates in a partially observable economy. 
Journal of Finance 44, 789–812. 

Feldman, D., 1992. Logarithmic preferences, myopic decisions, and incomplete information. 
Journal of Financial and Quantitative Analysis 27, 619–629. 

Feldman, D., 2007. Incomplete information equilibrium: Separation theorems and other myths. 
Annals of Operations Research 151, 119–149. 

Feldman, D., Saxena, K., Xu, J., 2020. Is the active fund management industry concentrated 
enough? Journal of Financial Economics 136, 23–43. 



 

51 
 

Feldman, D., Saxena, K., Xu, J., 2023. One global village? Competition in the international 
active fund management industry. Unpublished working paper. 

Feldman, D., Xu, J., 2022. Fund flows, performance, and exit under dynamic unobservable 
managing ability. Unpublished working paper. 

Franzoni, F., Schmalz, M. C., 2017. Fund flows and market states. The Review of Financial 
Studies 30, 2621–2673. 

Giannetti, M., Saidi, F., 2019. Shock propagation and banking structure. Review of Financial 
Studies 32, 2499–2540. 

Gu, L., 2016. Product market competition, R&D investment, and stock returns. Journal of 
Financial Economics 119, 441–455. 

Guercio, D. D., Reuter, J., 2014. Mutual fund performance and the incentive to generate alpha. 
Journal of Finance 69, 1673–1704. 

Harvey, C. R., Liu, Y., 2019. Cross-sectional alpha dispersion and performance evaluation. 
Journal of Financial Economics 134, 273–296. 

Hoberg, G., Kumar, N., Prabhala, N., 2018. Mutual fund competition, managerial skill, and 
alpha persistence. Review of Financial Studies 31, 1896–1929. 

Huang, J., Wei, K. D., Yan, H., 2022. Investor learning and mutual fund flows. Financial 
Management 51, 739–765. 

Jiang, E., Starks, L. T., Sun, S., 2021. Economic policy uncertainty and learning: theory and 
evidence on mutual funds. Unpublished working paper. 

Jiang, G., Shen, K., Wermers, R., Yao, T., 2018. Costly information production, information 
intensity, and mutual fund performance. Unpublished working paper. 

Jin, D., Kacperczyk, M., Kahraman, B., Suntheim, F., 2022. Swing pricing and fragility in 
open-end mutual funds. The Review of Financial Studies 35, 1–50. 

Kacperczyk, M., Sialm, C., Zheng, L., 2005. On the industry concentration of actively managed 
equity mutual funds. Journal of Finance 60, 1983–2011. 

Koch, A., Panayides, M., Thomas, S., 2021. Common ownership and competition in product 
markets. Journal of Financial Economics 139, 109–137. 

Kosowski, R., Timmermann, A., Wermers, R., White, H., 2006. Can mutual fund ‘‘stars’’ really 
pick stocks? New evidence from a bootstrap analysis. Journal of Finance 61, 2551–2595. 

Kostovetsky, L., Warner, J. B., 2020. Measuring innovation and product differentiation: 
evidence from mutual funds. Journal of Finance 75, 779–823. 

Liptser, R. S., Shiryaev, A. N., 2001a. Statistics of Random Processes I. NY: Springer-Verlag. 

Liptser, R. S., Shiryaev, A. N., 2001b. Statistics of Random Processes II. NY: Springer-Verlag. 

O’Brien, D. P., Salop S. C., 2000. Competitive effects of partial ownership: Financial interest 
and corporate control. Antitrust Law Journal 67, 559–614. 



 

52 
 

Pastor, L., Stambaugh, R. F., 2012. On the size of the active management industry. Journal of 
Political Economy 120, 740–781. 

Spiegel, M., Tookes, H., 2013. Dynamic competition, valuation, and merger activity. Journal 
of Finance 68, 125–172. 

Wahal, S., Wang, Y., 2011. Competition among mutual funds. Journal of Financial Economics 
99, 40–59. 

Xu, J., 2023. Hidden cross-fund subsidization, distortion of investors’ belief, and flow-
performance relation. Unpublished working paper.  



 

53 
 

Figure 1 U.S. AFMI Concentration Dynamics 

Figure 1 plots the monthly values of variables from January 1993 to December 2020 using the U.S. active equity 
mutual fund data from the Center for Research in Security Prices (CRSP). The two graphs at the top plot the fund-
level HHI and the number of funds in the market, respectively. The two graphs in the middle plot the family-level 
HHI and the number of fund families in the market, respectively. The two graphs at the bottom plot the market 
shares of the large-fund group and small-fund group, respectively. HHI is the Herfindahl-Hirschman Index, 
calculated as the sum of market shares squared. The number of funds is counted as the number of the U.S. active 
equity mutual funds that have observations satisfying our criteria. The number of fund families is counted as the 
number of fund families that have fund observations satisfying our criteria. Market shares are calculated based on 
total net assets under management. The large-fund group contains the largest five funds in the market, whereas 
the small-fund group contains funds that have fund size values from the fifth percentile to the tenth percentile. 
These two groups are redefined each month. The gray areas represent the two recessions, from March 2001 to 
November 2001, and from December 2007 to June 2009, respectively. 
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Table 1. Summary Statistics on Variables for Fund-Level Analysis 

Table 1 reports the summary statistics on the variables for our fund-level analysis. Our sample period is from 
January 1990 to December 2020, and we use monthly data. FF5 is the five-factor model developed by Fama and 
French (2015), and FFC4 is the four-factor model developed by Fama and French (1993) and Carhart (1997). We 
estimate the models on a 24-month rolling-window basis, and over time, calculate the 1 − 𝑅ଶ and out-of-sample 
prediction of fund net alphas. The definitions and constructions of all the variables are reported in the Data 
Appendix. 

