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1 Introduction

Volatility has played a central role in economics and finance. In currency markets, a

global volatility risk has been proposed by prior literature as a key driver of carry trade re-

turns (Lustig, Roussanov, and Verdelhan, 2011; Menkhoff, Sarno, Schmeling, and Schrimpf,

2012a). While the global volatility risk factor is intuitively appealing, there is little evidence

on how individual currency volatilities relate to each other. This seems surprising since

a shock to the ex-ante volatility of a particular currency possibly transmits to expecta-

tions about the future volatility of other currencies. These linkages consequently define

weighted and directed network structures that contain information about the transmission

of volatility shocks among individual currencies above and beyond fluctuations in global

volatility. Since the connections are likely to be asymmetric, investors are unable to di-

versify away from idiosyncratic shocks and hence differences in the strength of directional

volatility connections become important characteristics of currency risk. Guided by this

insight and earlier evidence on network effects for firm-level stock volatilities (Herskovic,

Kelly, Lustig, and Van Nieuwerburgh, 2020), our goal is to understand currency volatility

linkages and to test whether currency excess returns compensate for such risk.

In this paper, we identify time-varying linkages among option-based currency volatili-

ties that possess heterogeneous degrees of persistence originating from transitory and per-

sistent components of volatility shocks. Using traded currency options, we measure how

market expectations about future exchange rate fluctuations covary across currencies and

how shocks to these expectations create a network and spread within that network.1 The

pure market-based approach we propose allows us to characterize the currency volatility

network risk on a daily basis as well as to use its forward-looking strength at the cost of

minimal assumptions. We document two important sources of risk stemming from volatil-

ity linkages. Currencies that are more exposed to volatility shocks from others compensate

investors for being vulnerable and earn a higher risk premium. In contrast, currencies that

transmit more volatility shocks to others than receive offer a lower risk premium because

1Surprisingly, the literature on the information content of currency options is limited compared to the
evidence on equity options. Notable exceptions making use of dollar options include Campa and Chang
(1995), Della Corte, Ramadorai, and Sarno (2016), Londono and Zhou (2017), and Della Corte, Kozhan, and
Neuberger (2021), whereas Jurek (2014), Mueller, Stathopoulos, and Vedolin (2017), and Della Corte, Kozhan,
and Neuberger (2022) employ cross currency options.

2



they hedge against volatility spillovers. Exploring the time variation in volatility networks,

we show that the information contained in asymmetric volatility connections is valuable

for an investor.

The main contribution of the paper is that we present new empirical evidence regard-

ing the behavior of option-based currency volatilities and examine the implications of this

behavior for exchange rate predictability. First, ex-ante volatilities of currencies form a con-

nected network. The network connections are driven by a strong correlation component.

Second, a network strategy that buys net recipients and sells net transmitters of transitory

linkages between currency volatilities generates a significant Sharpe ratio. When volatility

linkages are controlled for contemporaneous correlations, the portfolio formed on such

asymmetric connections is uncorrelated with popular benchmarks and generates a signif-

icant alpha. The network risk factor is also priced in a currency cross-section. Third, we

identify network structures with a heterogeneous degree of persistence stemming from

transitory and persistent components of shocks that create various types of risk for in-

vestors. We document a downward-sloping term structure of network risk.

We begin our empirical investigation by constructing forward-looking measures of ex-

change rate volatilities from currency option prices, following the model-free approach of

Britten-Jones and Neuberger (2000) and Bakshi, Kapadia, and Madan (2003).2,3 We con-

tinue by constructing a novel forward-looking dynamic network of option-implied volatil-

ities on exchange rates. Our network measures are built in the tradition of dynamic pre-

dictive modeling under misspecification, and linkages are approximated via time-varying

parameter vector autoregression models (Diebold and Yilmaz, 2014; Barunik and Elling-

ton, 2020). Specifically, the network of individual volatilities inferred from time-varying

variance decompositions and its frequency domain counterpart has several key attributes.

First, the connections between the volatilities are weighted and directed. That is, the in-

fluence of shocks to exchange rate volatilities is not symmetric in the system and such a

2The highly liquid and large foreign exchange volatility market provides an excellent opportunity to
synthesize such measures. As of June 2019, the daily average turnover was $294 billion and notional amounts
outstanding was $12.7 trillion (BIS, 2019a,b). A wide variety of strikes and maturities available on the market
allow us to precisely compute the option-implied variances on exchange rates.

3The variance measures constructed from currency derivatives, which reflect the expectations of agents
about future financial and real macroeconomic risks, are distinct from the backward-looking realized variance
estimates. See, for example, Gabaix and Maggiori (2015), Zviadadze (2017), and Colacito, Croce, Gavazzoni,
and Ready (2018) for the nature of risks traded in currency markets.

3



AUD

BRL

CAD

CHF
CZK

DKK

EUR

GBP

HUF

JPY

KRWMXN

NOK

NZD

PLN

SEK

SGD

TRY

TWD

ZAR

AUD

BRL

CAD

CHF CZK

DKK

EUR
GBP

HUF

JPY

KRW

MXN

NOK
NZD

PLN

SEK

SGD

TRY

TWD

ZAR

Figure 1. Transitory (left) and persistent (right) volatility networks: September 30, 2008
The left (right) figure depicts a transitory (persistent) network among option-implied currency volatilities
based on connections of the transitory (permanent) nature of shocks. We remove the contemporaneous effects
in volatility linkages by diagonalizing the covariance matrix. Arrows denote the direction of connections and
the strength of lines denotes the strength of linkages. Grey (black) vertices denote currencies receiving
(transmitting) more shocks than transmitting (receiving). The size of vertices indicates the net amount of
shocks. To enhance the readability, links are drawn if intensities are above a predetermined threshold.

network then identifies information beyond standard correlation-based measures. Second,

we are able to distinguish connections among individual currency volatilities with hetero-

geneous persistence. Thus, we shed light on how a network risk stemming from shocks

with different persistence is being priced in currency markets. Third, international depen-

dencies are naturally driven by common fluctuations in global markets. In our analysis,

we examine the networks based on the asymmetric impact of shocks after controlling for

contemporaneous variation in individual volatilities. Our network measures allow char-

acterizing such dependencies by isolating linkages among currency volatilities controlled

for contemporaneous effects. Finally, the structure of volatility connections is changing

dynamically over time, unlike the somewhat persistent relationships between countries

based on interest rates. Hence, sorting currencies according to volatility linkages is not

equivalent, for example, to the currency carry trade.

To illustrate the above, Figure 1 depicts the network structures among currency volatil-

ities of twenty developed and emerging market economies inferred from shocks of (i) tran-

sitory (short-term) nature of up to one week and (ii) persistent (long-term) nature of longer

than one month shortly after the bankruptcy of Lehman Brothers, following severely con-
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tracted liquidity at the end of September 2008. It is worth emphasizing that even after

controlling for contemporaneous correlation in the global markets, the volatility network

contains rich information about volatility shocks having both transitory and persistent im-

pacts. A natural question arises: what are the asset pricing implications of the network

structures capturing currency volatility linkages beyond contemporaneous correlations?

We document that such network structures predict currency returns. Empirically, we

examine the profitability of strategies that buy net recipients and sell net transmitters of

volatility shocks. For each currency volatility, we first compute the cumulative strength of

transmitted/received shocks with a given persistence level and take the difference between

them to obtain a net-directional connectedness at a given horizon. We consider three de-

grees of shock persistence with short-, medium-, and long-term horizons.4 We then build

monthly quintile portfolios sorted by the net-directional network measures. For instance,

for the short-term net-directional network, the first (fifth) portfolio contains the currencies

transmitting (receiving) more short-term shocks than receiving (transmitting) them. We

find that buying currencies of short-term net recipients and selling currencies of short-

term net transmitters yields a Sharpe ratio of 0.60 over the 1996-2023 period.5 Regressing

the excess returns of short-term net-directional portfolios on the dollar, carry trade, volatil-

ity, volatility risk premium, and momentum strategies yields economically and statistically

significant alphas (5.01% per annum with a t-stat of 3.25). To better understand the sources

of this profitability, we sort the currencies into quintiles based on a combined strength of

all transmitted (received) shocks to (from) others. The results show that this is the network

risk related to transmitting shocks to others, which has a strong predictive power.

Relative to common currency risk factors, the predictability stemming from network

risk is primarily driven by changes in exchange rates and not by interest rate differen-

tials. Furthermore, the network strategies are weakly and even negatively correlated with

currency benchmarks, providing excellent diversification gains. Intuitively, the network

strategy is formed on shock transitions not driven by a common correlation in volatilities.

Since the latter is an important component of standard currency portfolios, especially the
4In the empirical investigation, we define short-term as a 1-day to 1-week horizon, medium-term as a

1-week to 1-month horizon, and long-term as a horizon longer than 1-month.
5For comparison, currency carry trade and momentum produce Sharpe ratios of 0.48 and 0.31 during

the same period, whereas a volatility risk premium portfolio earns lower risk-adjusted returns. The weak
performance of standard strategies is primarily driven by strong underperformance after the Financial Crisis.
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carry trade, the profitability of the network strategy cannot be understood using traditional

risk factors. The allocation analysis demonstrates that the strategy using short-term net-

directional connections buys or sells different currencies compared to benchmarks around

40% of the time. The results indicate a distinctive source of network returns.

We next focus on the term structure of network risk premiums. The risk-adjusted per-

formance of network portfolios formed on net-directional connectedness decreases with

the persistence of volatility linkages, suggesting that excess returns are related to transi-

tory shocks. This complements the evidence of the downward-sloping term structure of

unconditional variance risk premium in equity markets (Dew-Becker, Giglio, Le, and Ro-

driguez, 2017). Interestingly, average returns and Sharpe ratios of strategies formed on the

number of transmitted shocks slightly increase with the horizon.

Further, we examine whether excess returns of network-sorted portfolios reflect the

compensation for risk. For this purpose, we consider the cross-section of currency returns

formed on the transitory net-directional connectedness. Following Lustig, Roussanov, and

Verdelhan (2011), we perform a principal component decomposition of test portfolios. Mo-

tivated by these results, we formally test a battery of two- and three-factor linear models.

We document that none of the pricing kernels with benchmark factors can explain currency

network returns. Meanwhile, the network factor appears to be strongly priced.

We perform a number of additional checks. First, the magnitude and significance of

returns of network portfolios increase when we move to a weekly frequency. Second, the

excess returns remain significant after adjusting them for transaction costs. Third, the

network portfolios generate comparable performance statistics before and after the Global

Financial Crisis, in contrast to benchmark strategies whose performance significantly dete-

riorates in the second sub-sample. Fourth, our results work equally well for network risk

measures estimated from option-implied variances instead of volatilities. Finally, the pre-

dictive power of volatility network risk disappears when estimated from realized currency

volatilities, highlighting the importance of forward-looking option-based volatilities.

This paper contributes to the literature documenting predictability in currency returns.6

6The literature proposes strategies, among others, based on the carry trade (Lustig and Verdelhan, 2007;
Lustig, Roussanov, and Verdelhan, 2011; Menkhoff, Sarno, Schmeling, and Schrimpf, 2012a), momentum
(Menkhoff, Sarno, Schmeling, and Schrimpf, 2012b; Asness, Moskowitz, and Pedersen, 2013; Dahlquist and
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The volatility-related strategies exploit global foreign exchange volatility (Menkhoff, Sarno,

Schmeling, and Schrimpf, 2012a) and currency volatility risk premium (Della Corte, Ra-

madorai, and Sarno, 2016; Londono and Zhou, 2017). Gabaix and Maggiori (2015) and

Colacito, Croce, Gavazzoni, and Ready (2018) build the models explaining these strategies.

We contribute to this literature by showing how network risk from option-based volatil-

ities on exchange rates is priced in the cross-section of currency excess returns. Further,

network returns are virtually unrelated to the existing strategies. Della Corte, Kozhan, and

Neuberger (2021) document a global risk factor in the cross-section of implied volatility

returns. The key differentiator of our study from their work is that we propose volatility

network risk and study its predictive power for spot currency returns.

In related work, Mueller, Stathopoulos, and Vedolin (2017) propose a strategy based

on the sensitivity of currencies to the cross-sectional dispersion of conditional foreign ex-

change correlation. They construct the conditional correlation from spot exchange rates

as well as using the currency options for the risk-neutral counterpart. They find some in-

teresting results about the compensation for exposure to high or low dispersion states. In

contrast, we focus on dependencies in option-based volatilities. The connectedness mea-

sures of our paper are directional, unlike symmetric correlation-based proxies.

Our paper is also related to Richmond (2019) who presents a model explaining the

carry trade premium via the country’s position in the global trade network. Unlike net-

work risk based on trade linkages, we study the market-based network from option-based

volatilities. The predictability of currency excess returns sorted on network risk measures

primarily stems from changes in exchange rates and not interest rate differentials. Hence,

the predictive information of the network factor built is distinctive from trade links.

Finally, our paper is related to the literature on downside risk in currency markets.

Jurek (2014), Burnside, Eichenbaum, Kleshchelski, and Rebelo (2011), Farhi, Fraiberger,

Gabaix, Ranciere, and Verdelhan (2015) and Chernov, Graveline, and Zviadadze (2018)

investigate currency crash risk, while Fan, Londono, and Xiao (2021) document an option-

based equity tail factor in currency returns. Although we use currency options data, our

paper examines the dependencies among currency volatilities instead of downside risk.

Hasseltoft, 2020), business cycles (Colacito, Riddiough, and Sarno, 2020), and global imbalances (Corte,
Riddiough, and Sarno, 2016).
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2 Currency Network Risk

This section describes the construction of option-implied currency variances, outlines

the procedure used to estimate network connections between individual volatilities, and

then introduces currency network risk proxies studied in the core analysis.7

2.1 Currency Volatility: Inferring Investor’s Expectations from Option Prices

We begin by synthesizing the risk-neutral expectation of exchange rate variances from

quoted currency options. We obtain spot implied variances from OTC currency options

by applying a model-free approach of Britten-Jones and Neuberger (2000) and Bakshi,

Kapadia, and Madan (2003). Formalizing the discussion, we use prices of European call

and put options expiring at time t + τ to compute the annualized risk-neutral expectation

of the return variance of an exchange rate k versus the US dollar between t and t + τ :

EQ
t

[
(RVk

t,τ)
2
]
=

2
Bk(t, t + τ)


∞∫

Fk(t,t+τ)

Ck(t, t + τ, K)
K2 dK +

Fk(t,t+τ)∫
0

Pk(t, t + τ, K)
K2 dK

 , (1)

where RVk
t,τ is the realized volatility of the underlying asset, EQ

t [·] denotes the expectation

operator under the risk-neutral probability measure Q, Ck(t, t + τ, K) and Pk(t, t + τ, K)

denote the prices of call and put contracts at time t with a strike price K and maturity τ,

Bk(t, t + τ) is the price of a country’s bond at time t with maturity τ, Fk(t, t + τ) is the

forward exchange rate of the currency k at time t with maturity τ. To compute the model-

free implied variances, we discretize the integral in Eq. (1) by adopting call and put option

prices interpolated around the τ maturity, and by considering a range of strike prices for

the currency k.

Two comments are noteworthy at this point. First, large swings in currency volatili-

ties will produce even larger fluctuations in variances due to convexity, especially during

periods of crises. This may artificially imply a stronger connectedness. Following the def-

inition of the volatility risk premium strategy (Della Corte, Ramadorai, and Sarno, 2016)

and the forward volatility contract (Della Corte, Kozhan, and Neuberger, 2021) in cur-

rency markets, our empirical analysis examines the linkages between implied volatilities

7Appendix A provides a detailed methodology used to estimate a dynamic horizon-specific network.
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√
EQ

t

[
(RVk

t,τ)
2
]
.8 Second, the important characteristic of the network risk among individ-

ual currency volatilities is the forward-looking nature of risk-neutral variances synthesized

from currency derivatives. It is intuitively obvious that their predictive nature should be

distinct from backward-looking realized variances. In robustness checks, we demonstrate

that indeed the predictive power of network structures in realized volatilities almost com-

pletely disappears. Our results emphasize the importance of using the information content

of currency options data.

2.2 Dynamic Network Risk

Having constructed forward-looking expectations of currency volatilities, our objective

is to define the network for shocks of a specific persistence propagating across these volatil-

ities. The knowledge of how an uncertainty shock to a currency j transmits to a currency k

defines a directed link at a given period of time. These disaggregate connections between

currency pairs then characterize two major types of network risk: a recipient or a transmit-

ter of volatility shocks. Aggregating the information from all pairs provides a system-wide

measure of the forward-looking connectedness among foreign exchange rates of countries.

A dynamic network can be characterized well through variance decompositions from a

time-varying parameter vector autoregression (TVP-VAR) approximation model (Diebold

and Yilmaz, 2014). Variance decompositions provide useful information about how much

of the future variance of a variable j is due to shocks in a variable k. The time-varying

variance decomposition matrix defines a dynamic network adjacency matrix, which is re-

trieved over different frequencies of interest.9 Unlike classical network structures with

binary, symmetric, and static connections, the horizon-specific dynamic adjacency matri-

ces in our analysis allow for weighted and directed connections, creating asymmetries in

various measures summarising the properties of the network. These measures are the key

to our analysis as directional connectedness risk stems directly from asymmetries within

the network.
8In robustness checks, we demonstrate that our results remain unchanged if we use implied variances.