Variable Observation Mean Standard
deviation

25th 50th 75th

Fund characteristics
Fund flow (decimal) 369589 0.0027 0.8675 -0.0152 -0.0050 0.0068
Fund net return (decimal) 369589 0.0077 0.0624 -0.0191 0.0118 0.0381
Fund TNA (in 1 billion December 2020 dollars) 369589 4.6323 16.1613 0.2767 0.9473 3.1540
Fund age (number of months) 369589 203.5 171.4 89.0 155.0 250.0
Fund expense (decimal) 369589 0.0117 0.0042 0.0093 0.0114 0.0139
Fund turn over ratio (decimal) 369589 0.7868 0.6987 0.3400 0.6167 1.0200
Style flow (decimal) 369589 -0.0012 0.0103 -0.0068 -0.0024 0.0035

Estimates from FF5
Fund net alpha (decimal) 369589 -0.0009 0.0427 -0.0100 -0.0011 0.0076
1 - R2 of the factor model (decimal) 369589 0.0769 0.0746 0.0312 0.0566 0.0977
Fund net alpha standard deviation (decimal) 369589 0.0170 0.0388 0.0093 0.0133 0.0195
Fund gross alpha standard deviation (decimal) 369589 0.0170 0.0388 0.0093 0.0133 0.0195

Estimates from FFC4
Fund net alpha (decimal) 369589 -0.0010 0.0437 -0.0098 -0.0011 0.0074
1 - R2 of the factor model (decimal) 369589 0.0813 0.0763 0.0339 0.0610 0.1037
Fund net alpha standard deviation (decimal) 369589 0.0166 0.0391 0.0092 0.0131 0.0191
Fund gross alpha standard deviation (decimal) 369589 0.0166 0.0391 0.0092 0.0131 0.0191

Fund family characteristics
Fund family net alpha by FF5 (decimal) 68552 -0.0006 0.1020 -0.0089 -0.0012 0.0064
Fund family net alpha by FFC4 (decimal) 68552 -0.0006 0.1027 -0.0088 -0.0012 0.0062
Number of member funds in fund families (number) 68552 5.9023 6.0191 2.0000 4.0000 7.0000
Fund family TNA (in 1 billion December 2020 dollars) 68006 25.1030 90.1054 0.8643 3.8815 15.7357

Market characteristics
VIX (decimal) 336 0.1954 0.0805 0.1361 0.1750 0.2345

Percentile
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Table 2. Flow–Net Alpha Sensitivity, Stock Market Volatility, and Performance Variation 

Table 2 reports the results of the model in Equation (52). The dependent variable is the fund percentage flow, 𝐹𝑙𝑜𝑤, and it is in decimal. The independent variables are lagged by one month. The first three columns report the 
results of the model using the measures of fund performance and performance variation estimated by the FF5 
model, and the last three columns report the results of the model using the measures estimated by the FFC4 model. 
The detailed definitions of the variables are in the Data Appendix. Standard errors that are clustered by fund and 
by year are presented in parentheses. The symbols ***, **, and * represent the 1%, 5%, and 10% significance 
levels, respectively, in a two-tail t-test. 

(1) (2) (3) (4) (5) (6)
NetAlpha 0.3075*** 0.3143*** 0.3143*** 0.4089*** 0.3935*** 0.3935***

(0.0731) (0.0771) (0.0771) (0.0848) (0.0817) (0.0817)
NetAlpha*VIX -0.1719** -0.2077** -0.2077** -0.1704* -0.2142** -0.2142**

(0.0814) (0.0867) (0.0867) (0.0884) (0.0815) (0.0815)
VIX -0.0035 -0.0042 -0.0042 -0.0031 -0.0040 -0.0040

(0.0040) (0.0039) (0.0039) (0.0039) (0.0037) (0.0037)
NetAlpha*OMR2 -0.1648*** -0.2035***

(0.0342) (0.0337)
OMR2 0.0040 0.0040

(0.0087) (0.0082)
NetAlpha*NetAlpha_Std -0.0443*** -0.0543***

(0.0102) (0.0109)
NetAlpha_Std 0.0135 0.0132

(0.0135) (0.0129)
NetAlpha*GrossAlpha_Std -0.0443*** -0.0543***

(0.0102) (0.0109)
GrossAlpha_Std 0.0135 0.0132

(0.0135) (0.0129)
NetAlpha*lnSize -0.0069 -0.0053 -0.0053 -0.0074 -0.0075 -0.0075

(0.0050) (0.0059) (0.0059) (0.0056) (0.0065) (0.0065)
NetAlpha*lnAge -0.0280** -0.0344*** -0.0344*** -0.0437*** -0.0469*** -0.0469***

(0.0117) (0.0123) (0.0123) (0.0127) (0.0124) (0.0124)
lnSize -0.0048*** -0.0049*** -0.0049*** -0.0048*** -0.0048*** -0.0048***

(0.0007) (0.0007) (0.0007) (0.0007) (0.0007) (0.0007)
lnAge -0.0239*** -0.0239*** -0.0239*** -0.0239*** -0.0239*** -0.0239***

(0.0020) (0.0020) (0.0020) (0.0020) (0.0020) (0.0020)
Expense -0.9627*** -0.9680*** -0.9680*** -0.9580*** -0.9628*** -0.9628***

(0.2410) (0.2429) (0.2429) (0.2414) (0.2435) (0.2435)
TurnOver -0.0006 -0.0006 -0.0006 -0.0006 -0.0006 -0.0006

(0.0007) (0.0007) (0.0007) (0.0007) (0.0007) (0.0007)
Flow 0.0233 0.0233 0.0233 0.0232 0.0233 0.0233

(0.0182) (0.0182) (0.0182) (0.0181) (0.0182) (0.0182)
StyleFlow 0.4361*** 0.4372*** 0.4372*** 0.4367*** 0.4377*** 0.4377***

(0.0564) (0.0565) (0.0565) (0.0572) (0.0573) (0.0573)
FamAlpha 0.0012 0.0006 0.0006 0.0004 0.0003 0.0003

(0.0016) (0.0020) (0.0020) (0.0026) (0.0026) (0.0026)
lnFamNo -0.0004 -0.0004 -0.0004 -0.0004 -0.0004 -0.0004

(0.0010) (0.0010) (0.0010) (0.0010) (0.0010) (0.0010)
Constant 0.1330*** 0.1333*** 0.1333*** 0.1327*** 0.1331*** 0.1331***

(0.0119) (0.0115) (0.0115) (0.0119) (0.0115) (0.0115)
Year fixed effects Yes Yes Yes Yes Yes Yes
Fund fixed effects Yes Yes Yes Yes Yes Yes

Observations 369,589 369,589 369,589 369,589 369,589 369,589
R-squared 0.0451 0.0451 0.0451 0.0454 0.0453 0.0453
Adjusted R-squared 0.0387 0.0387 0.0387 0.0390 0.0389 0.0389

FF5 FFC4
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Table 3. Summary Statistics on Variables for Market-Level Analysis 

Table 3 reports the summary statistics on the variables for our market-level analysis. Our sample period is from 
January 1990 to December 2020, and we use monthly data. HHI is the Herfindahl-Hirschman Index, calculated 
as the sum of market shares squared, and it is in decimal. VIX is the average of daily option-implied volatility 
index values in each month. The large-fund group contains the largest five funds (based on fund size values), and 
the small-fund group contains those with fund size values from the fifth percentile to the tenth percentile. FF5 is 
the five-factor model developed by Fama and French (2015), and FFC4 is the four-factor model developed by 
Fama and French (1993) and Carhart (1997). We estimate these models on a 24-month rolling-window basis, and 
over time, calculate the 1 − 𝑅ଶ  and the out-of-sample prediction of fund net alphas. The definitions and 
constructions of all the variables are reported in the Data Appendix. 