We choose to work with volatilities for a better comparison with the existing literature.
9A natural way to characterize horizon-specific dynamics (e.g., short- and long-term) of the dynamic

network risk is to consider the spectral representation of the approximating model as recently proposed by
Barunik and Ellington (2020).
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We construct a dynamic network through the TVP-VAR model estimated from cur-

rency implied volatilities following the methodology of Barunik and Ellington (2020). We

consider a locally stationary TVP-VAR of a lag order p describing the dynamics as:

CIVt,T = Φ1(t/T)CIVt−1,T + . . . + Φp(t/T)CIVt−p,T + εt,T, (2)

where CIVt,T =
(

CIV(1)
t,T , . . . , CIV(N)

t,T

)>
is a double indexed N-variate time series of cur-

rency volatilities, εt,T = Σ−1/2(t/T)ηt,T, ηt,T ∼ NID(0, IM) are normally distributed shocks,

Φ(t/T) = (Φ1(t/T), . . . , Φp(t/T))>

are the time-varying autoregressive coefficients. Note that t refers to a discrete-time index

1 ≤ t ≤ T and T is an additional index indicating the sharpness of the local approximation

of the time series by a stationary process. Rescaling time such that the continuous parame-

ter u ≈ t/T is a local approximation of the weakly stationary time-series (Dahlhaus, 1996),

we approximate CIVt,T in a neighborhood of u0 = t0/T by a stationary process:

C̃IVt(u0) = Φ1(u0)C̃IVt−1(u0) + . . . + Φp(u0)C̃IVt−p(u0) + εt. (3)

The TVP-VAR process has a time-varying Vector Moving Average VMA(∞) representa-

tion (Dahlhaus, Polonik, et al., 2009; Barunik and Ellington, 2020):

CIVt,T =
∞

∑
h=−∞

Ψt,T(h)εt−h (4)

where a parameter vector Ψt,T(h) ≈ Ψ(t/T, h) is a time-varying impulse response function

characterized by a bounded stochastic process.10 Information contained in Ψt,T(h) permits

the measurement of the contribution of shocks in the system. Hence, its transformations

over time will determine the network risk. Since a shock to a variable in the model does

not necessarily appear alone, an identification scheme is crucial in identifying the network.

We adapt the extension of the generalized identification scheme of Pesaran and Shin (1998)

to locally stationary process as proposed by Barunik and Ellington (2020).

10Since Ψt,T(h) contains an infinite number of lags, we approximate the moving average coefficients at
h = 1, . . . , H horizons.
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We transform local impulse responses in the system into local impulse transfer func-

tions using Fourier transformations. This allows us to measure the horizon-specific dy-

namics of the network based on the heterogeneous persistence of shocks in the system.

A dynamic representation of the variance decomposition of shocks from a currency j’s

volatility to a currency k’s volatility then establishes a dynamic horizon-specific adjacency

matrix, which is central to our network risk measures.

Specifically, the element of such a matrix, which captures a portion of the local error

variance of the volatility of a currency j is due to chocks in the volatility of a currency k

at a given point of time u = t0/T and a given horizon di ∈ H = {S, M, L}, is formally

defined as:

[
θ(u, di)

]
j,k

=

σ̂−1
kk ∑

ω∈di

([
Ψ̂(u, ω)Σ̂(u)

]
j,k

)2

∑
ω∈H

[
Ψ̂(u, ω)Σ̂(u)Ψ̂

>
(u, ω)

]
j,j

. (5)

Ψ̂(u, ω) = ∑H−1
h=0 ∑h Ψ̂(u, h)e−iωh is an impulse transfer function estimated from Fourier

frequencies ω of impulse responses that cover a specific horizon di, which is one of short

(S), medium (M), or long (L) horizons as defined for arbitrarily chosen bands of frequen-

cies.11 It is important to note that
[
θ(u, d)

]
j,k

is a natural disaggregation of traditional

variance decompositions to a time-varying and h-horizon adjacency matrix. This is be-

cause the portion of the local error variance of the j-th variable at horizon h due to shocks

in the k-th variable is scaled by the total variance of the j-th variable. As the rows of the

dynamic adjacency matrix do not necessarily sum to one, we normalize the element in

each by the corresponding row sum:

[
θ̃(u, d)

]
j,k

=
[
θ(u, d)

]
j,k

/
N

∑
k=1

[
θ(u, d)

]
j,k

(6)

Eq. (6) defines a dynamic horizon-specific network completely. Naturally, our adjacency

matrix is filled with weighted links showing the strengths of connections. The links are

directional, meaning that the j to k link is not necessarily the same as the k to j link. In

sum, the adjacency matrix is horizon-specific, asymmetric, and evolves dynamically.

11Note that i =
√
−1.
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To obtain the time-varying coefficient estimates Φ̂1(u), ..., Φ̂p(u) and the time-varying

covariance matrix Σ̂(u) at a given point of time u = t0/T, we estimate the approximat-

ing model in Eq. (3) using Quasi-Bayesian Local-Likelihood (QBLL) methods (Petrova,

2019). Specifically, we use a kernel weighting function, which gives larger weights to those

observations surrounding the period whose coefficient and covariance matrices are of in-

terest. Using conjugate priors, the (quasi) posterior distribution of the parameters of the

model is available analytically. This alleviates the need to use a Markov Chain Monte Carlo

(MCMC) simulation algorithm and permits the use of parallel computing. We provide a

detailed discussion of the estimation algorithm in Appendix A. We also publish the com-

putationally efficient packages DynamicNets.jl in JULIA and DynamicNets in MATLAB that

can be used to replicate our network connectedness measures.12

2.3 Network Risk Measures

The elements of the adjacency matrix displayed in Table 1 completely specify the

horizon-specific network connections in each period of time. We define the network con-

nectedness measure as the ratio of the off-diagonal elements to the sum of the entire matrix:

C(u, d) =
N

∑
j,k=1
k 6=j

[
θ̃(u, d)

]
j,k

/ N

∑
j,k=1

[
θ̃(u, d)

]
j,k

d ∈ {S, M, L} . (7)

This quantifies the contribution of forecast error variance due to all shocks in the sys-

tem, excluding the contribution of own shocks. The network connectedness measure is

computed for the connections with a pre-specified persistence, which can be one of three

choices: short- (S), medium- (M), or long-run (L). These horizons are determined by

chosen bands of frequencies and aim to cover transitory, less persistent, and more persis-

tent shocks. The sum of these measures across all frequency bands defines the combined

network connectedness C(u, T) = ∑d∈{S,M,L} C(u, d) at time u.

We also define disaggregate network connectedness measures that reveal when an in-

dividual currency volatility is a stronger transmitter or recipient of shocks. The from-

directional connectedness measures how much of each currency’s j volatility is due to

12The packages are available at https://github.com/barunik/DynamicNets.jl and
https://github.com/mte00/DynamicNets.
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Table 1. Dynamic Adjacency Matrix

This table presents a time-varying adjacency matrix for volatility shock propagation. The element
[
θ̃(u, d)

]
j,k

of such a matrix captures a portion of the local error variance of the volatility of a currency j due to shocks
in the volatility of a currency k at a given point of time u and a given horizon d ∈ {S, M, L}. The from-
directional connectedness of a currency j is the sum of elements in the row j excluding the one on the main
diagonal. The to-directional connectedness of a currency j is the sum of elements in the column j excluding
the one on the main diagonal.

Currency 1 2 · · · N Fj←•(u, d)

1
[
θ̃(u, d)

]
1,1

[
θ̃(u, d)

]
1,2

· · ·
[
θ̃(u, d)

]
1,N

∑
k 6=1

[
θ̃(u, d)

]
1,k

2
[
θ̃(u, d)

]
2,1

[
θ̃(u, d)

]
2,2

· · ·
[
θ̃(u, d)

]
2,N

∑
k 6=2

[
θ̃(u, d)

]
2,k

...
...

...
. . .
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]
k,1

∑
k 6=2

[
θ̃(u, d)

]
k,2

· · · ∑
k 6=N

[
θ̃(u, d)

]
k,N

shocks of other currencies’ volatilities j 6= k in the cross-section and is given by:

Fj←•(u, d) =
N

∑
k=1
k 6=j

[
θ̃(u, d)

]
j,k

d ∈ {S, M, L} . (8)

Likewise, the to-directional connectedness measures the contribution of each currency’s j

volatility to the volatilities of other currencies and is given by:

Tj→•(u, d) =
N

∑
k=1
k 6=j

[
θ̃(u, d)

]
k,j

d ∈ {S, M, L} . (9)

One can interpret these measures as dynamic to-degrees and from-degrees that associate

with the nodes of the weighted directed network captured by a variance decomposition

matrix. The two measures show how other currencies contribute to the risk of a currency

j, and how a currency j contributes to the riskiness of others in a time-varying fashion

at a horizon d. Adding these measures across all horizons defines a combined impact

Fj←•(u, T) = ∑d∈{S,M,L} Fj←•(u, d) and Tj→•(u, T) = ∑d∈{S,M,L} Tj→•(u, d). We define a

horizon-specific net-directional connectedness measure as:

Nj→•(u, d) = Tj→•(u, d)−Fj←•(u, d) d ∈ H = {S, M, L, T} . (10)
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Naturally, if the net-directional network measure is positive (negative) for a currency, then

we can interpret this currency as a net transmitter (net recipient) of shocks in the network.

The main aim of this paper is to study the asset pricing implications of from-, to-, and

net-directional network risks defined by Eq. (8)-(10) in a currency cross-section.

3 Data and Currency Portfolios

3.1 Currency Options Data

We start our empirical investigation by collecting daily OTC option implied volatili-

ties on exchange rates versus the US dollar from JP Morgan and Bloomberg. Following

Della Corte, Ramadorai, and Sarno (2016) and Della Corte, Kozhan, and Neuberger (2021),

we consider a sample of the following 20 developed and emerging market countries: Aus-

tralia, Brazil, Canada, the Czech Republic, Denmark, Euro Area, Hungary, Japan, Mexico,

New Zealand, Norway, Poland, Singapore, South Africa, South Korea, Sweden, Switzer-

land, Taiwan, Turkey, and the United Kingdom. The data cover the sample period from

January 1996 to January 2023. The cross-section begins with 10 currencies and gradually

increases over time, with the data on all exchange rates being available from 2004 until the

end of the sample in 2023.13

We synthesize spot implied variances using a model-free approach of Britten-Jones

and Neuberger (2000), which requires currency option prices for a range of strike prices.

Quotes for OTC currency options are expressed in terms of Garman and Kohlhagen (1983)

implied volatilities for selected combinations of plain-vanilla options (at-the-money, 10 and

25 delta put and call options). We recover strike prices from deltas and option prices from

implied volatilities by employing interest rates from Bloomberg, and spot and forward

exchange rates from Barclays and Reuters via Datastream. Using this recovery procedure,

we obtain plain vanilla European calls and puts for exchange rates versus the US dollar for

a range of maturities: 1 month, 3 months, 6 months, 12 months, and 24 months.

Since our investment strategy is carried out at the monthly frequency, it is natural to

assume that traders prefer to employ the 1-month implied volatilities on exchange rates

for detecting network risk instead of using data for longer maturities. We, therefore, work

13We greatly appreciate the help of Roman Kozhan with the currency options data.
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with the 1-month volatilities in our empirical analysis. Further, we estimate the network

using the volatilities at the daily frequency to increase the number of observations in our

estimation procedure and ultimately to better capture the dynamic nature of network risk.

We then filter end-of-month estimates of how currencies are connected to each other to

construct the long-short network portfolios.

3.2 Exchange Rate Data

We retrieve daily bid, mid, and ask spot and forward exchange rates versus the US

dollar from Barclays and Reuters via Datastream. We further obtain daily nominal interest

rates for domestic (the US in our case) and foreign countries from Bloomberg. The core

empirical analysis is conducted at the monthly frequency and hence we sample end-of-

month observations of all time series. We match exchange and interest rate data with

currency options data for the cross-section of 20 countries and the sample period from

January 1996 to January 2023 as described above.

3.3 Currency Excess Returns

We denote the spot and forward exchange rates of foreign currency k at time t as Sk
t

and Fk
t . Exchange rates are expressed in units of foreign currency per US dollar. Thus,

an increase in Sk
t indicates a depreciation of the foreign currency. Following Menkhoff,

Sarno, Schmeling, and Schrimpf (2012a), we define one-period ahead excess return to a US

investor for holding foreign currency k at time t as

rxk
t+1 = ik

t − it − ∆sk
t+1 ≈ f k

t − sk
t+1, (11)

in which ik
t and it represent the risk-less rates of the foreign country k and the US, ∆sk

t+1

is the log change in the spot exchange rate, f k
t and sk

t+1 denote the log spot and forward

rates. Under covered interest rate parity (CIP), the interest rate differential ik
t − it is equal

to a forward discount f k
t − sk

t . Thus, the approximation in Eq. (11) states that the currency

excess return equals the difference between the current forward rate and the future spot

rate. The early literature documented that CIP held even for very short horizons (Akram,

Rime, and Sarno, 2008), while recent evidence has shown CIP deviations in the post-global

financial crisis period (Du, Tepper, and Verdelhan, 2018; Andersen, Duffie, and Song, 2019).
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We demonstrate that the profitability of network strategies studied in our paper stems

primarily from spot exchange rate predictability. Therefore, our key results do not depend

on the validity of the CIP condition.

3.4 Network Portfolios

The network measures introduced in Section 2.3 capture multiple risks that could be

important for investors forming currency portfolios. First, unlike the previous literature

focusing on the correlation risk in currency returns, the network risk proxies of our paper

can identify the nature of linkages by removing contemporaneous effects. Thus, we are

able to detect novel risks originating from the propagation of shocks in the network of ex-

change rate volatilities beyond common correlations. Second, using individual connections

between exchange rates, we can quantify the aggregate amount of shocks that a particular

currency transmits to or receives from others. Similarly, we can compute the net-directional

connectedness measure by taking the difference between shocks that are transmitted and

received. Third, a large strand of the literature studies the role of shocks with different

persistence. For instance, long-term fluctuations in expected growth and volatility of cash-

flows (Bansal and Yaron, 2004) have played a central role in understanding equity, bond,

and currency returns. Our econometric methodology allows us to disentangle the effect

of horizon-specific linkages. We can therefore shed light on the term structure of network

risk. In sum, we construct a battery of portfolios based on a variety of network measures

to quantitatively evaluate which network risks are priced in currency markets.

At the end of each time period t (the last day of the month), we sort currencies into

five portfolios using one of the network measures constructed and described in Section

2.3. The first quintile portfolio P1 comprises 20% of all currencies with the highest values

of a particular network characteristic, whereas the fifth quintile portfolio P5 contains 20%

of all currencies with the lowest values. Each Pi is an equally weighted portfolio of the

corresponding currencies. We next form a long-short strategy that buys P5 and sells P1.

We report the results for five quintile portfolios and a long-short strategy sorted by

(i) short- (S), medium- (M), and long-term (L) as well as total (T) net-directional con-

nectedness. The corresponding zero-cost strategies are denoted by N (d) in which d ∈

{S, M, L, T}. We additionally dissect the sources of profitability of net-directional network
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strategies by solely looking at the risk of being a stronger transmitter or a stronger recip-

ient of shocks. In particular, we construct the portfolios based on (ii) to-directional and

(iii) from-directional connectedness measures. Similarly to the portfolios in (i), we report

the results for all horizons considered. The respective to-directional and from-directional

long-short portfolios are denoted by T (d) and F (d) in which d ∈ {S, M, L, T}.

3.5 Dollar and Carry Trade Strategies

We compare the performance of network-sorted portfolios to standard strategies from

the existing literature. Following Lustig, Roussanov, and Verdelhan (2011), we build a

portfolio that is the average of all currencies available in a particular time period. The

resulting returns are equivalent to borrowing money in the US and investing in global

money markets outside the US. This strategy is commonly called the dollar risk factor

or the dollar portfolio (dol). Further, we sort all currencies available at time t into five

quintile on the basis of their interest rate differential (or forward premia) relative to the

US. The first quintile portfolio P1 comprises 20% of all currencies with the highest interest

rates, whereas the fifth quintile portfolio P5 contains 20% of all currencies with the lowest

interest rates. The difference between P1 and P5 is called the carry trade strategy (car),

which is equivalent to borrowing money in low interest rate countries and investing in

high interest rate countries.

3.6 Volatility Portfolios

We create a strategy taking into account past realized volatility of currencies in the

spirit of Menkhoff, Sarno, Schmeling, and Schrimpf (2012a). At the end of each month t,

we compute the square root of the sum of squared daily log exchange rate returns during

the current month. We sort all currencies available at time t into five quintile portfolios on

the basis of their monthly realized volatility. The first quintile portfolio P1 comprises 20%

of all currencies with the highest volatility, whereas the fifth quintile portfolio P5 contains

20% of all currencies with the lowest volatility. The difference between P1 and P5 is called

the volatility strategy (vol), which is equivalent to selling currencies of low volatility risk

countries and buying those of high volatility risk countries.
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3.7 Volatility Risk Premium Portfolios

We construct a strategy reflecting the costs of insuring currency volatility risk recently

proposed by Della Corte, Ramadorai, and Sarno (2016). At the end of each month t, we

compute the volatility risk premium (vrp) for each currency defined as the difference be-

tween expected realized volatility and implied volatility over the next month.14 We sort all

currencies available at time t into five quintile portfolios on the basis of their monthly vrp.