Variable Observation Mean Standard
deviation

25th 50th 75th

Market characteristics
Fund-level HHI (decimal) 336 0.0108 0.0019 0.0092 0.0104 0.0115
Change in fund-level HHI (decimal) 336 -0.0003 0.0047 -0.0001 0.0000 0.0001
Family-level HHI (decimal) 336 0.0575 0.0061 0.0528 0.0550 0.0608
Change in family-level HHI (decimal) 336 -0.0006 0.0120 -0.0002 0.0001 0.0003
VIX (decimal) 336 0.1954 0.0805 0.1361 0.1750 0.2345
Change in VIX (decimal) 336 0.0003 0.0433 -0.0177 -0.0027 0.0119
Market share of large-fund group (decimal) 336 0.1692 0.0163 0.1594 0.1674 0.1774
Change in market share of large-fund group (decimal) 336 -0.0012 0.0206 -0.0012 -0.0001 0.0010
Market share of small-fund group (decimal) 336 0.0007 0.0001 0.0006 0.0007 0.0007
Change in market share of small-fund group (decimal) 336 -3.50E-07 2.86E-05 -9.75E-06 4.59E-07 1.02E-05
Number of funds (number) 336 1379 374 1219 1405 1727
Growth rate of the number of funds (decimal) 336 0.0198 0.3164 -0.0028 0.0011 0.0072

Estimates from FF5
Large-fund group's 1 - R2 of the factor model (decimal) 336 0.0744 0.0506 0.0313 0.0580 0.1155
Large-fund group's net alpha standard deviation (decimal) 336 0.0092 0.0031 0.0076 0.0082 0.0104
Large-fund group's gross alpha standard deviation (decimal) 336 0.0092 0.0031 0.0076 0.0082 0.0104

Small-fund group's 1 - R2 of the factor model (decimal) 336 0.1111 0.0459 0.0759 0.1065 0.1405
Small-fund group's net alpha standard deviation (decimal) 336 0.0157 0.0058 0.0125 0.0144 0.0195
Small-fund group's gross alpha standard deviation (decimal) 336 0.0155 0.0058 0.0124 0.0142 0.0190

Estimates from FFC4
Large-fund group's 1 - R2 of the factor model (decimal) 336 0.0818 0.0572 0.0357 0.0613 0.1284
Large-fund group's net alpha standard deviation (decimal) 336 0.0092 0.0029 0.0076 0.0087 0.0108
Large-fund group's gross alpha standard deviation (decimal) 336 0.0092 0.0029 0.0076 0.0087 0.0108

Small-fund group's 1 - R2 of the factor model (decimal) 336 0.1165 0.0471 0.0812 0.1117 0.1421
Small-fund group's net alpha standard deviation (decimal) 336 0.0153 0.0057 0.0123 0.0142 0.0183
Small-fund group's gross alpha standard deviation (decimal) 336 0.0151 0.0057 0.0122 0.0141 0.0179

Percentile
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Table 4. Dynamics of Fund-Level HHI, Changes in Stock Market Volatility and Fund 
Performance, and Performance Variation 

Table 4 reports the results of the model in Equation (53), where the dependent variable is the change in fund-level 
HHI, 𝑑𝑖𝑓_𝐻𝐻𝐼, which is in decimal. The independent variables are lagged by one month. The columns (2) to (4) 
report the results of the model using the measures of fund performance and performance variation estimated by 
the FF5 model, and columns (5) to (7) report the results of the model using the measures estimated by the FFC4 
model. The detailed definitions of the variables are in the Data Appendix. The standard errors are presented in 
parentheses, which are estimated by the Newey-West estimator, with the maximum lag of 12 to be considered in 
the autocorrelation structure of the regression error. The symbols ***, **, and * represent the 1%, 5%, and 10% 
significance levels, respectively, in a two-tail t-test. 

(1) (2) (3) (4) (5) (6) (7)
Dif_VIX -0.0185*** -0.0128*** -0.0072*** -0.0071*** -0.0148*** -0.0063*** -0.0062***

(0.0061) (0.0046) (0.0018) (0.0018) (0.0046) (0.0019) (0.0019)
Dif_MarketShare L 1.1648*** 1.8136*** 1.8950*** 1.8854*** 1.7348*** 1.8431*** 1.8356***

(0.3545) (0.3655) (0.1312) (0.1323) (0.3926) (0.1166) (0.1179)
Dif_MarketShare S -10.4878 -38.9940 -11.7915 -13.3416 -47.3898* -14.2290 -15.0738

(10.4128) (24.7941) (11.6700) (11.5912) (28.2525) (11.5485) (11.4543)
Dif_MarketShare L *OMR2 L -13.7309*** -11.1934***

(3.3880) (2.9644)
OMR2 L -0.0041 -0.0030

(0.0035) (0.0028)
Dif_MarketShare S *OMR2 S 223.3505* 240.3995*

(128.9604) (136.4108)
OMR2 S -0.0091 -0.0084

(0.0077) (0.0078)
Dif_MarketShare L *NetAlpha_Std L -146.8074*** -142.0496***

(18.4656) (16.9828)
NetAlpha_Std L -0.0039 0.0031

(0.0706) (0.0752)
Dif_MarketShare S *NetAlpha_Std S 1,457.3450* 1,700.5736**

(870.1754) (862.9170)
NetAlpha_Std S -0.0197 -0.0268

(0.0332) (0.0327)
Dif_MarketShare L *GrossAlpha_Std L -146.1784*** -141.6057***

(18.3745) (16.9451)
GrossAlpha_Std L -0.0046 0.0035

(0.0714) (0.0767)
Dif_MarketShare S *GrossAlpha_Std S 1,634.9686* 1,832.8401**

(883.6655) (875.0814)
GrossAlpha_Std S -0.0177 -0.0264

(0.0366) (0.0349)
NumGrowth 0.0764*** 0.0795*** 0.1002*** 0.0999*** 0.0811*** 0.0989*** 0.0986***

(0.0231) (0.0154) (0.0062) (0.0063) (0.0179) (0.0056) (0.0056)
Constant -0.0027 -0.0003 -0.0012* -0.0011* -0.0006 -0.0011* -0.0011*