The first quintile portfolio P1 comprises 20% of all currencies with the highest vrp, whereas

the fifth quintile portfolio P5 contains 20% of all currencies with the lowest vrp. The dif-

ference between P1 and P5 is called the volatility risk premia strategy, which is equivalent

to selling high-insurance-cost currencies and buying low-insurance-cost currencies.

3.8 Momentum Portfolios

We form a tradable strategy linked to the past performance of currencies as initially

proposed by Menkhoff, Sarno, Schmeling, and Schrimpf (2012b). Recently, Dahlquist and

Hasseltoft (2020) connect currency returns to past trends in fundamentals including eco-

nomic activity and inflation. Following Dahlquist and Hasseltoft (2020), at the end of each

month t, we compute the average of currency excess returns over the last twelve months.15

We sort all currencies available at time t into five quintile portfolios on the basis of their

trend. The first quintile portfolio P1 comprises 20% of all currencies with the highest av-

erage returns, whereas the fifth quintile portfolio P5 contains 20% of all currencies with

the lowest average returns. The difference between P1 and P5 is called the momentum

strategy (mom), which is equivalent to selling past losers (or worst-performing currencies)

and buying past winners (or best-performing currencies).

4 Network Risk and Currency Returns

4.1 Network Connectedness Dynamics and Contemporaneous Correlations

We now estimate the network connectedness in option-based currency volatilities driven

by shocks of various degrees of persistence (transitory, less persistent, and more persistent).

14Della Corte, Ramadorai, and Sarno (2016) work with the one-year volatility risk premium. We decide
to switch to the monthly horizon to ensure that the volatility risk premium strategy employs one-month
implied volatilities on exchange rates consistent with network portfolios.

15Our results remain quantitatively similar for other lags over which the past performance is evaluated.
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Figure 2. Network Connectedness Dynamics.
The figure depicts the time variation in the network connectedness C(u, T) based on volatility linkages
including a common correlation component (a grey line) and excluding a contemporaneous effect (a black
line). The shaded areas denote the NBER recessions.

We apply the TVP-VAR model to daily risk-neutral volatilities on twenty exchange rates

in our sample. In the empirical estimation, we define the short, medium, and long hori-

zons as a 1-day to 1-week period, a 1-week to 1-month interval, and longer than 1 month,

respectively. Furthermore, we consider two types of the time-varying covariance matrix

Σ̂(u) used to compute the connectedness measures. First, we allow for the possibility of

contemporaneous effects in volatility shocks. Second, we diagonalize the covariance ma-

trix to remove the contemporaneous correlations. By diagonalizing the covariance matrix,

we focus on network connections controlled for contemporaneous effects.

Figure 2 illustrates the network connectedness measure C(u, T) for the two cases. We

observe substantial differences in conditional dynamics depending on whether contem-

poraneous effects are present or removed. In particular, high unconditional correlations

between risk-neutral currency volatilities induce a stable transmission of volatility shocks

among individual currencies. As shown in the figure, this effect is strong and highly per-

sistent over time, accounting for 80% of all connections in the adjacency matrix. However,

it does not necessarily reflect a strong impact of option-based volatilities of individual

currencies on each other, instead, it may be an artifact of a significant exposure of ex-

change rates to a global risk factor. In the context of the foreign exchange market, the

natural candidates for this role could be the carry trade or the global volatility factors.

Having removed contemporaneous effects, network connectedness becomes lower and ex-

hibits countercyclical dynamics with prominent spikes during periods of tranquillity. For

instance, we can clearly see surges in network connectedness during the Asian financial
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Figure 3. Transitory (left) and persistent (right) volatility networks: February 28, 2020
The left (right) figure depicts a transitory (persistent) network among option-implied currency volatilities
based on connections of the transitory (permanent) nature of shocks. We remove the contemporaneous effects
in volatility linkages by diagonalizing the covariance matrix. Arrows denote the direction of connections and
the strength of lines denotes the strength of linkages. Grey (black) vertices denote currencies receiving
(transmitting) more shocks than transmitting (receiving). The size of vertices indicates the net amount of
shocks. To enhance the readability, links are drawn if intensities are above a predetermined threshold.

crisis in October 1997, the Russian financial crisis in 1998, the Global Financial Crisis in

2008-2009, the European sovereign debt crisis between 2010 and 2012, and the onset of the

COVID outbreak in February 2020.

Although we provide evidence of substantial commonalities in network linkages, our

free-from-correlation connectedness lends strong support for the presence of rich infor-

mation in directional connections even after controlling for common variation. The novel

contribution of this paper is to explore the information content of time-varying linkages in

option-based currency volatilities beyond contemporaneous correlations through the lens

of an asset pricing framework. The rest of the empirical analysis in Section 4 focuses on

net-, to-, and from-directional connectedness measures (as described in Section 2.3) for the

volatility network controlling for correlation effects.16

We now turn to present network structures at a granular level. Figure 3 demonstrates

the network connections at the onset of the COVID outbreak on February 28, 2020. Com-

16Appendix provides the empirical results for network connectedness measures, which encompass con-
temporaneous correlations. Consistent with our intuition, the investment strategies formed on these volatility
linkages are more correlated with the carry trade strategy. However, the excess returns of network portfolios
remain economically and statistically significant after controlling for common currency factors, including the
carry trade.
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pared to the network structures at the beginning of the Global Financial Crisis illustrated

in Figure 1, the transitory connections were weaker than the persistent ones during the

COVID outbreak. Intuitively, this crisis was driven by a strong short-term shock in the

global economy and hence almost no information is identified in transitory shocks beyond

contemporaneous correlations. The most important lesson from Figures 1 and 3 is the stark

differences in the status of individual currencies as being a net recipient or a net transmit-

ter of shocks. Thus, these network structures emphasize how a currency’s role may change

not only over time but also in terms of persistence. We now move on to examining asset

pricing implications of directional connections in a currency cross-section.

4.2 Net-directional Connectedness

Table 2 reports summary statistics of excess returns of five quintile portfolios (Pi : i =

1, . . . , 5) and the long-short investment strategy buying P5 and selling P1. It shows the

results for horizon-specific net-directional portfolios. Several observations are noteworthy.

First, the average return of a N (S) portfolio is 5.01% per annum, which is statistically

different from zero at the 1% level. The “fx (%)” and “ir (%)” rows further indicate that

this predictability stemming from network connections is primarily driven by predicting

the spot exchange rates. For instance, the spread in the exchange rate component of excess

returns of N (S) is 4.49% per annum, whereas the spread in the interest rate differentials

is only 0.52% per annum. Also, there is no monotonicity in the forward premium as we

move from P1 to P5 portfolios.

Second, the risk-adjusted performance of long-short portfolios deteriorates with the

horizon of net-directional network risk. The annualized Sharpe ratio of network strate-

gies gradually declines from 0.60 to 0.30 and 0.29 when using medium- and long- instead

of short-term connections. These results indicate the downward-sloping term structure of

net-directional network risk in the cross-section of currency returns. Our evidence comple-

ments the findings of Della Corte, Kozhan, and Neuberger (2021) demonstrating that the

currency volatility risk premium decreases at longer horizons. Our paper also contributes

to the literature on the price of variance risk in equity markets (Dew-Becker, Giglio, Le,

and Rodriguez, 2017; Eraker and Wu, 2017; Johnson, 2017).

Third, the excess returns of the short-term network portfolio exhibit a large mean, a
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Table 2. Net-directional Network Portfolios

This table presents descriptive statistics for quintile (Pi : i = 1, . . . , 5) and long-short portfolios (N (·))
sorted by short- (S), medium- (M), and long-term (L) as well as total (T) net-directional connectedness.
The portfolio P1(P5) comprises currencies with the highest (lowest) network characteristic. The long-short
portfolio buys P5 and sells P1. Mean, standard deviation, and Sharpe ratio are annualized, but the t-statistic
of mean, skewness, kurtosis, and the first-order autocorrelation are based on monthly returns. We also report
the annualized mean of the exchange rate (fx = −∆sk) and interest rate (ir = ik − i) components of excess
returns. The t-statistics are based on Newey and West (1987) standard errors. The sample is from January
1996 to January 2023.

P1 P2 P3 P4 P5 N (S) P1 P2 P3 P4 P5 N (M)

mean (%) −1.27 −0.63 −0.74 −0.43 3.74 5.01 −1.46 0.35 0.47 0.35 0.92 2.38
t-stat −0.65 −0.29 −0.40 −0.26 2.39 3.25 −0.75 0.19 0.28 0.19 0.54 1.72

fx (%) −3.83 −1.62 −1.65 −1.90 0.66 4.49 −4.33 −1.04 −0.78 −0.83 −1.33 3.00
ir (%) 2.56 0.99 0.91 1.47 3.08 0.52 2.87 1.39 1.25 1.18 2.25 −0.62

net 0.04 0.00 −0.01 −0.02 −0.03 -0.07 0.05 −0.01 −0.02 −0.03 −0.04 −0.08
Sharpe −0.12 −0.06 −0.08 −0.05 0.50 0.60 −0.15 0.04 0.06 0.04 0.11 0.30
std (%) 10.24 9.80 9.12 8.40 7.50 8.30 9.88 9.35 8.35 8.99 8.38 7.95
skew −0.74 −0.54 −0.52 −0.37 0.01 0.74 −0.63 −0.37 −0.17 −0.56 −0.19 0.50
kurt 4.68 5.56 6.00 3.92 3.32 5.60 4.36 4.76 3.55 5.71 4.17 5.08
ac1 0.00 0.10 0.05 0.02 0.07 -0.05 0.04 0.01 −0.01 0.06 0.06 −0.10

P1 P2 P3 P4 P5 N (L) P1 P2 P3 P4 P5 N (T)

mean (%) −1.57 1.01 0.09 0.31 0.72 2.29 −0.85 −0.30 −0.02 1.18 0.67 1.52
t-stat −0.81 0.54 0.05 0.16 0.42 1.73 −0.45 −0.16 −0.01 0.66 0.41 1.11

fx (%) −4.43 −0.63 −1.08 −0.88 −1.36 3.06 −3.63 −1.48 −1.23 −0.11 −1.83 1.79
ir (%) 2.86 1.64 1.17 1.19 2.08 -0.77 2.77 1.18 1.21 1.29 2.50 −0.27

net 0.05 −0.01 −0.02 −0.03 −0.04 -0.09 0.14 −0.03 −0.05 −0.08 −0.11 −0.25
Sharpe −0.16 0.11 0.01 0.03 0.08 0.29 −0.09 −0.03 0.00 0.13 0.08 0.19
std (%) 9.91 8.84 8.21 9.29 8.77 7.94 9.99 8.97 8.63 8.97 8.35 8.00
skew −0.69 −0.22 −0.24 −0.46 −0.37 0.50 −0.60 −0.29 −0.37 −0.34 −0.36 0.41
kurt 4.89 3.39 4.10 5.10 4.94 5.07 4.37 4.08 3.74 5.36 4.45 4.84
ac1 0.04 0.04 0.06 0.03 0.04 -0.07 0.01 0.05 0.10 0.04 0.03 −0.09

positive skew, and a sizeable kurtosis. The mean and volatility statistics imply that the

improved Sharpe ratio originates mainly from higher returns and a moderate time varia-

tion. The positive skewness and excess kurtosis indicate that the distribution of portfolio

returns formed on short-term net-directional connectedness has heavy tails with larger

outliers in the right tail of the distribution. Indeed, analyzing the strategy’s best and worst

months, the portfolio experiences the three highest monthly returns of 9.00% in November

2021, 9.35% in September 2002, and 10.82% in October 2008, and the three lowest monthly

returns of -5.66% in January 1998, -5.84% in August 2002, and -7.31% in October 2018.

4.3 To- and From-directional Connectedness

Table 3 presents descriptive statistics of the excess returns sorted on to-directional

(Panel A) and from-directional (Panel B) connectedness. The table shows the results for
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Table 3. To- and From-directional Network Portfolios
This table presents descriptive statistics for quintile (Pi : i = 1, . . . , 5) and long-short portfolios (T (·) and F (·)) sorted by short-
(S), medium- (M), and long-term (L) as well as total (T) to-directional (Panel A) and from-directional (Panel B) connectedness. The
portfolio P1(P5) comprises currencies with the highest (lowest) network characteristic. The long-short portfolio buys P5 and sells
P1. Mean, standard deviation, and Sharpe ratio are annualized, but the t-statistic of mean, skewness, kurtosis, and the first-order
autocorrelation are based on monthly returns. We also report the average network characteristic (net), the annualized mean of exchange
rate (fx = −∆sk) and interest rate (ir = ik − i) components of excess returns. The t-statistics are based on Newey and West (1987)
standard errors. The sample is from January 1996 to January 2023.

Panel A: To-directional network portfolios

P1 P2 P3 P4 P5 T (S) P1 P2 P3 P4 P5 T (M)

mean (%) −1.09 −0.99 −0.55 −0.21 3.74 4.84 −1.57 −0.34 −0.80 −0.61 4.14 5.70
t-stat −0.54 −0.48 −0.30 −0.12 2.52 3.06 −0.75 −0.17 −0.43 −0.35 2.80 3.56

fx (%) −3.67 −1.97 −1.55 −1.66 0.73 4.40 −4.03 −1.36 −1.86 −2.02 1.10 5.13
ir (%) 2.57 0.98 1.00 1.45 3.01 0.44 2.46 1.02 1.06 1.41 3.04 0.57

net 1.16 1.07 1.04 1.03 1.02 -0.14 1.49 1.22 1.15 1.11 1.06 −0.43
Sharpe −0.10 −0.10 −0.06 −0.03 0.50 0.55 −0.15 −0.04 −0.09 −0.07 0.55 0.64
std (%) 10.50 9.64 9.34 8.31 7.47 8.72 10.71 9.47 9.18 8.33 7.55 8.86
skew −0.79 −0.64 −0.33 −0.38 0.01 0.83 −0.85 −0.46 −0.48 −0.42 0.05 0.90
kurt 4.64 6.54 5.37 4.10 3.49 5.51 4.85 6.14 5.66 4.28 3.45 5.45
ac1 0.00 0.09 0.01 0.07 0.01 -0.09 0.00 0.08 0.01 0.05 0.01 −0.12

P1 P2 P3 P4 P5 T (L) P1 P2 P3 P4 P5 T (T)

mean (%) −1.70 −0.74 0.13 −0.71 3.92 5.61 −1.11 −0.22 −1.35 −0.67 4.29 5.40
t-stat −0.76 −0.37 0.07 −0.43 2.47 3.21 −0.53 −0.11 −0.72 −0.40 2.89 3.27

fx (%) −4.17 −1.75 −0.92 −2.20 0.93 5.10 −3.72 −1.18 −2.35 −2.17 1.33 5.05
ir (%) 2.47 1.01 1.05 1.48 2.99 0.51 2.60 0.96 1.01 1.50 2.95 0.35

net 1.81 1.43 1.32 1.24 1.15 -0.67 1.37 1.15 1.10 1.07 1.04 −0.33
Sharpe −0.16 −0.08 0.01 −0.08 0.51 0.64 −0.10 −0.02 −0.15 −0.08 0.57 0.61
std (%) 10.58 9.67 8.73 8.68 7.73 8.76 10.66 9.51 9.05 8.45 7.54 8.92
skew −0.95 −0.49 −0.12 −0.44 −0.01 0.88 −0.92 −0.33 −0.40 −0.44 0.06 0.95
kurt 5.39 5.46 4.64 5.08 3.43 5.39 5.19 5.26 4.80 4.83 3.45 5.86
ac1 0.06 0.05 0.02 0.01 0.06 -0.05 0.02 0.07 0.01 0.07 0.01 −0.08

Panel B: From-directional network portfolios

P1 P2 P3 P4 P5 F (S) P1 P2 P3 P4 P5 F (M)

mean (%) −1.24 0.71 1.09 0.96 −0.78 0.47 −0.60 −0.40 0.96 0.99 0.04 0.64
t-stat −0.67 0.37 0.61 0.55 −0.44 0.37 −0.29 −0.20 0.56 0.58 0.02 0.45

fx (%) −3.46 −0.73 −0.37 −0.51 −3.10 0.36 −2.13 −1.36 −0.57 −0.76 −3.13 −1.00
ir (%) 2.22 1.44 1.46 1.47 2.32 0.11 1.53 0.97 1.53 1.75 3.17 1.64

net 1.08 1.07 1.07 1.06 1.06 -0.02 1.50 1.39 1.31 1.25 1.17 −0.33
Sharpe −0.13 0.08 0.12 0.11 −0.09 0.07 −0.06 −0.04 0.12 0.11 0.00 0.08
std (%) 9.36 9.15 8.95 8.40 8.74 7.17 9.90 9.54 8.23 8.94 8.73 8.11
skew −0.45 −0.34 −0.51 −0.27 −0.34 0.06 −0.51 −0.55 −0.43 0.08 −0.27 −0.08
kurt 3.97 4.61 5.68 4.63 3.48 3.76 4.46 5.80 4.66 4.22 3.43 3.65
ac1 0.04 0.09 0.01 0.05 0.05 0.00 0.07 0.11 0.04 −0.01 0.09 0.00

P1 P2 P3 P4 P5 F (L) P1 P2 P3 P4 P5 F (T)

mean (%) −0.56 −0.45 1.58 0.56 −0.08 0.48 −0.78 −0.97 2.01 0.72 −0.12 0.66
t-stat −0.28 −0.23 0.94 0.31 −0.04 0.32 −0.38 −0.49 1.19 0.47 −0.06 0.46

fx (%) −2.07 −1.44 0.04 −1.16 −3.25 -1.18 −2.38 −2.17 0.49 −1.12 −2.88 −0.50
ir (%) 1.51 0.99 1.54 1.71 3.17 1.66 1.60 1.20 1.52 1.84 2.76 1.16

net 2.48 2.08 1.80 1.59 1.32 -1.16 1.32 1.25 1.20 1.16 1.12 −0.20
Sharpe −0.06 −0.05 0.19 0.06 −0.01 0.06 −0.08 −0.10 0.24 0.09 −0.01 0.08
std (%) 9.51 9.33 8.19 9.07 9.09 7.94 9.88 9.72 8.42 8.32 8.76 8.03
skew −0.44 −0.16 −0.41 −0.12 −0.29 -0.02 −0.62 −0.60 −0.35 −0.08 −0.14 0.16
kurt 4.46 4.50 4.37 4.87 3.89 3.62 5.46 4.81 5.09 3.71 3.32 4.18
ac1 0.07 0.05 0.06 −0.02 0.09 0.03 0.07 0.08 0.04 −0.06 0.11 0.02

horizon-specific network risk measures.

For the to-directional case, the spread between the excess returns of P5 and P1 portfo-
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lios is increasing in the horizon and is statistically significant at the 1% level for all cases.

Also, one can generally observe a monotonic pattern in the average excess returns of quin-

tile portfolios, particularly for short-term to-directional connectedness. Consequently, cur-

rency portfolios based on the amount of transmitted shocks have annualized Sharpe ratios

ranging from 0.55 to 0.64 for the short- and long-term horizon connectedness. All strategies

display a positive skew of their excess returns. Interestingly, this performance primarily

stems from the exchange rate predictability, while the interest rate differential contributes

less. For the from-directional case, the results indicate no clear patterns in the descriptive

statistics of currency network strategies. Although the average excess returns of quintile

and long-short portfolios tend to be positive, they remain insignificant at all conventional

confidence levels. This ultimately leads to much smaller Sharpe ratios compared to those

from other strategies.

Overall, the results presented in Tables Table 2 and 3 suggest that the impact of a

particular currency on the exchange rates of other countries is valuable for predicting

future returns. Specifically, we document that the currencies transmitting more volatility

shocks to others tend to earn smaller risk premiums. Unlike the carry trade strategy, we

demonstrate that the stronger transmitters do not necessarily have the lowest interest rates.

By connecting currency returns to network risk extracted from option-based volatilities, we

shed light on the novel risk that drives exchange rates above and beyond the existing risks,

macroeconomic country-specific conditions, and trade connections.

4.4 Benchmark Strategies and Diversification Gains

We now study the relationship between network portfolios and existing benchmarks.

We begin by reporting in Table 4 summary statistics of the standard dollar, carry trade,

volatility, volatility risk premium, and momentum strategies, as well as an equally weighted

average of all currency benchmarks. The carry trade and momentum strategies exhibit the

highest Sharpe ratios of 0.48 and 0.31, with the former having a statistically significant

mean excess return. Both have a negative skewness, indicating the possibility of large

losses. The last column shows no diversification gains from equally combining all strate-

gies as indicated by no improvement in the Sharpe ratio and negative skewness of the

“1/N” portfolio compared to the carry trade strategy.
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Table 4. Benchmark Strategies: Summary Statistics

This table presents descriptive statistics (Panel A) and correlations (Panel B) of dollar (dol), carry trade (car),
volatility (vol), volatility risk premium (vrp), momentum (mom) strategies, and equally weighted average
of all benchmarks (1/N). Mean, standard deviation, and Sharpe ratio are annualized, but the t-statistic of
mean, skewness, kurtosis, and the first-order autocorrelation are based on monthly returns. The t-statistics
are based on Newey and West (1987) standard errors. The sample is from January 1996 to January 2023.

Panel A: Benchmark strategies

dol car vol vrp mom 1/N

mean (%) 0.14 5.37 2.61 0.98 2.84 2.39
t-stat 0.09 2.30 1.46 0.53 1.68 2.31
Sharpe 0.02 0.48 0.27 0.11 0.31 0.48
std (%) 7.88 11.22 9.64 9.15 9.20 5.02
skew −0.40 −0.71 −0.18 0.07 −0.06 −0.52
kurt 4.52 4.67 4.64 4.92 3.40 5.12
ac1 0.07 0.05 −0.03 0.07 −0.02 0.05

Panel B: Correlations

dol car vol vrp mom 1/N

dol 1.00 0.32 0.58 −0.14 −0.15 0.57
car 0.32 1.00 0.40 0.25 0.03 0.80
vol 0.58 0.40 1.00 −0.20 −0.28 0.57
vrp −0.14 0.25 −0.20 1.00 0.10 0.39
mom −0.15 0.03 −0.28 0.10 1.00 0.26
1/N 0.57 0.80 0.57 0.39 0.26 1.00

Next, we examine how well the benchmark strategies can explain the network portfo-

lios. We perform a two-step analysis. First, we compute the sample correlations between

the excess returns of network portfolios and benchmark strategies. Second, we run con-

temporaneous regressions using network strategies as dependent variables and benchmark

strategies as independent variables. Table 5 reports the results of the two-stage exercise.

Focusing on the most profitable investments — short-term net-directional and four to-

directional connectedness measures — several observations are worth discussing. First,

these network strategies appear to be only weakly correlated with benchmark strategies.

Interestingly, the excess returns are negatively correlated with the carry trade strategy, in-

dicating a potential scope for diversification benefits when using the network portfolios in

portfolio selections. Second, the relatively stronger correlations with dol and car directly

translate into the borderline significant coefficients of these factors, whereas the remaining

factors appear to have insignificant slopes. We can conclude that only a small portion of

the excess returns formed on network measures reflects changes in interest rate differen-

tials and common fluctuations of all exchange rates. Furthermore, this weak association

with benchmark factors results in weak predictive power as measured by the low adjusted
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Table 5. Network Portfolios and Benchmark Strategies

This table presents correlations (Panel A) and a contemporaneous regression (Panel B) of monthly returns
of net-directional network portfolios (N (d) : d ∈ {S, M, L, T}) on benchmark strategies — dollar (dol), carry
trade (car), volatility (vol), volatility risk premium (vrp), and momentum (mom). Constants reported in the
“alpha” row are expressed in percentage per annum. The numbers in rows with a grey font are t-statistics
of estimates. The t-statistics are based on Newey and West (1987) standard errors. The last two rows report
adjusted R2 values (in percentage) and the number of observations. The sample is from January 1996 to
January 2023.

Panel A: Correlations with trading strategies

N (S) N (M) N (L) N (T) T (S) T (M) T (L) T (T) F (S) F (M) F (L) F (T)

dol −0.26 −0.09 −0.03 −0.12 −0.28 −0.30 −0.25 −0.29 −0.13 −0.24 −0.14 −0.21
car −0.26 −0.31 −0.31 −0.25 −0.27 −0.27 −0.25 −0.29 −0.07 0.12 0.15 0.06
vol −0.23 −0.20 −0.18 −0.23 −0.25 −0.25 −0.22 −0.25 0.02 0.02 0.05 0.03
vrp 0.06 −0.07 −0.13 −0.08 0.08 0.07 0.05 0.07 −0.02 0.17 0.16 0.17
mom 0.14 0.15 0.14 0.18 0.15 0.15 0.15 0.16 −0.16 −0.06 −0.08 −0.13

Panel B: Returns of network portfolios on benchmark strategies

N (S) N (M) N (L) N (T) T (S) T (M) T (L) T (T) F (S) F (M) F (L) F (T)

alpha 5.55 3.32 3.34 2.25 5.45 6.27 6.15 6.03 0.78 −0.19 −0.27 0.28
3.43 2.40 2.56 1.56 3.39 3.92 3.45 3.71 0.61 −0.14 −0.19 0.21

dollar −0.18 0.08 0.14 0.04 −0.19 −0.23 −0.17 −0.21 −0.19 −0.40 −0.28 −0.35
−1.98 0.91 1.71 0.52 −2.00 −2.19 −1.96 −2.10 −2.65 −5.24 −3.58 −4.71

car −0.17 −0.21 −0.21 −0.13 −0.19 −0.19 −0.18 −0.21 −0.03 0.10 0.11 0.03
−2.20 −3.52 −3.78 −2.19 −2.16 −2.16 −2.07 −2.44 −0.59 1.75 2.08 0.49

vol 0.01 −0.07 −0.10 −0.13 0.00 0.01 0.01 0.02 0.09 0.17 0.12 0.18
0.11 −0.84 −1.25 −1.45 −0.01 0.13 0.11 0.22 1.24 2.21 1.56 2.23

vrp 0.07 −0.02 −0.07 −0.07 0.09 0.08 0.07 0.10 0.00 0.12 0.10 0.14
0.97 −0.28 −1.12 −1.06 1.12 1.00 0.86 1.07 0.04 2.00 1.90 1.91

mom 0.10 0.13 0.13 0.13 0.12 0.12 0.12 0.14 −0.12 −0.07 −0.08 −0.12
1.51 2.20 2.21 2.19 1.59 1.67 1.68 1.82 −2.22 −1.20 −1.36 −2.03

R2(%) 12.35 12.78 14.06 11.16 14.16 14.92 11.61 15.79 5.93 14.50 9.92 12.74
Obs. 324 324 324 324 324 324 324 324 324 324 324 324

R2, which ranges from 11.16% to 15.79%. Third, the annualized alphas of the network

strategies range from 5.45% to 6.27% and are larger than the average return of the cor-

responding portfolios due to a negative exposure to the dollar and carry trade factors.

Overall, the results demonstrate that portfolios exploiting the information about the net

amount of short-term volatility connections or the total amount of transmitted volatility

shocks generate highly significant performance, both economically and statistically, which

cannot be understood through the lens of the benchmarks.17

We further investigate the diversification benefits of network portfolios. For ease of pre-

sentation, we focus on the short-term net-directional case. We implement a naive strategy

combining the network portfolio and one of the benchmarks at a time with 0.5-0.5 weights.

17We augment these results by replacing currency benchmarks with the five equity factors of Fama and
French (1993) and momentum or the seven hedge fund factors of Fung and Hsieh (2004). As shown in
Appendix, these alternative factors cannot explain the network portfolio alpha.
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Table 6. Diversification Gains

This table presents the impact of adding a short-term net-directional strategy (N (S)) to benchmark strategies
— dollar (dol), carry trade (car), volatility (vol), volatility risk premium (vrp), and momentum (mom). We
construct a naive 50%-50% portfolio of N (S) and one of benchmark strategies. The “1/N” column presents
statistics of an equally weighted portfolio of all benchmarks and a network strategy. Mean, standard de-
viation, and Sharpe ratio are annualized, but the t-statistic of mean, skewness, kurtosis, and the first-order
autocorrelation are based on monthly returns. The t-statistics are based on Newey and West (1987) standard
errors. The last row shows the percentage increase in the Sharpe ratio of a diversified portfolio relative to
the original benchmark strategy. The sample is from January 1996 to January 2023.

dol car vol vrp mom

+ N (S) 1/N

mean (%, annual) 2.57 5.19 3.81 2.99 3.93 3.70
t-stat 2.60 3.92 3.23 2.39 3.37 4.15
Sharpe 0.52 0.86 0.68 0.47 0.59 0.85
std (%) 4.91 6.07 5.60 6.34 6.61 4.37
skew 0.05 −0.05 0.58 1.02 0.24 0.15
kurt 3.44 4.19 4.84 8.74 5.13 3.93
ac1 0.02 0.11 0.02 0.04 −0.06 0.03

%∆ Sharpe 2850.98 78.76 151.29 340.69 92.36 78.12

Table 6 shows that the network portfolio generates significant diversification benefits. For

instance, the allocation in N (S) and car generates a ratio of 0.86, which is 78.76% higher

than the original carry trade. The resulting Sharpe ratios for other investments become

even higher relative to the individual benchmarks, with the increase ranging from 92.36%

for mom and to well above 340.69% for vrp.

Finally, we now perform the allocation analysis of selected portfolios: N (S), car, vol,

vrp, and mom. Table 7 reports the fraction of months each investment strategy goes long

(the “Buy” columns) or short (the “Sell” columns) in each currency. We also compute

the fraction of months when the currency position in N (S) is different from the currency

allocation in the benchmarks (the “Diff” columns). The bottom row shows the average

fraction of “Diff” statistics across the currencies.

Table 7 demonstrates significant differences across strategies and countries. For in-

stance, the network strategy on average buys or sells alternative currencies in 37%, 41%,

39%, and 41% of the time relative to the carry trade, volatility, volatility risk premium, and

momentum. The countries whose allocations differ most in their distributions relative to

N (S) are Japan and Switzerland for the carry trade, South Africa and Mexico for volatility,

Mexico and South Africa for the volatility risk premium, and Japan and South Africa for

momentum. Most notably, if we sort the currencies according to interest rate differentials,
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Table 7. Allocation Analysis for the Network Portfolio and Benchmark Strategies

This table presents an allocation analysis of a short-term net-directional network portfolio (N (S)) and carry
trade (car), volatility (vol), volatility risk premium (vrp), and momentum (mom) strategies. The “Buy”
and “Sell” columns report the fraction of months each currency belongs to the long and short positions of
portfolios considered. The “Diff” column for each benchmark strategy reports the fraction of months the
position for a particular currency is different from the one in N (S). The bottom row reports the average
fraction across the currencies. The sample is from January 1996 to January 2023.

N (S) car vol vrp mom

Buy Sell Buy Sell Diff Buy Sell Diff Buy Sell Diff Buy Sell Diff

Australia 0.17 0.14 0.00 0.00 0.31 0.17 0.02 0.43 0.09 0.25 0.50 0.18 0.14 0.49
Brazil 0.33 0.24 1.00 0.00 0.39 0.56 0.05 0.41 0.48 0.20 0.30 0.51 0.24 0.43
Canada 0.07 0.21 0.00 0.03 0.28 0.01 0.44 0.50 0.08 0.16 0.39 0.12 0.09 0.38
Czech Republic 0.10 0.18 0.00 0.10 0.05 0.14 0.05 0.10 0.09 0.33 0.19 0.18 0.12 0.12
Denmark 0.07 0.12 0.00 0.40 0.45 0.03 0.09 0.27 0.06 0.14 0.34 0.05 0.15 0.32
Euro Area 0.04 0.17 0.00 0.15 0.21 0.03 0.13 0.24 0.09 0.06 0.22 0.07 0.12 0.28
Hungary 0.20 0.21 0.46 0.00 0.34 0.40 0.00 0.36 0.13 0.32 0.34 0.22 0.19 0.32
Japan 0.25 0.22 0.00 0.91 0.77 0.18 0.19 0.59 0.22 0.21 0.58 0.22 0.42 0.68
Mexico 0.64 0.11 0.58 0.00 0.51 0.19 0.26 0.68 0.44 0.09 0.51 0.36 0.22 0.67
New Zealand 0.11 0.13 0.17 0.00 0.29 0.29 0.02 0.44 0.15 0.26 0.48 0.21 0.16 0.47
Norway 0.06 0.13 0.00 0.00 0.19 0.23 0.02 0.33 0.13 0.30 0.44 0.08 0.13 0.31
Poland 0.31 0.17 0.11 0.01 0.28 0.34 0.02 0.44 0.21 0.22 0.43 0.28 0.12 0.42
Singapore 0.10 0.31 0.00 0.41 0.15 0.00 0.98 0.41 0.09 0.06 0.20 0.14 0.14 0.27
South Africa 0.23 0.29 0.90 0.00 0.75 0.66 0.08 0.81 0.38 0.20 0.59 0.32 0.29 0.72
South Korea 0.68 0.08 0.00 0.00 0.29 0.04 0.39 0.36 0.36 0.11 0.24 0.24 0.13 0.18
Sweden 0.03 0.16 0.00 0.35 0.40 0.16 0.02 0.32 0.12 0.26 0.46 0.08 0.30 0.45
Switzerland 0.08 0.13 0.00 0.99 0.86 0.11 0.11 0.35 0.08 0.27 0.42 0.14 0.22 0.44
Taiwan 0.14 0.46 0.00 0.28 0.27 0.00 0.97 0.31 0.30 0.08 0.46 0.14 0.22 0.39
Turkey 0.37 0.31 1.00 0.00 0.21 0.39 0.14 0.36 0.53 0.15 0.22 0.28 0.37 0.36
United Kingdom 0.19 0.22 0.00 0.04 0.44 0.04 0.20 0.50 0.09 0.22 0.50 0.16 0.16 0.55

Average 0.37 0.41 0.39 0.41

we would have bought the South African rand (ZAR) in 90% of months and would have

kept the Japanese yen (JPY) in the short position in 91% of months. Also, these currencies

would have never entered an opposite lag. In contrast, our net-directional strategy buys

and sells JPY in 25% and 22% of the time and ZAR in 23% and 29%.