(0.0017) (0.0018) (0.0006) (0.0006) (0.0020) (0.0006) (0.0006)

Year fixed effects Yes Yes Yes Yes Yes Yes Yes
Observations 336 336 336 336 336 336 336

FF5 FFC4
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Table 5. Dynamics of Family-Level HHI, Changes in Stock Market Volatility and Fund 
Performance, and Performance Variation 

Table 5 reports the results of the model in Equation (53) where the dependent variable is the change in family-
level HHI, 𝑑𝑖𝑓_𝐻𝐻𝐼, which it is in decimal. The independent variables are lagged by one month. The columns 
(2) to (4) report the results of the model using the measures of fund performance and performance variation 
estimated by the FF5 model, and columns (5) to (7) report the results of the model using the measures estimated 
by the FFC4 model. The detailed definitions of the variables are in the Data Appendix. The standard errors are 
presented in parentheses, which are estimated by the Newey-West estimator, with the maximum lag of 12 to be 
considered in the autocorrelation structure of the regression error. The symbols ***, **, and * represent the 1%, 
5%, and 10% significance levels, respectively, in a two-tail t-test. 

(1) (2) (3) (4) (5) (6) (7)
Dif_VIX -0.0478*** -0.0332*** -0.0190*** -0.0187*** -0.0385*** -0.0167*** -0.0165***

(0.0157) (0.0120) (0.0047) (0.0047) (0.0119) (0.0050) (0.0050)
Dif_MarketShare L 2.9809*** 4.6419*** 4.8479*** 4.8233*** 4.4473*** 4.7160*** 4.6966***

(0.9067) (0.9354) (0.3371) (0.3399) (1.0027) (0.2985) (0.3018)
Dif_MarketShare S -25.9133 -103.2295 -27.7098 -32.0121 -124.7267* -33.6284 -36.0972

(26.8073) (63.6037) (28.8948) (28.8223) (72.0076) (28.4053) (28.2913)
Dif_MarketShare L *OMR2 L -35.1589*** -28.7937***

(8.6739) (7.5898)
OMR2 L -0.0102 -0.0071

(0.0095) (0.0075)
Dif_MarketShare S *OMR2 S 601.0876* 642.9683*

(330.8901) (347.9415)
OMR2 S -0.0267 -0.0258

(0.0192) (0.0194)
Dif_MarketShare L *NetAlpha_Std L -374.9015*** -362.5442***

(47.9735) (44.1819)
NetAlpha_Std L 0.0258 0.0667

(0.1886) (0.2029)
Dif_MarketShare S *NetAlpha_Std S 3,601.9172* 4,189.1962**

(2,150.3450) (2,125.7289)
NetAlpha_Std S -0.0564 -0.0778

(0.0930) (0.0890)
Dif_MarketShare L *GrossAlpha_Std L -373.2812*** -361.4011***

(47.7271) (44.0714)
GrossAlpha_Std L 0.0250 0.0693

(0.1900) (0.2061)
Dif_MarketShare S *GrossAlpha_Std S 4,078.8145* 4,546.4599**

(2,193.0905) (2,165.1525)
GrossAlpha_Std S -0.0527 -0.0784

(0.1013) (0.0944)
NumGrowth 0.1955*** 0.2034*** 0.2564*** 0.2556*** 0.2075*** 0.2531*** 0.2523***

(0.0592) (0.0394) (0.0160) (0.0161) (0.0456) (0.0142) (0.0143)
Constant -0.0066 -0.0000 -0.0029* -0.0028* -0.0005 -0.0026* -0.0026*

(0.0043) (0.0046) (0.0015) (0.0015) (0.0050) (0.0015) (0.0015)

Year fixed effects Yes Yes Yes Yes Yes Yes Yes
Observations 336 336 336 336 336 336 336

FF5 FFC4
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Internet Appendix 

(For Online Publication Only) 
This appendix provides the proofs and additional discussions of our theoretical results 

and offers the simulation results. 

Mathematical Proofs and Additional Discussions 

This section provides the proofs of the results in the corresponding sections. 

Proof of Results in Section 2.2 

In the managers’ problems shown in Equation (15), to maximize 𝐴௜𝑚௜,௧𝑞௜,௧௔ − 𝑐௜𝑞௜,௧௔ ଶ, 

we apply the first-order condition with respect to 𝑞௜,௧௔ , and find the optimal value 𝑞௜,௧௔∗ as 

 𝑞௜,௧௔∗ = 𝐴௜𝑚௜,௧2𝑐௜ . (A1) 

The second-order condition −2𝑐௜ < 0  shows that 𝑞௜,௧௔∗  induces a maximum. Substituting 

Equation (A1) into Equation (14) and rearranging, we find the fund 𝑖’ optimal fund sizes as 

 𝑞௜,௧∗ = ൫𝐴௜𝑚௜,௧൯ଶ4𝑐௜𝑓௜ . (A2) 

Similar to Berk and Green (2004) and Feldman and Xu (2022), we assume that manager 𝑖, 𝑖 = 1, … ,𝑛, sets 𝑓௜ sufficiently low such that the constraint 0 ≤ 𝑞௜,௧௔∗ ≤ 𝑞௜,௧∗  is automatically 

satisfied and we do not incorporate this constraint in the optimization. 

Q.E.D. 

Proof of Results in Section 2.4 

In Equation (27), if 𝑞௜,௧∗ > ∑ ௤ೕ,೟∗మ೙ೕసభ∑ ௤ೕ,೟∗೙ೕసభ  (𝑞௜,௧∗ < ∑ ௤ೕ,೟∗మ೙ೕసభ∑ ௤ೕ,೟∗೙ೕసభ ), then డுுூ೟∗డ௠೔,೟ > 0 (డுுூ೟∗డ௠೔,೟ < 0). This 

proves Corollary RN2.1a. 

In Equation (28), if 𝑞௜,௧∗  is sufficiently small relative to 𝑞௝,௧∗ ’s for 𝑗 ≠ 𝑖, then the term 

−∑ 𝑞௝,௧∗ଶ௡௝ୀଵ   dominates in the expression 3𝑞௜,௧∗ ∑ 𝑞௝,௧∗௡௝ୀଵ + ଺௤೔,೟∗ ቀ∑ ௤ೕ,೟∗మ೙ೕసభ ቁቀ∑ ௤ೕ,೟∗೙ೕసభ ቁ − 8𝑞௜,௧∗ଶ − ∑ 𝑞௝,௧∗ଶ௡௝ୀଵ  , 
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making this expression negative. If 𝑞௜,௧∗  is sufficiently large relative to 𝑞௝,௧∗ ’s for 𝑗 ≠ 𝑖, then 

3𝑞௜,௧∗ ∑ 𝑞௝,௧∗௡௝ୀଵ + ଺௤೔,೟∗ ቀ∑ ௤ೕ,೟∗మ೙ೕసభ ቁቀ∑ ௤ೕ,೟∗೙ೕసభ ቁ < 9𝑞௜,௧∗ଶ  and −8𝑞௜,௧∗ଶ − ∑ 𝑞௝,௧∗ଶ௡௝ୀଵ < −9𝑞௜,௧∗ଶ , making 

3𝑞௜,௧∗ ∑ 𝑞௝,௧∗௡௝ୀଵ + ଺௤೔,೟∗ ቀ∑ ௤ೕ,೟∗మ೙ೕసభ ቁቀ∑ ௤ೕ,೟∗೙ೕసభ ቁ − 8𝑞௜,௧∗ଶ − ∑ 𝑞௝,௧∗ଶ௡௝ୀଵ < 9𝑞௜,௧∗ଶ − 9𝑞௜,௧∗ଶ = 0 . If all funds’ sizes are 

sufficiently close, then the expression is 3𝑞௜,௧∗ ∑ 𝑞௝,௧∗௡௝ୀଵ + ଺௤೔,೟∗ ቀ∑ ௤ೕ,೟∗మ೙ೕసభ ቁቀ∑ ௤ೕ,೟∗೙ೕసభ ቁ − 8𝑞௜,௧∗ଶ − ∑ 𝑞௝,௧∗ଶ௡௝ୀଵ ≈
(2𝑛 − 2)𝑞௜,௧∗ଶ > 0 as 𝑛 ≥ 2. This proves Corollary RN2.1b. 

Q.E.D. 

Proof of Results in Section 2.7 

Regarding the net returns of the 𝑛 + 1 assets, we have the following results. For the 𝑖th asset, 𝑖 = 1, … ,𝑛, 

 𝑅௜,௧ = 𝑑𝑆௜,௧𝑆௜,௧ + 𝑑𝜂௧𝜂௧  

= ቆ𝑞௜,௧௔𝑞௜,௧ 𝐴௜𝑚௜,௧ − 𝑐௜𝑞௜,௧௔ ଶ𝑞௜,௧ − 𝑓௜ + 𝜇௣ቇ𝑑𝑡 + 𝑞௜,௧௔𝑞௜,௧ 𝐵௜𝑑𝑊ഥ௜,௧ + 𝜎௣𝑑𝑊௣,௧ (A3) 

and for the last asset 

 𝑅௡ାଵ,௧ = 𝑑𝜂௧𝜂௧ = 𝜇௣𝑑𝑡 + 𝜎௣𝑑𝑊௣,௧ . (A4) 

We define the following: 
• the mean net return vector of the 𝑛 + 1  assets, 𝛍𝐭 , is an (𝑛 + 1) × 1  vector, with 𝜇௜,௧ = ൬௤೔,೟ೌ௤೔,೟ 𝐴௜𝑚௜,௧ − ௖೔௤೔,೟ೌమ௤೔,೟ − 𝑓௜ + 𝜇௣൰ 𝑑𝑡, 𝑖 = 1, … ,𝑛, and 𝜇௡ାଵ,௧ = 𝜇௣𝑑𝑡; 
• the covariance matrix of the 𝑛 + 1  assets, 𝐐𝐭 , is an (𝑛 + 1) × (𝑛 + 1)  positive 

definite symmetric matrix, with diagonal elements 𝑄௜௜,௧ = ቈ൬௤೔,೟ೌ௤೔,೟൰ଶ 𝐵௜ଶ + 𝜎௣ଶ቉ 𝑑𝑡 , 𝑖 =
1, … ,𝑛, 𝑄௜௜,௧ = 𝜎௣ଶ𝑑𝑡, 𝑖 = 𝑛 + 1, and off-diagonal elements 𝑄௜௝,௧ = 𝜎௣ଶ𝑑𝑡, ∀𝑖 ≠ 𝑗. 

Then, we have 

 E ൤𝑑𝑝௧𝑝௧ ฬ ℱ௧𝛏൨ = 𝐯𝐭′𝛍𝐭 (A5) 
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 Var ൤𝑑𝑝௧𝑝௧ ฬ ℱ௧𝛏൨ = 𝐯𝐭′𝐐𝐭𝐯𝐭. (A6) 

Next, we write down the Lagrange function 

 𝐹௧(𝐯𝐭, 𝜆௧) = 𝐯𝐭′𝛍𝐭ඥ𝐯𝐭′𝐐𝐭𝐯𝐭 + 𝜆௧(1 − 𝐯𝐭′𝟏). (A7) 

We later will argue that the condition 0 ≤ 𝑣௜,௧ ≤ 1,  ∀𝑡, 𝑖 = 1, … ,𝑛 + 1  is automatically 

satisfied in our model, so it does not affect our optimization process and is not incorporated in 

Equation (A7). First-order conditions generate 

 ∇𝐯𝐭𝐹௧(𝐯𝐭∗, 𝜆௧∗) = (𝐯𝐭∗′𝐐𝐭𝐯𝐭∗)ଵଶ𝛍𝐭 − (𝐯𝐭∗′𝐐𝐭𝐯𝐭∗)ିଵଶ𝐐𝐭𝐯𝐭∗𝐯𝐭∗′𝛍𝐭𝐯𝐭∗′𝐐𝐭𝐯𝐭∗ − 𝜆௧∗𝟏= 𝟎 

(A8) 

 ∇ఒ೟𝐹௧(𝐯𝐭∗, 𝜆௧∗) = 1 − 𝐯𝐭∗′𝟏 = 𝟎. (A9) 

Multiplying both sides of Equation (A8) by 𝐯𝐭∗′ on the left, we have 

 (𝐯𝐭∗′𝐐𝐭𝐯𝐭∗)ଵଶ𝐯𝐭∗′𝛍𝐭 − (𝐯𝐭∗′𝐐𝐭𝐯𝐭∗)ିଵଶ𝐯𝐭∗′𝐐𝐭𝐯𝐭∗𝐯𝐭∗′𝛍𝐭𝐯𝐭∗′𝐐𝐭𝐯𝐭∗ = 𝜆௧∗ = 0. (A10) 

Then, 

 (𝐯𝐭∗′𝐐𝐭𝐯𝐭∗)ଵଶ𝛍𝐭 − (𝐯𝐭∗′𝐐𝐭𝐯𝐭∗)ିଵଶ𝐐𝐭𝐯𝐭∗𝐯𝐭∗′𝛍𝐭 = 𝟎. (A11) 

The second-order condition is satisfied and omitted here for brevity. Then, 𝐯𝐭∗ is a maximizer. 