4.5 Relating Network Portfolios to Liquidity and Volatility Risk

We now explore the contribution of two additional drivers of currency risk premia —

global foreign exchange liquidity and volatility — in explaining the returns of network

portfolios. We follow Menkhoff et al. (2012a) and consider several liquidity measures.

First, we construct a global proxy for FX market illiquidity using the bid-ask spread (BAS)

data of individual currencies.18 Second, we use the TED spread defined as the difference

between three-month euro interbank deposits (LIBOR) and three-month Treasury bills as

18A global BAS measure in a month t is formally defined as:

BASt =
1
Tt

∑
τ∈Tt

[
∑

k∈Kτ

(
BASk

τ

Kτ

)]
,
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an illiquidity proxy in the funding market for carry trades. Third, we employ a liquidity

measure of Pástor and Stambaugh (2003) (PS) for the U.S. stock market. Since we con-

sider the U.S. investor, it is reasonable to account for liquidity risk in the home equity

market. In relation to volatility risk, we first compute the proxy for global FX volatility

(VOL) following the definition of Menkhoff et al. (2012a).19 Next, we use the VIX index, a

risk-neutral expectation of stock market volatility, as a proxy for the risk aversion of U.S.

investors to volatility risk. Finally, we consider the St. Louis Federal Reserve Bank Finan-

cial Stress Index (FSI) to capture the degree of financial stress in the U.S. economy. The FSI

is constructed based on various interest rates, yield spreads, and other indicators.

Table 8 reports summary statistics of contemporaneous regressions of network portfolio

returns on changes in measures of liquidity and volatility risk, one at a time. The estimated

alphas remain economically and statistically significant in all cases, ranging from around

4.5% to 5% per annum. The slope coefficients for liquidity measures are not statistically

different from zero at all conventional levels. It is worth emphasizing that the slope in the

BAS regression flips the sign and has a larger (in absolute terms) t-statistic compared to the

other two coefficients. Thus, volatility network risk is unrelated to illiquidity measures in

the funding and equity markets and is positively associated with liquidity in FX, though

the latter relationship is statistically weak. In contrast, the changes in volatility proxies

positively predict the network portfolio returns. The coefficients for global FX volatility

and FSI (VIX) appear to be highly (borderline) significant. This suggests that the network

strategy performs well in times of heightened volatility risk.20

Note that volatility and liquidity proxies are not tradable strategies. We construct the

global liquidity and volatility portfolios following the procedure in Della Corte et al. (2016)

in which BASk
τ is the daily percentage BAS of a currency k on a day τ, Kτ is the number of available currencies

on a day τ, and Tt is the number of days in a month t.
19The global VOL measure in a month t is formally defined as:

VOLt =
1
Tt

∑
τ∈Tt

[
∑

k∈Kτ

(
|rk

τ |
Kτ

)]
,

in which |rk
τ | = |∆sτ | is the absolute daily log return for a currency k on a day τ, Kτ is the number of available

currencies on a day τ, and Tt is the number of days in a month t.
20Relatedly, Menkhoff et al. (2012a) and Bakshi and Panayotov (2013) document a significant negative

effect of volatility fluctuations on carry trade returns. Similarly, Dahlquist and Hasseltoft (2020) demonstrate
a negative impact on the economic momentum strategy. In contrast, Della Corte et al. (2016) document a
positive relationship between currency volatility risk premium and volatility risk, similar to our findings.
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Table 8. Global FX Liquidity and Volatility Risk

This table presents a contemporaneous univariate regression of monthly returns of a short-term net-
directional strategy (N (S)) on the level of the PS liquidity measure and changes in the TED spread, the
global foreign exchange liquidity and volatility measures, the St. Louis Federal Reserve Bank Financial
Stress Index, and the VIX index. The last two columns use the tradable global liquidity and volatility factors,
which are constructed based on the procedure in Della Corte et al. (2016), as predictors in the regression.
Constants reported in the “alpha” row are expressed in percentage per annum. The numbers in rows with
a grey font are t-statistics of estimates. The t-statistics are based on Newey and West (1987) standard errors.
The last row reports adjusted R2 values (in percentage). The sample is from January 1996 to January 2023.

∆TED ∆BAS PS ∆VOL ∆FSI ∆VIX BAS Factor VOL Factor

alpha 4.47 4.88 4.87 4.90 4.92 4.92 4.97 5.31
2.88 3.20 3.19 3.28 3.23 3.23 3.11 3.25

b f −0.00 8.32 −0.02 4.84 0.01 0.00 −0.11 −0.14
−0.27 1.31 −0.83 4.15 2.75 1.85 −1.41 −1.84

R2(%) 0.02 0.88 0.16 6.48 3.37 2.42 1.69 2.94

and replicate the previous analysis with those factors.21 As the last two columns in Table 8

show, the network returns are only weakly negatively related to the tradable liquidity and

volatility factors. The statistically significant alphas and low R2 statistics further demon-

strate that the volatility network premium cannot be explained by time-varying exposure

of currency returns to global volatility and liquidity risk.

In sum, although it is difficult to disentangle volatility and liquidity effects, especially

due to liquidity not being directly observable, the analysis provides insights into possible

mechanisms driving our results. For instance, ambiguous results for liquidity proxies indi-

cate that the network strategy is unlikely to be explained by variations in funding liquidity

or limits to arbitrage. Further, the returns from the network portfolios are only weakly

driven by the global risk aversion to liquidity and volatility risk as indicated by the weak

significance of the BAS and VIX series. The regression using a global volatility (liquid-

ity) factor as a predictor also shows little evidence of the possibility that network returns

capture time-varying loadings on a global volatility (liquidity) shock, that is, fluctuations

in risk aversion to volatility (liquidity) risk. Instead, our findings suggest risk aversion to

financial stress as a possible explanation.

21For a global volatility (liquidity) factor, each month we estimate the regression of excess returns of indi-
vidual currencies on constant and global volatility (liquidity) innovations using a 36-month rolling window.
Having estimated the slope coefficients, we sort the currencies into quintile portfolios based on these betas.
Then, we create a zero-cost strategy by buying (selling) the lowest (highest) beta quintile of currencies.
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4.6 Weekly Frequency

Since the network estimates are available at a daily frequency, it is reasonable to test

whether the key findings are sensitive to the frequency of rebalancing. We, therefore,

construct network portfolios at a weekly frequency. Specifically, we use the daily network

estimates from the core analysis and sample the end-of-week observations to construct

long-short portfolios. Table 9 reports summary statistics of network portfolios (Panel A),

correlations with different portfolios (Panel B), and regression outputs with network excess

returns as a dependent variable and benchmarks as independent variables (Panel C).

Several observations are noteworthy. First, the Sharpe ratios of a short-term net-directional

portfolio increase to 0.98. Note that the performance of the longer-term net-directional

portfolios is significantly weaker, which suggests that volatility connections beyond one

week possess weaker predictive power. Although this finding is not surprising given the

non-overlapping periods of the one-week portfolio horizon and longer-term network con-

nections. However, this evidence demonstrates the downward-sloping term structure of

net-directional network risk, consistent with a monthly rebalancing. Second, the superior

performance of the short-term net-directional strategy is driven by the to-directional com-

ponent. Interestingly, the longer-term to-directional portfolios perform equally strongly,

indicating the flat term structure of to-directional network risk. Third, the portfolio alphas

strongly increase in magnitude and become highly significant, both economically and sta-

tistically: 9.29% per annum with a t-stat of 5.58 for N (S) and 9.58% per annum with a

t-stat of 5.89 for T (S). In unreported results, we check that the remaining key conclusions

of the main empirical analysis are robust to a weekly rebalancing procedure.

4.7 Transaction Costs

We perform two additional robustness checks. We begin by reporting the performance

statistics for the network excess returns net of transaction costs. Since the bid-ask quotes

for exchange rates are available from Barclays and Reuters, we incorporate those into the

currency excess returns following Menkhoff, Sarno, Schmeling, and Schrimpf (2012b).22

It is worth noting that the bid-ask data are for quoted spreads and not effective spreads.

Lyons et al. (2001) suggest that the bid-ask spread data are based on the indicative spreads

22Please see Appendix C for more details on how we account for transaction costs.
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Table 9. Weekly Frequency

This table presents a robustness analysis of currency strategies on a weekly frequency. The table reports
descriptive statistics (Panel A), correlations (Panel B), and a contemporaneous regression (Panel C) of weekly
returns of net-directional network portfolios on benchmark strategies — dollar (dol), carry trade (car), volatil-
ity (vol), volatility risk premium (vrp), and momentum (mom). In Panel A, mean, standard deviation, and
Sharpe ratio are annualized, but the t-statistic of mean, skewness, kurtosis, and the first-order autocorrelation
are based on weekly returns. In Panel C, constants reported in the “alpha” row are expressed in percentage
per annum. The numbers in rows with a grey font are t-statistics of estimates. The t-statistics are based on
Newey and West (1987) standard errors. The last two rows report adjusted R2 values (in percentage) and the
number of observations. The sample is from January 1996 to January 2023.

Panel A: Performance of network portfolios

N (S) N (M) N (L) N (T) T (S) T (M) T (L) T (T) F (S) F (M) F (L) F (T)

mean (%) 8.64 4.89 4.50 4.78 9.04 8.57 8.10 8.77 0.30 0.16 1.02 0.98
t-stat 4.79 3.07 2.83 2.97 4.97 4.89 4.71 4.96 0.20 0.09 0.57 0.56

fx (%) 8.21 5.56 5.41 4.99 8.63 8.13 7.61 8.43 0.06 −1.47 2.69 −0.33
ir (%) 0.44 −0.67 −0.91 −0.20 0.41 0.44 0.49 0.34 0.24 1.63 −1.67 1.31

net −0.07 −0.08 −0.09 −0.24 −0.14 −0.43 −0.66 −0.32 −0.02 −0.34 1.14 −0.19
Sharpe 0.98 0.59 0.54 0.57 1.02 0.95 0.93 1.00 0.04 0.02 0.12 0.11
std (%) 8.82 8.24 8.38 8.36 8.90 8.99 8.72 8.80 8.08 8.91 8.84 8.93
skew 0.17 −0.28 −0.27 −0.37 0.12 −0.08 −0.11 0.06 0.68 0.57 −0.29 0.61
kurt 11.69 11.22 10.54 10.77 11.30 11.40 10.17 10.82 9.65 8.72 8.45 8.60
ac1 0.03 0.00 0.01 0.00 0.00 −0.01 0.02 0.01 −0.04 −0.01 0.02 0.01

Panel B: Correlations with trading strategies

N (S) N (M) N (L) N (T) T (S) T (M) T (L) T (T) F (S) F (M) F (L) F (T)

dol −0.33 −0.19 −0.07 −0.19 −0.36 −0.35 −0.28 −0.34 0.00 −0.10 0.07 −0.13
car −0.27 −0.30 −0.25 −0.25 −0.27 −0.26 −0.20 −0.27 0.09 0.24 −0.25 0.16
vol −0.45 −0.37 −0.30 −0.37 −0.46 −0.46 −0.41 −0.46 0.12 0.09 −0.11 0.03
vrp 0.16 0.08 0.03 0.10 0.18 0.16 0.12 0.15 −0.09 0.08 −0.06 0.06
mom 0.30 0.24 0.18 0.24 0.33 0.36 0.30 0.34 −0.09 −0.09 0.10 −0.05

Panel C: Returns of network portfolios on benchmark strategies

N (S) N (M) N (L) N (T) T (S) T (M) T (L) T (T) F (S) F (M) F (L) F (T)

alpha 9.29 5.92 5.65 5.62 9.58 9.09 8.61 9.40 0.08 −1.16 2.33 0.03
5.58 3.93 3.69 3.64 5.89 5.84 5.43 5.88 0.05 −0.70 1.34 0.02

dollar −0.08 0.09 0.25 0.10 −0.12 −0.11 −0.02 −0.08 −0.14 −0.32 0.29 −0.31
−1.43 1.58 3.80 1.65 −1.85 −1.95 −0.37 −1.46 −2.48 −5.10 4.66 −4.60

car −0.05 −0.09 −0.07 −0.05 −0.04 −0.02 0.02 −0.04 0.04 0.18 −0.18 0.13
−0.97 −1.79 −1.37 −0.96 −0.83 −0.51 0.49 −0.86 0.73 3.17 −3.17 2.20

vol −0.27 −0.27 −0.33 −0.30 −0.26 −0.28 −0.32 −0.27 0.11 0.14 −0.14 0.11
−4.74 −4.54 −5.39 −5.02 −4.37 −5.30 −5.40 −5.10 1.99 2.25 −2.34 1.69

vrp 0.01 −0.03 −0.07 −0.03 0.02 −0.01 −0.05 −0.01 −0.06 0.07 −0.06 0.03
0.20 −0.64 −1.18 −0.53 0.30 −0.20 −0.93 −0.15 −0.89 1.06 −0.86 0.48

mom 0.16 0.12 0.08 0.12 0.19 0.21 0.17 0.20 −0.04 −0.06 0.05 −0.03
4.17 3.33 1.83 3.11 5.18 5.58 3.97 5.72 −0.92 −1.37 1.27 −0.64

R2(%) 23.51 18.24 14.80 16.93 26.52 27.45 20.90 26.23 3.27 11.09 10.78 7.29
Obs. 1365 1365 1365 1365 1365 1365 1365 1365 1365 1365 1365 1365

and, therefore, might be too high relative to actual effective ones. Following the existing

literature (see, for example, Goyal and Saretto (2009), Menkhoff, Sarno, Schmeling, and

Schrimpf (2012a, 2017), and Colacito, Riddiough, and Sarno (2020) among others), we
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Table 10. Transaction Costs

This table presents descriptive statistics for long-short net-directional and to-directional network portfolios
adjusted for transaction costs. Mean, standard deviation, and Sharpe ratio are annualized, but the t-statistic
of mean, skewness, kurtosis, and the first-order autocorrelation are based on monthly returns. The t-statistics
are based on Newey and West (1987) standard errors. The sample is from January 1996 to January 2023.

N (S) N (M) N (L) N (T) T (S) T (M) T (L) T (T)

mean (%) 4.07 1.55 1.68 0.52 3.58 4.26 4.14 4.09
t-stat 2.53 1.09 1.25 0.37 2.15 2.58 2.34 2.39
Sharpe 0.48 0.19 0.22 0.07 0.41 0.48 0.48 0.46
std (%) 8.40 7.96 7.82 8.00 8.75 8.82 8.65 8.90
skew 0.90 0.49 0.42 0.35 0.97 1.04 0.89 1.04
kurt 6.46 4.57 4.48 4.27 6.26 6.29 5.37 6.41
ac1 0.00 −0.06 −0.03 −0.06 −0.02 −0.06 0.00 −0.03

employ 50% of quoted bid-ask spreads in our calculations.23

Table 10 reports summary statistics of the excess returns of currency network portfolios

adjusted for transaction costs. In comparison with the results shown in Tables 2 and

3, the Sharpe ratio of the N (S) portfolio declines from 0.60 to 0.48. The to-directional

network portfolios experience a comparable drop in their performances, with the Sharpe

ratios ranging from 0.41 to 0.48. Hence, although the returns are somewhat lower after

accounting for transaction costs, the network portfolios still exhibit both economically and

statistically significant performance.

4.8 Subsamples

As an additional robustness check, we refute the concern that our results may be driven

by a particular period of time by looking at network portfolios across subsamples. The

availability and the amount of currency options vary over time and countries, with sparser

data during the first decade of our sample. It has been also known that the common

currency strategies have experienced a significant decline in their performance after the

2007-2008 financial crisis. Motivated by these observations, we report results for the sub-

sample just before the first episode of the financial crisis (January 1996 to June 2007) and

the subsequent period (July 2007 to January 2023).

Table 11 reports the results. The benchmark strategies exhibit considerable differences

in their performance across subsamples. In particular, the carry trade and momentum

23Gilmore and Hayashi (2011) suggest that the effective bid-ask spreads could be even lower than 50%,
while Cespa, Gargano, Riddiough, and Sarno (2021) suggest a 25% rule for the data from 2011.
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Table 11. Subsamples

This table presents descriptive statistics of net-directional and to-directional network portfolios (Panel A)
and benchmark strategies (Panel B) for subsamples from January 1996 to June 2007 and from July 2007
to January 2023. Mean, standard deviation, and Sharpe ratio are annualized, but the t-statistic of mean,
skewness, kurtosis, and the first-order autocorrelation are based on monthly returns. The t-statistics are
based on Newey and West (1987) standard errors.