Next, we solve 𝐯𝐭∗  explicitly. Define 𝜇௩∗𝑑𝑡 ≜ 𝐯𝐭∗′𝛍𝐭  and 𝜎௩ଶ∗𝑑𝑡 ≜ 𝐯𝐭∗′𝐐𝐭𝐯𝐭∗ , which are the 

portfolio mean return and variance of return at the optimal weight allocations in 𝑑𝑡 , 
respectively. Rearranging Equation (A11), we have 

 𝐐𝐭𝐯𝐭∗ = 𝛍𝐭 𝜎௩ଶ∗𝜇௩∗ . (A12) 

Then, the 𝑖 th element of 𝐐𝐭𝐯𝐭∗  is ቈ𝑣௜,௧∗ ൬௤೔,೟ೌ௤೔,೟൰ଶ 𝐵௜ଶ + 𝜎௣ଶ቉ 𝑑𝑡 , for 𝑖 = 1, … ,𝑛 , and 𝜎௣ଶ𝑑𝑡  for 

𝑖 = 𝑛 + 1 . Also, the 𝑖 th element of 𝛍𝐭 ఙೡమ∗ఓೡ∗   is ఙೡమ∗ఓೡ∗ ൬௤೔,೟ೌ௤೔,೟ 𝐴௜𝑚௜,௧ − ௖೔௤೔,೟ೌమ௤೔,೟ − 𝑓௜ + 𝜇௣൰ 𝑑𝑡 , for 𝑖 =1, … ,𝑛  and ఙೡమ∗ఓ೛ఓೡ∗ 𝑑𝑡  for 𝑖 = 𝑛 + 1 . We have the following relation by dividing the 𝑖 th 

element for 𝑖 = 1, … ,𝑛 by the last element for both sides of Equation (A12): 
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 𝑣௜,௧∗ ൬𝑞௜,௧௔𝑞௜,௧൰ଶ 𝐵௜ଶ + 𝜎௣ଶ𝜎௣ଶ = 𝜎௩ଶ∗𝜇௩∗ ቆ𝑞௜,௧௔𝑞௜,௧ 𝐴௜𝑚௜,௧ − 𝑐௜𝑞௜,௧௔ ଶ𝑞௜,௧ − 𝑓௜ + 𝜇௣ቇ𝜎௩ଶ∗𝜇௣𝜇௩∗  (A13) 

for 𝑖 = 1, … ,𝑛. Rearranging the expression above, we have 

 𝑣௜,௧∗ = ቆ𝑞௜,௧௔𝑞௜,௧ 𝐴௜𝑚௜,௧ − 𝑐௜𝑞௜,௧௔ ଶ𝑞௜,௧ − 𝑓௜ቇ 𝜎௣ଶ
ቆ𝑞௜,௧௔𝑞௜,௧ቇଶ 𝐵௜ଶ𝜇௣  (A14) 

for 𝑖 = 1, … ,𝑛. 

Then, funds’ sizes can be expressed as, for 𝑖 = 1, … ,𝑛, 
 𝑞௜,௧ = 𝑉𝑣௜,௧∗ = 𝑉 ቆ𝑞௜,௧௔𝑞௜,௧ 𝐴௜𝑚௜,௧ − 𝑐௜𝑞௜,௧௔ ଶ𝑞௜,௧ − 𝑓௜ቇ 𝜎௣ଶ

ቆ𝑞௜,௧௔𝑞௜,௧ቇଶ 𝐵௜ଶ𝜇௣ . (A15) 

Substitute the expression above into Equation (44), and rearrange to get 

 𝑓௜𝑞௜,௧ = −𝑞௜,௧௔ ଶ𝐵௜ଶ𝜇௣𝑉𝜎௣ଶ − 𝑐௜𝑞௜,௧௔ ଶ + 𝑞௜,௧௔ 𝐴௜𝑚௜,௧ . (A16) 

Manager 𝑖 ’s problem is to maximize 𝑓௜𝑞௜,௧  by choosing 𝑞௜,௧௔  . Applying the first-order 

condition on the right-hand side of Equation (A16), we have 

 𝑞௜,௧௔∗ = 𝐴௜𝑚௜,௧𝑉𝜎௣ଶ2൫𝐵௜ଶ𝜇௣ + 𝑐௜𝑉𝜎௣ଶ൯. (A17) 

The second-order condition is −ଶ஻೔మఓ೛௏ఙ೛మ − 2𝑐௜ < 0 , showing that 𝑞௜,௧௔∗  is a maximizer. Then 

substituting 𝑞௜,௧௔∗ back to Equation (A15), we have 

 𝑞௜,௧∗ = ൫𝐴௜𝑚௜,௧൯ଶ𝑉𝜎௣ଶ4𝑓௜൫𝐵௜ଶ𝜇௣ + 𝑐௜𝑉𝜎௣ଶ൯. (A18) 

We can see that 

 𝑞௜,௧௔∗𝑞௜,௧∗ = 2𝑓௜𝐴௜𝑚௜,௧ . (A19) 

We assume that manager 𝑖 sets 𝑓௜ sufficiently low such that the condition 0 ≤ 𝑞௜,௧௔∗ ≤ 𝑞௜,௧∗  is 

automatically satisfied and we do not incorporate this constraint in the optimization problem 
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in Equation (44). Also, by Equations (A15) and (A18), we have, for 𝑖 = 1, … ,𝑛, 

 𝑣௜,௧∗ = 𝑞௜,௧∗𝑉 = ൫𝐴௜𝑚௜,௧൯ଶ𝜎௣ଶ4𝑓௜൫𝐵௜ଶ𝜇௣ + 𝑐௜𝑉𝜎௣ଶ൯. (A20) 

As 𝑚௜,௧ ≥ 𝑚௜,௧ ≥ 0  and all other parameters on the right-hand side of Equation (A20) are 

positive, 𝑣௜,௧∗ , 𝑖 = 1, … ,𝑛 is nonnegative; i.e., investors do not short sell active funds. That is, 

as long as funds provide positive expected net alphas, investors do not short sell them. Also, 

summing up Equation (A20) for 𝑖 = 1, … ,𝑛, we have 

 ෍𝑣௜,௧∗௡
௜ୀଵ = ෍ ൫𝐴௜𝑚௜,௧൯ଶ4𝑓௜ ቆ𝐵௜ଶ𝜇௣𝜎௣ଶ + 𝑐௜𝑉ቇ

௡
௜ୀଵ . (A21) 