Panel A: Network strategies

1996.1-2007.6 2007.7-2023.1

N (S) N (M) N (L) N (T) N (S) N (M) N (L) N (T)

mean (%) 5.36 1.72 1.61 1.78 4.75 2.86 2.79 1.33
t-stat 2.21 0.80 0.73 0.81 2.41 1.60 1.63 0.76
Sharpe 0.59 0.18 0.17 0.19 0.61 0.42 0.41 0.20
std (%) 9.02 9.36 9.31 9.43 7.75 6.75 6.78 6.80
skew 0.57 0.65 0.71 0.41 0.91 0.23 0.11 0.34
kurt 4.54 4.52 4.57 4.03 6.73 4.90 4.87 5.28
ac1 −0.10 −0.21 −0.16 −0.18 0.00 0.05 0.06 0.02

1996.1-2007.6 2007.7-2023.1

T (S) T (M) T (L) T (T) T (S) T (M) T (L) T (T)

mean (%) 5.66 5.63 5.91 5.74 4.93 5.76 5.39 5.82
t-stat 2.01 2.28 2.30 1.94 2.42 2.76 2.35 2.69
Sharpe 0.59 0.59 0.62 0.60 0.61 0.69 0.66 0.70
std (%) 9.60 9.60 9.54 9.56 8.04 8.30 8.17 8.36
skew 0.66 0.67 0.65 0.66 1.06 1.15 1.14 1.29
kurt 4.42 4.35 4.37 4.42 6.60 6.63 6.47 7.58
ac1 −0.12 −0.19 −0.14 −0.15 −0.03 −0.05 0.05 −0.03

Panel B: Benchmark strategies

1996.1-2007.6 2007.7-2023.1

car vol vrp mom car vol vrp mom

mean (%) 11.96 3.64 2.84 8.02 0.54 1.85 −0.39 −0.95
t-stat 3.46 1.16 0.93 2.86 0.18 0.87 −0.17 −0.49
Sharpe 1.07 0.35 0.27 0.82 0.05 0.21 −0.05 −0.11
std (%) 11.19 10.53 10.47 9.81 11.07 8.97 8.04 8.59
skew −0.62 0.39 −0.42 −0.11 −0.84 −0.88 0.77 −0.11
kurt 3.98 3.52 3.51 3.05 5.22 5.77 7.26 3.75
ac1 −0.03 0.01 0.04 0.02 0.08 −0.07 0.11 −0.10

portfolios produce annualized Sharpe ratios of 1.07 and 0.82 in the first period and only

0.05 and -0.11 in the second period. This deterioration in performance is also visible in the

case of volatility-related strategies, though their average returns are statistically insignifi-

cant at conventional confidence levels in both samples.24 In contrast, the performance of

network portfolios remains strong before and after the financial crisis. Specifically, they

24Our results are not inconsistent with the vrp profitability documented by Della Corte et al. (2016).
The difference between our and their performance statistics originates from the definition of the volatility
risk premium. In their paper, the authors work with the one-year volatility swaps, whereas we choose to
work with a more common monthly horizon to be consistent with network risk measures estimated from
one-month risk-neutral volatilities.

34



produce Sharpe ratios of around 0.60 before mid-2007, whereas their risk-adjusted returns

even slightly increase and range from 0.61 to 0.70 on the annual basis after mid-2007.

4.9 Additional Exercises

We experiment with alternative methods to estimate network connectedness. First,

we apply the TVP-VAR model to option-implied variances of individual currencies and

construct the network portfolios for variance linkages. As shown in Table 12, the results

remain substantially unchanged. The transitory net-directional network portfolio earns

large raw and risk-adjusted excess returns, both in economic and statistical terms, and

provides excellent diversification benefits as indicated by weak (and negative) correlations

with benchmark strategies. Also, the to-directional connectedness component of asymmet-

ric linkages contains strong predictive power.

Second, we replicate our analysis on realized volatilities estimated on the one-month

rolling window basis. This exercise evaluates the incremental contribution of using the ex-

ante expectation of currency volatilities synthesized from currency options. Table 13 shows

that the forward-looking information of options data becomes instrumental for our results.

Indeed, the network connectedness measures estimated from the realized volatilities con-

tain almost no predictive power. This is also where our study goes beyond Menkhoff,

Sarno, Schmeling, and Schrimpf (2012a). Although global foreign exchange volatility risk

is useful for predicting currency returns and is associated with the carry trade strategy, we

do not find useful predictive information in how realized volatilities of individual curren-

cies relate to each other. In contrast, making effective use of information from currency

options markets helps us discover novel predictive information in investor expectations

about future currency fluctuations. We hope that the findings of this paper will advance

the usage of options data in the foreign exchange market.

5 Asset Pricing

This section presents the cross-sectional asset-pricing tests performed on the excess re-

turns of network portfolios. Motivated by the previous results, we begin our investigation

by focusing on the cross-section of currency returns sorted by the short-term net-directional

connectedness measures that control for contemporaneous correlations. To better under-
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Table 12. Network Portfolios: Option-Implied Variances

This table presents a robustness analysis of currency strategies formed on network connectedness measures,
which are estimated from option-implied variances. The table reports descriptive statistics of net-directional
and to-directional network portfolios (Panel A), correlations (Panel B), and a contemporaneous regression
(Panel C) of monthly returns of network portfolios on benchmark strategies - dollar (dol), carry trade (car),
volatility (vol), volatility risk premium (vrp), and momentum (mom). In Panel A, mean, standard deviation,
and Sharpe ratio are annualized, but the t-statistic of mean, skewness, kurtosis, and the first-order autocor-
relation are based on monthly returns. We also report the annualized mean of the exchange rate (fx = −∆sk)
and interest rate (ir = ik − i) components of excess returns. In Panel C, constants reported in the “alpha” row
are expressed in percentage per annum. The numbers in rows with a grey font are t-statistics of estimates.
The t-statistics are based on Newey and West (1987) standard errors. The last two rows report adjusted R2

values (in percentage) and the number of observations. The sample is from January 1996 to January 2023.

Panel A: Performance of network portfolios

N (S) N (M) N (L) N (T) T (S) T (M) T (L) T (T) F (S) F (M) F (L) F (T)

mean (%) 5.32 1.86 1.12 2.68 5.20 5.12 5.02 4.93 1.06 0.99 0.35 0.29
t-stat 3.44 1.43 0.90 1.99 3.65 3.58 3.56 3.39 0.77 0.70 0.25 0.21

fx (%) 3.38 1.12 0.46 1.52 3.15 3.01 2.84 2.91 0.65 −0.56 −1.09 −0.86
ir (%) 1.94 0.74 0.66 1.16 2.05 2.12 2.18 2.02 0.40 1.55 1.45 1.15

net −0.06 −0.07 −0.07 −0.21 −0.14 −0.36 −0.56 −0.28 −0.02 −0.31 −1.03 −0.18
Sharpe 0.67 0.25 0.16 0.36 0.63 0.61 0.60 0.59 0.14 0.13 0.05 0.04
std (%) 7.98 7.42 7.15 7.44 8.27 8.34 8.31 8.39 7.28 7.88 7.62 7.77
skew 0.77 0.16 0.07 0.06 0.37 0.26 0.42 0.49 0.38 0.37 0.28 0.36
kurt 6.70 5.19 5.13 5.45 5.22 5.27 5.35 5.46 4.13 4.36 3.91 4.58
ac1 −0.05 −0.03 −0.03 −0.03 −0.10 −0.11 −0.09 −0.09 0.02 0.02 −0.01 0.02

Panel B: Correlations with trading strategies

N (S) N (M) N (L) N (T) T (S) T (M) T (L) T (T) F (S) F (M) F (L) F (T)

dol −0.18 0.01 0.07 −0.04 −0.21 −0.23 −0.16 −0.21 −0.25 −0.27 −0.21 −0.24
car −0.01 −0.02 −0.04 −0.04 −0.06 −0.05 −0.02 −0.08 −0.09 0.08 0.13 0.04
vol −0.17 −0.19 −0.20 −0.22 −0.24 −0.28 −0.25 −0.25 0.01 0.02 0.05 0.03
vrp 0.20 0.05 0.05 0.07 0.17 0.20 0.10 0.16 −0.01 0.17 0.08 0.12
mom 0.16 0.19 0.18 0.21 0.18 0.23 0.25 0.21 −0.05 −0.02 −0.03 −0.07

Panel C: Returns of network portfolios on benchmark strategies

N (S) N (M) N (L) N (T) T (S) T (M) T (L) T (T) F (S) F (M) F (L) F (T)

alpha 4.99 1.96 1.42 2.75 5.13 4.96 4.74 4.88 0.96 0.17 −0.50 −0.22
3.20 1.40 1.07 1.89 3.34 3.30 3.13 3.11 0.73 0.13 −0.39 −0.17

dollar −0.12 0.16 0.25 0.12 −0.10 −0.11 −0.03 −0.09 −0.34 −0.43 −0.36 −0.38
−1.37 2.37 3.96 1.68 −1.27 −1.30 −0.32 −1.22 −4.33 −5.84 −4.51 −5.16

car −0.01 0.02 0.00 0.01 −0.01 0.00 0.05 −0.03 −0.04 0.06 0.11 0.03
−0.07 0.35 −0.06 0.10 −0.19 0.01 0.58 −0.34 −0.67 0.94 1.79 0.41

vol −0.02 −0.21 −0.23 −0.19 −0.11 −0.13 −0.18 −0.11 0.18 0.20 0.15 0.20
−0.26 −3.33 −3.85 −2.96 −1.29 −1.63 −2.15 −1.28 2.26 2.32 1.63 2.64

vrp 0.15 0.00 0.01 0.01 0.12 0.13 0.02 0.11 0.00 0.12 0.02 0.10
1.59 0.00 0.20 0.20 1.38 1.46 0.19 1.28 0.02 1.91 0.41 1.42

mom 0.10 0.11 0.10 0.13 0.11 0.14 0.17 0.14 −0.03 −0.03 −0.04 −0.06
1.66 1.93 1.97 2.13 1.55 2.00 2.42 1.86 −0.57 −0.48 −0.60 −1.07

R2(%) 8.18 7.94 10.64 8.51 9.69 13.12 10.79 10.41 10.13 15.12 11.26 12.29
Obs. 324 324 324 324 324 324 324 324 324 324 324 324

stand the novel network risk beyond the common fluctuations, we also consider the cor-

responding cross-section of currency returns sorted by the short-term net-directional con-

nectedness measures including contemporaneous correlations.
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Table 13. Network Portfolios: Realized Volatilities

This table presents a robustness analysis of currency portfolios sorted on network risk measures, which are
estimated from realized volatilities. The table reports descriptive statistics of the short-term net-, to-, and
from-directional network portfolios. In Panel A, mean, standard deviation, and Sharpe ratio are annualized,
but the t-statistic of mean, skewness, kurtosis and the first-order autocorrelation are based on monthly
returns. We also report the annualized mean of the exchange rate (fx = −∆sk) and interest rate (ir = ik − i)
components of excess returns. The t-statistics are based on Newey and West (1987) standard errors. The
sample is from January 1996 to January 2023.

Panel A: Performance of network portfolios

N (S) N (M) N (L) N (T) T (S) T (M) T (L) T (T) F (S) F (M) F (L) F (T)

mean (%) 0.55 0.51 1.17 0.24 1.41 1.05 0.76 1.57 1.41 1.83 0.29 1.98
t-stat 0.38 0.35 0.82 0.18 1.03 0.76 0.52 1.13 0.98 1.16 0.17 1.18

fx (%) 0.83 0.11 0.78 −0.02 1.82 1.47 1.01 2.00 1.18 1.46 0.77 1.98
ir (%) −0.28 0.40 0.39 0.26 −0.41 −0.42 −0.25 −0.43 0.23 0.38 −0.48 0.00

net −0.10 0.17 0.25 0.54 −0.28 −0.91 −1.49 −0.74 −3.74 −0.74 −0.04 −0.53
Sharpe 0.07 0.07 0.16 0.03 0.18 0.14 0.10 0.20 0.18 0.23 0.04 0.25
std (%) 8.22 7.45 7.37 7.58 7.73 7.75 7.77 7.80 7.86 8.07 7.85 7.79
skew 0.38 −0.50 −0.11 −0.30 0.60 0.66 0.52 0.61 −0.50 −0.49 −0.24 0.29
kurt 5.45 5.18 6.37 5.17 4.90 5.52 5.27 5.27 5.00 5.52 6.20 5.25
ac1 −0.03 0.02 −0.03 −0.05 −0.06 −0.05 −0.02 −0.05 −0.05 −0.03 0.03 0.06

Panel B: Correlations with trading strategies

N (S) N (M) N (L) N (T) T (S) T (M) T (L) T (T) F (S) F (M) F (L) F (T)

dol −0.39 0.28 0.16 0.18 −0.39 −0.37 −0.37 −0.37 0.13 0.09 0.10 −0.01
car −0.33 0.29 0.18 0.18 −0.35 −0.36 −0.36 −0.35 −0.07 0.09 0.14 −0.09
vol −0.55 0.49 0.46 0.47 −0.55 −0.52 −0.54 −0.53 0.26 0.26 0.32 0.12
vrp 0.11 0.00 0.04 0.02 0.10 0.11 0.10 0.10 −0.10 0.03 0.04 0.01
mom 0.17 −0.17 −0.17 −0.17 0.18 0.15 0.18 0.16 −0.24 −0.17 −0.15 −0.10

5.1 Methodology

Cross-sectional asset pricing tests are based on a stochastic discount factor (SDF) ap-

proach (Cochrane, 2005). In our application, we adopt the setting of Lustig, Roussanov,

and Verdelhan (2011) for the network portfolios of our paper. In the absence of arbitrage

opportunities, the excess returns rxj
t+1 of a portfolio j have a zero price and satisfy the

following Euler equation:

Et

(
Mt+1rxj

t+1

)
= 0, (12)

in which Mt+1 is the SDF. Following a common approach in the literature, we consider the

linear specification of Mt+1 :

Mt+1 = 1− b′( ft+1 − µ f ), (13)
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in which ft+1 is the vector of pricing factors, b is the vector of SDF loadings, µ f is the

vector of factor means.25 Combining Eq. (12)-(13), one can obtain a beta pricing model

Et

(
rxj

t+1

)
= λ′βj, in which λ is the vector of the factor risk prices, and βj is the vector

of the risk quantities. The latter ones are also the regression coefficients of excess returns

rxj
t+1 on the risk factors ft+1. Further, the SDF loadings and factor risk prices are related

to each other via the equation λ = Σ f b, where Σ f = Et
[
( ft+1 − µ f )( ft+1 − µ f )

′] is the

variance-covariance matrix of risk factors.

We test a variety of linear factor models for the cross-section of network portfolios.

For each model specification, we estimate the factor loadings via the one-step general-

ized method of moments (GMM) with the identity weighting matrix (Hansen, 1982). We

simultaneously estimate the unknown factor means by adding the corresponding restric-

tions to a set of moments for the pricing errors. Since we are interested in testing whether

a particular linear model explains the cross-section of expected currency excess returns,

we implement a GMM estimation based on unconditional moments without instruments.

Having estimated SDF loadings, we recover the risk prices from the identity λ = Σ f b and

calculate their standard errors using the Delta method. The t-statistics of b′s and λ’s are

based on Newey and West (1987) standard errors. We evaluate the fit of linear pricing

models by using three statistics: the cross-sectional R2, root mean squared pricing error

(RMSE), and the Hansen and Jagannathan (1997) distance (HJdist). We further calculate

the simulated p-values for testing the null hypothesis that the pricing errors equal zero,

i.e. HJdist equals zero. Following Jagannathan and Wang (1996) and Kan and Robotti

(2008), we obtain the simulated p-values by using a weighted sum of independent random

variables from χ2(1) distribution.26

5.2 Principal Component Analysis on Network Portfolios

Before performing formal cross-sectional asset pricing tests, we investigate whether

average network excess returns stemming from short-term net-directional connectedness

can be associated with a small group of risk factors. Following Lustig, Roussanov, and

Verdelhan (2011), we conduct a principal component (PC) decomposition of currency net-
25Other prominent examples considering a linear SDF specification include Menkhoff, Sarno, Schmeling,

and Schrimpf (2012a), Della Corte, Ramadorai, and Sarno (2016), Colacito, Riddiough, and Sarno (2020) and
Della Corte, Kozhan, and Neuberger (2021) among many others.

26Appendix B provides a detailed description of the GMM estimation and test statistics.
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Table 14. Principal Components: Short-term Net-directional Network Portfolios

This table presents the loadings of the principal components (PCi : i = 1, . . . , 5) for quintile portfolios (Pi :
i = 1, . . . , 5) sorted by short-term net-directional connectedness extracted from volatility linkages including
(Panel A) or excluding (Panel B) contemporaneous correlations. Each panel also reports correlations of
principal components with a long-short network portfolio (N (S)) and benchmark strategies — dollar (dol),
carry trade (car), volatility (vol), volatility risk premium (vrp), and momentum (mom). The sample is from
January 1996 to January 2023.

Panel A: Including contemporaneous correlations

PC loadings Correlations

P1 P2 P3 P4 P5 CV N (S) dol car vol vrp mom

PC1 0.53 0.52 0.44 0.38 0.34 76.50 −0.41 1.00 0.30 0.57 −0.15 −0.15
PC2 −0.53 −0.34 0.22 0.67 0.31 84.78 0.62 0.05 0.43 0.19 0.20 −0.03
PC3 0.05 −0.03 −0.51 −0.20 0.84 92.25 0.55 0.01 −0.08 −0.01 0.03 0.13
PC4 −0.24 −0.10 0.69 −0.61 0.29 97.42 0.30 0.01 0.14 0.05 0.20 −0.03
PC5 −0.62 0.77 −0.13 −0.04 −0.02 100.00 0.24 0.00 0.01 −0.05 −0.04 0.09

Panel B: Excluding contemporaneous correlations

PC loadings Correlations

P1 P2 P3 P4 P5 CV N (S) dol car vol vrp mom

PC1 0.48 0.51 0.47 0.41 0.34 76.99 −0.30 1.00 0.32 0.59 −0.15 −0.15
PC2 0.85 −0.13 −0.26 −0.38 −0.20 87.14 −0.82 −0.03 0.38 0.10 0.06 −0.09
PC3 0.14 −0.60 −0.28 0.36 0.64 92.94 0.40 0.02 0.12 0.09 0.15 0.09
PC4 0.13 −0.31 0.09 0.67 −0.65 97.07 −0.39 −0.01 −0.09 −0.01 −0.05 0.02
PC5 0.03 −0.52 0.79 −0.32 0.03 100.00 0.00 0.00 0.01 0.04 0.07 0.02

work portfolios formed on volatility linkages including and excluding contemporaneous

effects. Further, we study the correlations of principal components with the network and

benchmark strategies.

Table 14 presents the results. There are several common and distinctive features of the

two cross-sections. First, the PC loadings indicate a strong factor structure in both groups

of network cross-sections. The first principal component (PC1) accounts for most of the

time-variation in quintile portfolios and has similar loadings across the five portfolios. The

second principal component (PC2) in turn displays a pronounced monotonic pattern in

loadings as we move from P1 to P5 : the increasing pattern for aggregate linkages and the

decreasing tendency for causal connections. Second, the first two principal components

explain around 84% (87%) of the common variation in network portfolios formed on con-

nections with (without) a common correlation component. Further, they exhibit similar

correlations with risk factors. PC1 is perfectly correlated with the dollar factor in both

cases. PC2 exhibits the strongest correlation with the network portfolio, though the rela-

tionship is of the opposite sign in the two cases. In relative terms, when controlling for
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contemporaneous effects, the correlation of PC2 with N (S) is strongly dominant, whereas

PC2 from network portfolios formed on volatility linkages with common correlations more

evenly correlates with N (S) and the carry trade factor. Finally, the starkest difference be-

tween the two portfolio groups is related to loadings of the third principal component

(PC3) that show no visible pattern in Panel A but tend to display monotonicity in Panel B.

In the latter case, PC3 has the strongest relationship with the network risk factor.

Overall, the results in Table 14 suggest that the network-sorted portfolios can indeed

be summarized by a small number of risk factors. We can approximate the first using the

average returns across spot currency portfolios and interpret it as a “level” factor. We can

approximate the second using the spread between P5 and P1 portfolios and interpret it

as a “slope” factor. For the cross-section sorted on network connectedness controlling for

contemporaneous correlations, the results are suggestive of an additional “slope” factor,

which is strongly correlated with the carry trade.

5.3 Cross-Sectional Regressions

We now turn to the formal investigation of network portfolios following the method-

ology outlined in Section 5.1. Motivated by the principal component analysis in Section

5.2, we consider (A1) a variety of two-factor linear models for the cross-section of excess

returns sorted on net-directional connectedness including a common correlation compo-

nent in volatility linkages and (A2) a variety of two- and three-factor linear models for the

test excess returns sorted on net-directional connectedness excluding a contemporaneous

effect. In particular, the two-factor SDFs has dol as the first factor plus a second factor,

including car, vol, vrp, mom, or N (S) one at a time. For the three-factor SDFs, we start

with the two factors, dol and N (S), and then consider various third factors, including car,

vol, vrp, or mom.

Table 15 presents the asset pricing results for all models considered, with Panel A show-

ing the specifications in (A1) and Panel B the frameworks in (A2). The results in Panel A

indicate that none of the SDF loadings and risk prices for benchmark risk factors are sta-

tistically significant at the 5% confidence level. In contrast, we document the positive and

statistically significant loading (a t-stat of 2.82) and price of the network risk factor (a t-stat

of 2.67). In particular, the GMM estimate of λN (S) is 0.40% per month. Since the network
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factor is actually tradable, we can apply the Euler equation to the factor excess returns and

derive that its price of risk must be equal to the average excess return. Using statistics

reported in Table A1 in Appendix, we verify that this no-arbitrage condition indeed holds:

the monthly average return of 0.36% is close to the estimated price of 0.40%. Regarding the

dollar factor, its SDF loading and price of risk are insignificant at conventional confidence

levels (a t-stat of 1.25 for bdol and a t-stat of 0.13 for λdol). Moreover, the estimated λdol

matches the factor’s average excess return of 0.01% per month, as reported in Table 4. Even

though the dollar factor does not help to explain the average excess returns, it serves as a

constant capturing the common mispricing in the cross-sectional regression.

In terms of the model fit, the two-factor SDFs combining the dollar and other bench-

mark risk factors produce similar performances, capturing from 25.31% to 40.21% of the

total variance in the cross-sectional returns and yielding RMSEs from 0.11% to 0.12%. The

HJdist distance values cannot be considered favorable to the SFDs based on the small p-

values of around 0.05. At the same time, the SDF specification comprising the dollar and

network risk factors outperforms other models by a large margin. For instance, it generates

more than twice as large cross-sectional R2 of 88.10% and around two times smaller RMSE

and HJdist of 0.05% and 0.09. The simulated p-value of the HJdist distance indicates that we

cannot reject this two-factor SDF at any conventional confidence level.

In sum, the benchmark risk factors from the existing literature have a hard time explain-

ing the portfolios sorted on network connectedness, even though volatility linkages have

strong contemporaneous correlations that serve as the proxy for common risks in currency

returns. Meanwhile, the network risk factor successfully prices the novel cross-section of

currency returns documented in our paper. Furthermore, the quantitative results show a

significant wedge in the contribution of the network and other factors, despite possibly a

common component in their returns originating from the interest rate predictability (for

car), contemporaneous correlations in spot variances (for vol) or spot implied variances

(for vrp).

Panel B in Table 15 shows the results for portfolios sorted on the net-directional connect-

edness controlling for contemporaneous correlations in volatility connections. As can be

expected, once we eliminate the contemporaneous effects in the network, the performance
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Table 15. Pricing Short-term Net-directional Network Portfolios: GMM Estimation

This table presents cross-sectional results. We price quintile portfolios (Pi : i = 1, . . . , 5) sorted by short-term
net-directional connectedness extracted from volatility linkages including (Panel A) or excluding (Panel B)
contemporaneous correlations. The two-factor linear SDFs includes the dollar (dol) factor plus a second
factor — carry trade (car), volatility (vol), volatility risk premium (vrp), momentum (mom), or short-term
net-directional network (N (S)) factor. The three-factor linear SDFs includes dol, N (S) plus a third factor —
car, vol, vrp, or mom. Each panel reports one-step GMM estimates of factor loadings (b) and prices of factor
risks (λ). Goodness-of-fit statistics include the R2 and root mean squared pricing error (RMSE) (both are
expressed in percentage), and the Hansen and Jagannathan (1997) distance (HJdist) with simulated p-values
in parentheses. The p-values are for the null hypothesis that pricing errors are equal to zero. The remaining
numbers in rows with a grey font are t-statistics of estimates, which are based on Newey and West (1987)
standard errors. The sample is from January 1996 to January 2023.

SDF loadings Risk prices Model fit

bdol b f2 λdol λ f2 R2 (%) RMSE (%) HJdist

Panel A: Including contemporaneous correlations

dol + car −0.03 0.07 0.01 0.68 29.45 0.12 0.16
−0.81 1.42 0.07 1.42 0.06

dol + vol −0.17 0.24 0.01 1.26 39.08 0.11 0.15
−1.37 1.39 0.06 1.37 0.05

dol + vrp 0.03 0.17 0.01 1.15 40.21 0.11 0.16
0.90 1.51 0.09 1.51 0.05

dol + mom 0.04 0.26 0.00 1.79 25.31 0.12 0.17
0.88 1.47 −0.01 1.47 0.04

dol + N (S) 0.04 0.09 0.02 0.40 88.10 0.05 0.09
1.25 2.82 0.13 2.67 0.53

Panel B: Excluding contemporaneous correlations

dol + car 0.00 0.00 0.00 −0.03 0.13 0.15 0.24
0.00 −0.05 −0.04 −0.05 0.00

dol + vol 0.00 −0.01 0.00 −0.03 0.12 0.15 0.25
0.03 −0.04 −0.04 −0.05 0.00

dol + vrp 0.05 0.28 0.00 1.94 32.01 0.13 0.19
0.99 1.42 0.02 1.42 0.01

dol + mom 0.06 0.36 0.01 2.50 37.31 0.12 0.22
0.99 1.25 0.05 1.25 0.00

dol + N (S) 0.02 0.06 0.00 0.31 45.31 0.11 0.18
0.64 2.46 0.03 2.43 0.01

SDF loadings Risk prices Model fit

bdol b f2 bN (S) λdol λ f2 λN (S) R2(%) RMSE (%) HJdist

dol + car + N (S) −0.05 0.20 0.13 0.01 1.74 0.41 99.30 0.01 0.02
−1.12 2.46 3.35 0.05 2.32 2.30 0.95

dol + vol + N (S) −0.29 0.45 0.11 0.00 2.27 0.38 87.20 0.05 0.10
−1.62 1.77 2.48 0.00 1.71 2.47 0.56

dol + vrp + N (S) 0.07 0.24 0.07 0.03 1.66 0.40 80.01 0.07 0.11
1.62 1.46 2.08 0.22 1.47 2.08 0.38

dol + mom + N (S) 0.02 0.04 0.05 0.00 0.30 0.30 45.41 0.11 0.18
0.53 0.15 2.34 0.04 0.17 2.26 0.00

of the SDFs with car and vol deteriorates significantly. The t-statistics of SDF loadings and

factor prices become close to zero. Further, the R2 statistics drop dramatically to 0.13%

and 0.12% with car and vol as a second factor. Intuitively, the network connections exclude
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Table 16. Pricing Short-term Net-directional Network Portfolios: Fama–MacBeth Estimation

This table presents cross-sectional results based on the two-stage procedure of Fama and MacBeth (1973). The
test portfolios are quintile portfolios (Pi : i = 1, . . . , 5) sorted by short-term net-directional connectedness
extracted from volatility linkages including (Panel A) or excluding (Panel B) contemporaneous correlations.
The two-factor models include the dollar (dol) factor plus a second factor — carry trade (car), volatility (vol),
volatility risk premium (vrp), momentum (mom), or short-term net-directional network (N (S)) factor. The
three-factor models include dol, N (S) plus a third factor — car, vol, vrp, or mom. In the first stage, we
estimate the time series regressions of test portfolios on a set of factors. In the second stage, we estimate the
cross-sectional regression of average returns on the slope coefficients. We exclude the intercept in the second
stage, consistent with the GMM estimation. Each panel reports estimates of prices of factor risks (λ) and
their t-statistics based on Shanken (1992) standard errors. Goodness-of-fit statistics include the R2, χ2 test
statistic and associated p-value for the test that pricing errors are jointly equal to zero. The sample is from
January 1996 to January 2023.

Risk prices Model fit

λdol λ f2 R2 (%) χ2 p-value

Panel A: Including contemporaneous correlations

dol + car 0.01 0.67 27.99 8.89 0.03
0.08 1.80

dol + vol 0.01 1.25 37.19 7.98 0.05
0.06 1.86

dol + vrp 0.01 1.15 38.80 8.20 0.04
0.10 2.11

dol + mom 0.00 1.77 23.03 9.33 0.03
−0.01 1.53

dol + N (S) 0.02 0.40 87.86 2.37 0.50
0.14 3.02

Panel B: Excluding contemporaneous correlations

dol + car 0.00 −0.03 −0.42 20.65 0.00
−0.04 −0.05

dol + vol 0.00 −0.03 −0.42 21.16 0.00
−0.04 −0.04

dol + vrp 0.00 1.92 30.75 12.80 0.01
0.03 1.89

dol + mom 0.01 2.47 35.72 16.10 0.00
0.09 1.57

dol + N (S) 0.00 0.31 44.99 10.82 0.01
0.03 2.22

Risk prices Model fit

λdol λ f2 λN (S) R2 (%) χ2 p-value

dol + car + N (S) 0.01 1.74 0.41 99.30 0.18 0.92
0.08 2.57 3.07

dol + vol + N (S) 0.00 2.27 0.38 87.01 3.49 0.17
0.01 1.91 2.73

dol + vrp + N (S) 0.01 2.21 0.37 85.82 3.85 0.15
0.12 2.10 2.73

dol + mom + N (S) 0.00 0.28 0.30 45.08 10.70 0.00
0.04 0.16 2.21

the common component in the risk-neutral volatilities on exchange rates and, as a result,

the performance of the SDFs with car and vol deteriorates significantly. Interestingly, the

performance of the two-factor linear model combining dol with vrp or mom does not de-
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teriorate significantly or even improve, though there is no statistical evidence on priced

volatility premium or momentum risk. In contrast, the factor loading and price of network

risk is statistically significant at the 5% level (a t-stat of 2.46 for bN (S) and a t-stat of 2.43

for λN (S)). The model with the network factor also displays stronger explanatory power

as measured by higher R2 (45.31%) and generates lower pricing errors as measured by

lower RMSE (0.11%) and HJdist (0.18). Nevertheless, none of these two-factor SDF speci-

fications can explain the cross-sectional differences in average network returns based on

the close-to-zero p-values of HJdist. Furthermore, the GMM estimate of λN (S) is 0.30% per

month. Using statistics reported in Table 2, the monthly average return of 0.42% is above

the estimated price of 0.30%. This violation of the no-arbitrage condition indicates that the

proposed SDF may not fully explain the variation in test asset returns.

In Panel B in Table 15, we extend the two-factor model with dol and N (S) to the

three-factor specification with car, vol, vrp or mom. The inclusion of an additional factor

generally leads to a higher R2, lower RMSE and HJdist statistics relative to the original two-

factor SDF. Most importantly, network risk remains strongly priced in all specifications.

Consistent with the principal component decomposition, the best-performing three-factor

model includes the dollar, carry trade, and network risk factors. In this case, the estimated

price of risk of the network factor is 0.41%, close to the average monthly return of 0.42%.

Moreover, the SDF specification is able to explain 99.30% of the cross-sectional variation in

average network portfolio returns and cannot be rejected at any conventional confidence

level due to the p-values of the (HJdist) distance of 0.95.

We now employ the standard Fama–MacBeth regression (Fama and MacBeth, 1973)

to obtain the factor loadings and risk prices. We compare the results for short-term net-

directional network portfolios with those implied by the GMM estimates. Table 16 presents

the regression outputs. The results of the Fama–MacBeth procedure are qualitatively and

quantitatively similar to those reported in Table 15.

In sum, the comparison of different estimation procedures reinforces the robustness

of the key conclusion: the novel network-sorted cross-section of currency returns cannot

be understood through the lens of common currency strategies. When volatility linkages

include contemporaneous correlations, the network risk factor fully explains the cross-
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sectional differences in average quintile returns, whereas common factors are not priced

in the network cross-section. Surprisingly, when volatility linkages control for contempo-

raneous correlations, the network risk factor is not the only source of priced risk in the

second cross-section of network-sorted returns. Instead, the combination of the carry trade

and network portfolios is required to fully explain the currency returns. The economic

mechanism behind this result looks as follows. We have removed the contemporaneous

correlations between the volatility linkages that are used to construct the network port-

folios. Although the network factor possesses the predictive power of volatility linkages

between individual currencies, it does not contain the predictive information associated

with the common time variation in all currency volatilities. The latter component can be

captured by a global risk factor, which is typically associated with the carry trade strategy.

As a result, the three-factor SDF with the dollar (common mispricing in currency returns),

the carry trade (common fluctuations in exchange rates), and the network factor (asymmet-

ric connections between currency volatilities) can explain the currency portfolios sorted on

free-from-correlation network connectedness.

5.4 Time-series Exposure to Network Factors

We further estimate the sensitivity of excess returns of quintile portfolios (Pi : i =

1, . . . , 5) to the network risk. Table 17 reports the outputs of a contemporaneous regression

of excess returns of each quintile portfolio on the dollar and network risk factors (Panel A)

and on the dollar, network risk factor, and one of the remaining benchmarks (Panel B).

For currency returns sorted on network connections with contemporaneous effects, the

alphas are statistically insignificant. The βdol coefficients are close one. The βnet coefficients

display pronounced monotonicity when we move from P1 to P5, increasing from -0.44 (a t-

stat of -20.33) to 0.56 (a t-stat of 25.74). The two factors capture a lot of variation of quintile

portfolios ranging from 68.41% for P4 to 93.25% for P1.