With a sufficiently large 𝜇௣ or a sufficiently small 𝜎௣ଶ, we have ∑ 𝑣௜,௧∗௡௜ୀଵ ≤ 1. As 𝑣௜,௧∗ , 𝑖 =1, … ,𝑛 is nonnegative and ∑ 𝑣௜,௧∗௡௜ୀଵ ≤ 1, we have 𝑣௜,௧∗ ≤ 1, for 𝑖 = 1, … ,𝑛. With all these 

conditions, we also have 0 ≤ 𝑣௡ାଵ,௧∗ ≤ 1; i.e., investors invest part of their wealth into the 

passive benchmark. The intuition is that as long as the passive benchmark portfolio provides 

sufficiently high expected return or sufficiently low risk, investors do not short sell it. These 

results are realistic because in reality, we observe investors invest part of their wealth in active 

funds and another in passive benchmark portfolios. Then, the condition 0 ≤ 𝑣௜,௧ ≤ 1,  ∀, 𝑖 =1, … ,𝑛 + 1 is automatically satisfied and we do not incorporate this constraint in solving the 

investors’ optimization problems. 

Q.E.D. 

Proof of Results in Section 2.9 

Let investors be risk-neutral. When HHI is calculated at fund family level as shown in 

Equation (50) and fund 𝑖 belongs to fund family 𝑘, we have 

 𝜕𝐻𝐻𝐼௧∗𝜕𝑚௜,௧ = 𝜕𝐻𝐻𝐼௧∗𝜕𝑄௞,௧∗ 𝜕𝑄௞,௧∗𝜕𝑞௜,௧∗ 𝜕𝑞௜,௧∗𝜕𝑚௜,௧ = 4𝑋௜𝐴௜ଶ𝑚௜,௧ × 𝑄௞,௧∗ ∑ 𝑄௝,௧∗௟௝ୀଵ − ∑ 𝑄௝,௧∗ଶ௟௝ୀଵ൫∑ 𝑄௝,௧∗௟௝ୀଵ ൯ଷ . (A22) 

Notice that in the above analysis, డொೖ,೟∗డ௤೔,೟∗ = 1 because 𝑄௞,௧∗ = ∑ 𝑞௛,௧∗௡ೖ௛ୀଵ  where fund ℎ is any 

fund in family 𝑘. Then, we have 𝑄௞,௧∗ > ∑ ொೕ,೟∗మ೗ೕసభ∑ ொೕ,೟∗೗ೕసభ > 0 (𝑄௞,௧∗ > ∑ ொೕ,೟∗మ೗ೕసభ∑ ொೕ,೟∗೗ೕసభ < 0) if and only if 



 

6 
 

డுுூ೟∗డ௠೔,೟ > 0 (డுுூ೟∗డ௠೔,೟ < 0). With analysis similar to that of Section 2.4, we have the results in 

Proposition FAa and FAb. Also, we have 
 𝜕𝐻𝐻𝐼௧∗𝜕𝐴௜(𝜆௧) = 𝜕𝐻𝐻𝐼௧∗𝜕𝑄௞,௧∗ 𝜕𝑄௞,௧∗𝜕𝑞௜,௧∗ 𝜕𝑞௜,௧∗𝜕𝐴௜(𝜆௧)

= 4𝑋௜𝐴௜ଶ(𝜆௧)𝑚௜,௧ × 𝑄௞,௧∗ ∑ 𝑄௝,௧∗௟௝ୀଵ − ∑ 𝑄௝,௧∗ଶ௟௝ୀଵ൫∑ 𝑄௝,௧∗௟௝ୀଵ ൯ଷ . (A23) 

Then, we have 𝑄௞,௧∗ > ∑ ொೕ,೟∗మ೗ೕసభ∑ ொೕ,೟∗೗ೕసభ > 0 (𝑄௞,௧∗ > ∑ ொೕ,೟∗మ೗ೕసభ∑ ொೕ,೟∗೗ೕసభ < 0) if and only if డுுூ೟∗డ஺೔(ఒ೟) > 0 ( డுுூ೟∗డ஺೔(ఒ೟) <0). With analysis similar to that of Section 2.5, we have the result in Proposition FAc. 

When investors are mean-variance risk-averse instead of risk-neutral, we only need to 

change 𝑋௜ to 𝑋௜ோ஺, and the above results still hold. 

Q.E.D. 

  



 

7 
 

Simulation Results 

We use simulation to illustrate the dynamics of HHI. In our following numerical 

analyses, we consider a two-fund AFMI, i.e., 𝑛 = 2, and assume that investors are risk neutral. 

The numerical analyses with mean-variance risk-averse investors are similar, and we omit them 

for brevity. 

We first illustrate how HHI changes with different values of relative inferred manager 

abilities, fund size factors, and sensitivity of gross alphas to abilities. We set 𝑚ଶ,௧ = 1, 𝐴ଶ =1, and 𝑋ଶ = 100. We set the range of 𝑚ଵ,௧ as [0, 4]. As 𝑚ଶ,௧ = 1, the value of 𝑚ଵ,௧ can be 

regarded as manager 1’s inferred ability relative to manager 2’s. We simulate the values of HHI 

for three cases, 

• Case One:  𝐴ଵ = 𝐴ଶ = 1 and 𝑋ଵ = 𝑋ଶ = 100; 

• Case Two:  𝐴ଵ = 𝐴ଶ = 1 and 𝑋ଵ = 2𝑋ଶ = 200; 

• Case Three:  𝐴ଵ = 2𝐴ଶ = 2 and 𝑋ଵ = 𝑋ଶ = 100. 

Figure A1 illustrates the results. In Case One, the two funds have the same size factor 

and sensitivity of gross alpha to ability. Where 𝑚ଵ,௧  is smaller (larger) than one, fund 1’s 

equilibrium size is smaller (larger) than that of fund 2, and the AFMI is concentrated at fund 2 

(fund 1). Then, a higher 𝑚ଵ,௧  increases fund 1’s size and makes the AFMI less (more) 

concentrated. The lowest level of 𝐻𝐻𝐼௧∗  is 0.5 , achieved where 𝑚ଵ,௧ = 1 ; i.e., the two 

managers have the same inferred ability thus the same equilibrium size. The highest 𝐻𝐻𝐼௧∗ is 1, achieved where 𝑚ଵ,௧ = 0 or 𝑚ଵ,௧ → ∞; i.e., either manager 2 or manager 1 has infinite 

relative ability such that AFMI becomes monopolistic. Moreover, in the figure, we can see that 

where 𝑚ଵ,௧ is close to zero (close to four), 𝐻𝐻𝐼௧∗ is concave in 𝑚ଵ,௧, as it is more difficult to 

increase 𝐻𝐻𝐼௧∗  by further decreasing (increasing) 𝑚ଵ,௧ . Also, where 𝑚ଵ,௧  is close to one, 𝐻𝐻𝐼௧∗ is convex in 𝑚ଵ,௧, as it is easier to increase 𝐻𝐻𝐼௧∗ if 𝑚ଵ,௧ has a larger deviation from 

one that makes fund 1’s size deviate farther from fund 2’s size. 

In Case Two, fund 1 has a larger size factor but the same sensitivity of gross alpha to 

ability. Comparing Case Two with Case One, we can see that the graph of Case Two shrinks to 

the left. In particular, where 𝐻𝐻𝐼௧∗ decreases (increases) with 𝑚ଵ,௧, at the same 𝑚ଵ,௧ level, 𝐻𝐻𝐼௧∗ has a lower (higher) value. Also, in Case Two, where 𝐻𝐻𝐼௧∗ is concave (convex) in 



 

8 
 

𝑚ଵ,௧, 𝐻𝐻𝐼௧∗ is more sensitive with 𝑚ଵ,௧. 
In Case Three, fund 1 has a larger sensitivity of gross alpha to ability but the same size 

factor. Because a higher sensitivity of gross alpha to ability has a stronger effect on equilibrium 

fund size than the size factor [by Equation (20), 𝐴௜ has a power of two whereas 𝑋௜ has a 

power of one]. The graph of Case Three shrinks more to the left and has larger concavity and 

convexity in the corresponding intervals, compared with Case Two. 

Next, we simulate these two funds’ inferred abilities, 𝑚ଵ,௧ and 𝑚ଶ,௧, and then 𝐻𝐻𝐼௧∗. 
We discretize our continuous-time processes into discrete-time processes, setting 𝑑𝑡 = Δ𝑡 to 

be one month and 𝑑𝑊ഥଵ,௧ = Δ𝑊ഥଵ,௧  and 𝑑𝑊ഥଶ,௧ = Δ𝑊ഥଶ,௧ , to follow a normal distribution of 

mean zero and variance Δ𝑡. We set some of the two funds’ parameter values based on the 

summary statistics of our sample:  for 𝑖 = 1, 2 , 𝑓௜ = 0.095% , 𝐵௜ = 4.275% , and 𝑚௜,଴ =0.982%. We also set 𝛾௜,଴ = 0.0006, 𝑖 = 1, 2. Additionally, we set 𝑐௜ = 0.0002 and 𝐴௜ = 1, 𝑖 = 1, 2. We conduct the simulation for two frameworks, one with dynamic abilities and the 

other with constant abilities. In particular, the parameters specific to these two frameworks are 

set as follows. 

• Dynamic Abilities:  for 𝑖 = 1, 2 , 𝑎଴,௜ = 0.01 , 𝑎ଵ,௜ = −0.02 , 𝑏ଵ,௜ = 0.02 , and 𝑏ଶ,௜ = 0.01. 

• Constant Abilities:  for 𝑖 = 1, 2, 𝑎଴,௜ = 0, 𝑎ଵ,௜ = 0, 𝑏ଵ,௜ = 0, and 𝑏ଶ,௜ = 0. 

We simulate Δ𝑊ഥଵ,௧ and Δ𝑊ഥଶ,௧ as two independent series of increments of Brownian motions 

and use the same set of simulated Δ𝑊ഥଵ,௧ and Δ𝑊ഥଶ,௧ values for both cases. 

We simulate the results for 400 months. Figure A2 plots the simulation results. In both 

frameworks, we can see that, when 𝑚ଵ,௧  is farther away from (closer to) 𝑚ଶ,௧ , 𝐻𝐻𝐼௧∗ 
becomes larger (smaller). Also, with constant abilities, the two managers’ inferred abilities 

change little after 250 months. This is because the estimation precisions are very high after 250 

months, making the inferred abilities insensitive to innovation shocks. Consequently, 

equilibrium fund sizes change little after 250 months, making 𝐻𝐻𝐼௧∗ stable at a value close to 0.90 after 250 months. On the other hand, with dynamic abilities, the two managers’ inferred 

abilities fluctuate greatly over time, even after 250 months. As the estimation precisions are 

low, the inferred abilities are still sensitive to innovation shocks. Consequently, equilibrium 
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fund sizes fluctuate greatly after 250 months, making 𝐻𝐻𝐼௧∗ volatile after 250 months in the 

interval from 0.50 to 0.75. 
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Figure A1. AFMI Equilibrium HHI and Relative Inferred Abilities 

Figure A1 illustrates the results of an AFMI with two funds, fund 1 and fund 2. The vertical axis is the equilibrium 
AFMI Herfindahl-Hirschman Index, 𝐻𝐻𝐼௧∗, and the horizontal axis is manager 1’s inferred ability, 𝑚ଵ,௧. Manager 
2’s inferred ability 𝑚ଶ,௧ is set to be one, so that 𝑚ଵ,௧ can be regarded as manager 1’s inferred ability relative to 
manager 2’s. In Case One, the two managers have the same size factor, 𝑋ଵ = 𝑋ଶ = 100, and the same sensitivity 
of gross alpha to ability, 𝐴ଵ = 𝐴ଶ = 1 . In Case Two, 𝑋ଵ = 2𝑋ଶ = 200  and 𝐴ଵ = 𝐴ଶ = 1 , whereas in Case 
Three, 𝑋ଵ = 𝑋ଶ = 100 and 𝐴ଵ = 2𝐴ଶ = 2. The solid curve, dashed curve, and dotted dashed curve illustrate the 
results of Case One, Case Two, and Case Three, respectively. 
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Figure A2. AFMI Equilibrium HHI and Inferred Abilities with Dynamic Abilities and 
Constant Abilities 

Figure A2 illustrates the results of an AFMI with two funds, fund 1 and fund 2, with dynamic abilities in the two 
upper subplots and with constant abilities in the two lower subplots, respectively. For each case, on the left-hand 
side, we illustrate the simulated inferred abilities, 𝑚ଵ,௧ and 𝑚ଶ,௧, in blue lines and red stars, respectively. On the 
right-hand side, we illustrate the equilibrium AFMI Herfindahl-Hirschman Index, 𝐻𝐻𝐼௧∗. We plot these simulation 
results from Month 0 to Month 400. 

 

 