For currency returns sorted on free-from-correlation network connections, the right

part of Panels A and Panel B reports the outputs for two- and three-factor regressions. The

results suggest that the first and fifth quintiles have statistically significant alphas at the 1%

confidence level when we include vol, vrp, or mom. In contrast, the inclusion of the carry

trade substantially reduces the magnitude of alphas of the lowest and highest network

45



Table 17. Net-directional Network Portfolios: Factor Betas

This table presents a contemporaneous regression of monthly excess returns of each quintile portfolio on
two risk factors — the dollar and short-term net-directional network portfolios (Panel A), or on three risk
factors — the dollar, a short-term net-directional network portfolio plus a third factor, including car, vol,
vrp, or mom (Panel B). Constants reported in the “alpha” row are expressed in percentage per annum. The
numbers in rows with a grey font are t-statistics of estimates, which are based on Newey and West (1987)
standard errors. The last row in each panel shows the adjusted R2 (in percentage). The sample is from
January 1996 to January 2023.

Panel A: Short-term net-directional portfolios

Inc. contemporaneous correlations Exc. contemporaneous correlations

P1 P2 P3 P4 P5 P1 P2 P3 P4 P5

alpha (%, annual) 0.46 −0.38 −0.84 0.74 0.46 1.75 −0.78 −1.27 −1.38 1.75
0.96 −0.55 −0.95 0.78 0.96 3.33 −1.10 −1.93 −1.82 3.33

βdol 1.01 1.09 0.99 0.91 1.01 0.90 1.14 1.09 0.97 0.90
44.34 25.77 31.24 25.87 44.34 35.10 30.90 38.84 30.71 35.10

βN (S) −0.44 −0.19 −0.02 0.10 0.56 −0.63 0.00 0.07 0.16 0.37
−20.33 −6.28 −0.66 2.72 25.74 −17.87 −0.01 2.39 5.73 10.64

R2(%) 93.25 89.07 76.70 68.41 88.85 92.62 84.85 86.30 78.64 85.71

Panel B: Short-term net-directional portfolios: excluding contemporaneous correlations

car vol

P1 P2 P3 P4 P5 P1 P2 P3 P4 P5

alpha (%, annual) 1.22 −0.48 −0.92 −1.04 1.22 1.58 −0.62 −1.22 −1.35 1.58
2.19 −0.64 −1.34 −1.25 2.19 3.16 −0.88 −1.81 −1.68 3.16

βdol 0.87 1.16 1.11 0.99 0.87 0.86 1.18 1.10 0.98 0.86
31.60 29.61 40.43 35.69 31.60 26.40 26.99 34.86 26.93 26.40

β f2 0.08 −0.05 −0.05 −0.05 0.08 0.06 −0.06 −0.02 −0.01 0.06
4.09 −1.70 −2.18 −1.96 4.09 1.90 −1.46 −0.63 −0.33 1.90

βN (S) −0.61 −0.01 0.06 0.15 0.39 −0.62 −0.01 0.07 0.16 0.38
−20.15 −0.33 2.00 4.95 13.06 −18.80 −0.15 2.31 5.40 11.44

R2(%) 93.58 85.36 86.94 79.31 87.24 93.09 85.31 86.60 78.90 86.31

vrp mom

P1 P2 P3 P4 P5 P1 P2 P3 P4 P5

alpha (%, annual) 1.70 −0.73 −1.25 −1.36 1.70 1.74 −0.71 −1.26 −1.43 1.74
3.22 −1.04 −1.87 −1.78 3.22 3.24 −0.98 −1.94 −1.92 3.24

βdol 0.90 1.13 1.09 0.97 0.90 0.90 1.14 1.09 0.98 0.90
38.87 33.25 38.76 28.57 38.87 34.86 29.65 38.00 32.02 34.86

β f2 0.05 −0.07 −0.02 −0.02 0.05 0.00 −0.03 0.00 0.02 0.00
1.74 −1.89 −0.72 −0.54 1.74 0.03 −1.11 −0.18 0.97 0.03

βN (S) −0.63 0.00 0.08 0.16 0.37 −0.63 0.00 0.08 0.16 0.37
−18.94 0.03 2.47 5.83 11.23 −17.69 0.09 2.35 5.58 10.53

R2(%) 93.11 85.49 86.62 78.93 86.36 92.90 85.22 86.58 78.95 85.98

characteristic quintiles, which become significant at the 5% confidence level now. This can

be explained by the observation that the exposure to the carry trade factor is statistically

significant, while the beta estimates for the other factors are generally insignificant for

three excess returns. The goodness of fit and slope coefficients of the network risk factor

remains largely unchanged for two- and three-factor regressions.
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Overall, the results of time-series regressions are consistent with cross-sectional regres-

sions. Specifically, they reinforce the conclusion that the dollar and network risk factors

fully explain the sources of risk in the cross-section formed on network connectedness mea-

sures with common fluctuations, while the dollar, carry trade, and network factors explain

the cross-section based on network connectedness controlling for common fluctuations.

6 Conclusion

We estimate dynamically changing connections among option-implied volatilities on

exchange rates and demonstrate that the structure in volatility linkages predicts currency

returns. The currency network strategy, which buys net recipients and sells net transmitters

of transitory volatility shocks, generates a high Sharpe ratio and yields a significant alpha

when controlling for popular foreign exchange benchmarks. Trading currency connected-

ness at longer horizons is less profitable, indicating a downward-sloping term structure of

volatility network risk in currency markets. The cross-sectional variation of network-sorted

excess returns cannot be understood through the lens of existing risk factors — dollar, carry

trade, volatility, volatility risk premium, and momentum. Interestingly, the combination

of the dollar, carry trade, and network risk factors fully explain the excess returns formed

on network risk measures controlling for contemporaneous effects. In robustness checks,

we show that the performance of network portfolios in terms of risk-adjusted (Sharpe ra-

tios) and benchmark-adjusted (estimated alphas) performances actually improves when

the strategies are implemented at the weekly frequency. The significance of monthly net-

work excess returns is also robust to transaction costs, subperiods, and usage of option-

implied variances. Finally, the predictive power of the network connectedness measures

disappears when we employ the realized currency volatilities. This emphasizes a critical

contribution of the forward-looking information contained in option-implied volatilities.

Overall, we provide new insights into the sources of currency predictability. While our

findings are economically intuitive and complement the existing evidence on the global

volatility risk factor in foreign exchange markets, our understanding of currency volatil-

ity spillovers requires further work. Motivated by the evidence in this paper, developing a

macro-finance framework linking volatility linkages to currency excess returns is a promis-

ing avenue for future research.
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Appendix for

“Currency Network Risk”

Abstract

This appendix presents supplementary details not included in the main body of the

paper.
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A Estimation of the time-varying parameter VAR model

Let CIVt be an N × 1 vector generated by a stable time-varying parameter (TVP) het-

eroskedastic VAR model with p lags:

CIVt,T = Φ1(t/T)CIVt−1,T + . . . + Φp(t/T)CIVt−p,T + εt,T, (A.1)

where εt,T = Σ−1/2(t/T)ηt,T, ηt,T ∼ NID(0, IM) and Φ(t/T) = (Φ1(t/T), . . . , Φp(t/T))>

are the time-varying autoregressive coefficients. Note that all roots of the polynomial

χ(z) = det
(

IN −∑L
p=1 zpBp,t

)
lie outside the unit circle, and Σ−1

t is a positive definite

time-varying covariance matrix. Stacking the time-varying intercepts and autoregressive

matrices in the vector φt,T with CIV>t = (IN ⊗ xt) , xt =
(

1, x>t−1, . . . , x>t−p

)
and denoting

the Kronecker product by ⊗, the model can be written as:

CIVt,T = CIV>t,Tφt,T + Σ
− 1

2
t/Tηt,T (A.2)

We obtain the time-varying parameters of the model by employing the Quasi-Bayesian

Local-Likelihood (QBLL) approach of Petrova (2019). The estimation of Eq. (A.1) requires

re-weighting the likelihood function. The weighting function gives higher proportions to

observations surrounding the time period whose parameter values are of interest. The

local likelihood function at time period k is given by:

Lk
(
CIV|θk, Σk, CIV

)
∝ (A.3)

|Σk|trace(Dk)/2 exp
{
−1

2
(CIV− CIV>φk)

> (Σk ⊗Dk) (CIV− CIV>φk)

}

Dk is a diagonal matrix whose elements hold the weights:

Dk = diag($k1, . . . , $kT) (A.4)

$kt = φT,kwkt/
T

∑
t=1

wkt (A.5)

wkt = (1/
√

2π) exp((−1/2)((k− t)/H)2), for k, t ∈ {1, . . . , T} (A.6)

ζTk =

( T

∑
t=1

wkt

)2
−1

(A.7)
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where $kt is a normalised kernel function. wkt uses a Normal kernel weighting function.

ζTk gives the rate of convergence and behaves like the bandwidth parameter H in (A.6).

The kernel function puts a greater weight on the observations surrounding the parameter

estimates at time k relative to more distant observations.

We use a Normal-Wishart prior distribution for φk| Σk for k ∈ {1, . . . , T}:

φk|Σk v N
(

φ0k, (Σk ⊗ Ξ0k)
−1
)

(A.8)

Σk vW (α0k, Γ0k) (A.9)

where φ0k is a vector of prior means, Ξ0k is a positive definite matrix, α0k is a scale param-

eter of the Wishart distribution (W), and Γ0k is a positive definite matrix.

The prior and weighted likelihood function implies a Normal-Wishart quasi poste-

rior distribution for φk| Σk for k = {1, . . . , T}. Formally, let A = (x>1 , . . . , x>T )
> and

Y = (x1, . . . , xT)
>, then:

φk|Σk, A, Y v N
(

θ̃k,
(

Σk ⊗ Ξ̃k

)−1
)

(A.10)

Σk v W
(

α̃k, Γ̃−1
k

)
(A.11)

with quasi-posterior parameters

φ̃k =
(

IN ⊗ Ξ̃−1
k

) [(
IN ⊗A>DkA

)
φ̂k + (IN ⊗ Ξ0k) φ0k

]
(A.12)

Ξ̃k = Ξ̃0k + A>DkA (A.13)

α̃k = α0k +
T

∑
t=1

$kt (A.14)

Γ̃k = Γ0k + Y′DkY + Φ0kΓ0kΦ>0k − Φ̃kΓ̃kΦ̃>k (A.15)

where φ̂k =
(
IN ⊗A>DkA

)−1 (IN ⊗A>Dk
)

y is the local likelihood estimator for φk. The

matrices Φ0k, Φ̃k are conformable matrices from the vector of prior means, φ0k, and a draw

from the quasi posterior distribution, φ̃k, respectively.

The motivation for employing these methods is threefold. First, we are able to estimate

large systems that conventional Bayesian estimation methods do not permit. This is typical
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because the state-space representation of an N-dimensional TVP VAR (p) requires an ad-

ditional N(3/2 + N(p + 1/2)) state equations for every additional variable. Conventional

Markov Chain Monte Carlo (MCMC) methods fail to estimate larger models, which in

general confine one to (usually) fewer than 6 variables in the system. Second, the standard

approach is fully parametric and requires a law of motion. This can distort inference if the

true law of motion is misspecified. Third, the methods used here permit direct estimation

of the VAR’s time-varying covariance matrix, which has an inverse-Wishart density and is

symmetric positive definite at every point in time.

In estimating the model, we use p=2 and a Minnesota Normal-Wishart prior with a

shrinkage value ϕ = 0.05 and centre the coefficient on the first lag of each variable to 0.1 in

each respective equation. The prior for the Wishart parameters are set following Kadiyala

and Karlsson (1997). For each point in time, we run 500 simulations of the model to gen-

erate the (quasi) posterior distribution of parameter estimates. Note we experiment with

various lag lengths, p = {2, 3, 4, 5}; shrinkage values, ϕ = {0.01, 0.25, 0.5}; and values to

centre the coefficient on the first lag of each variable, {0, 0.05, 0.2, 0.5}. Network measures

from these experiments are qualitatively similar. Notably, adding lags to the VAR and

increasing the persistence in the prior value of the first lagged dependent variable in each

equation increases computation time.

Finally, the variance decompositions of forecast errors from the VMA(∞) representation

require truncation of the infinite horizon with a H horizon approximation. As H → ∞ the

error disappears (Lütkepohl, 2005). We note here that H serves as an approximating factor

and has no interpretation in the time domain. We obtain horizon-specific measures using

Fourier transforms and set our truncation horizon H=100. The results are qualitatively

similar for H ∈ {50, 100, 200}.

B Asset Pricing Tests

The Euler equation implies that the excess returns rxj
t+1 of a portfolio j satisfy the

equation:

Et

(
Mt+1rxj

t+1

)
= 0, (B.16)
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in which Mt+1 is the stochastic discount factor (SDF). We assume that the SDF is a linear

function of a set of risk factors ft+1 and is defined as follows:

Mt+1 = 1− b′( ft+1 − µ f ). (B.17)

Notice that we employ a de-meaned version of the SDF to avoid the issue related to an

affine transformation of factors (Kan and Robotti, 2008).

We are interested in testing the performance of linear pricing models defined by Eq.

(B.16)-(B.17). To do so, we estimate factor loadings using the generalized method of mo-

ments (GMM) (Hansen, 1982). Substituting Eq. (B.17) into Eq. (B.16), we obtain the

following N moment conditions Et
(
[1− b′( ft+1 − µ f )]rxt+1

)
= 0N, where rxt+1 is the N-

dimensional vector of test asset excess returns. We simultaneously estimate the unknown

vector of factor means µ f . Thus, GMM moment conditions also include the set of k restric-

tions Et
(

ft+1 − µ f
)
= 0k, where k denotes the number of factors in the SDF specification.

Therefore, we have the following population moment conditions:

Et [gt+1(θ)] = Et

[1− b′( ft+1 − µ f )]rxt+1

ft+1 − µ f

 = 0N+k,

where θ = (b′, µ′)′ is the vector of parameters. The sample moment conditions are then

defined as:

ḡT(θ) =

ḡ1
T(θ)

ḡ2
T(θ)

 =


1
T

T
∑

t=1

[
1− b′( ft+1 − µ f )

]
rxt+1

1
T

T
∑

t=1

[
ft+1 − µ f

]
 .

We implement a one-stage GMM estimation with the prespecified weighting matrix con-

sisting of the identity matrix IN for the first moment conditions and a large weight assigned

to the remaining restrictions. Standard errors are computed based on a heteroscedas-

ticity and autocorrelation consistent (HAC) estimate of the long-run covariance matrix

S =
∞
∑

j=−∞
E[g(θ)g(θ)′] by the Newey and West (1987) procedure.

We now evaluate the performance of linear pricing models in explaining the cross-

section of network portfolios. We construct the cross-sectional R2, root mean squared

pricing error (RMSE), and the Hansen and Jagannathan (1997) distance (HJdist). Hansen
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and Jagannathan (1997) provide two nice illustrations of HJdist. First, it is the maximum

pricing error of a portfolio with a unit second moment. Second, it measures the minimum

distance between the proposed SDF and the set of admissible SDFs. Thus, tests of linear

SDFs defined by Eq. (B.17) boil down to testing the null hypothesis that the pricing errors

equal zero, i.e. HJdist equals zero. Formally, the Hansen and Jagannathan (1997) distance

is defined as:

HJdist =

√
min

θ
ḡT(θ)′G−1

T ḡT(θ), (B.18)

in which GT is the sample second moment matrix of test excess returns, that is, GT =

1
T

T
∑

t=1
rxt+1rx′t+1. One can obtain HJdist by applying the one-stage GMM estimation with

the weighting matrix equal to G−1
T . The advantage of this definition is that G−1

T is indepen-

dent of optimal parameters and hence this allows the comparison between different SDF

specifications (Hansen and Jagannathan, 1997). The disadvantage of this approach is that

G−1
T is not optimal in the sense of Hansen (1982) and hence HJdist is not asymptotically a

random variable of χ2(N − k) distribution. Instead, the sample HJdist follows a weighted

sum of χ2(1) random variables (see Jagannathan and Wang (1996) and Kan and Robotti

(2008) for specification tests using gross and excess returns, respectively). Therefore, we

calculate the simulated p-values for HJdist based on this statistic.

C Transaction Costs

We use time-varying quoted bid-ask spreads to compute the currency excess returns ad-

justed for transaction costs. Following Menkhoff, Sarno, Schmeling, and Schrimpf (2012b),

we take into account the whole cycle of each currency in the short or long positions from

t− 1 to t + 1. When the investor buys the currency at time t and sells at time t + 1, he pays

the corresponding bid-ask costs each period. In our notations, the excess returns of long

(l) and short (s) positions are respectively rxl
t+1 = f b

t − sa
t+1 and rxs

t+1 = − f a
t + sb

t+1. If the

investor buys the currency at time t but decides to keep it in the portfolio at time t + 1,

then the net excess returns are computed as rxl
t+1 = f b

t − st+1 and rxs
t+1 = − f a

t + st+1.

If the currency, which belongs to the portfolio at time t and is sold at time t + 1, was al-

ready in the current portfolio at time t− 1, then the excess returns rxl
t+1 = f b

t − sa
t+1 and

rxs
t+1 = − f a

t + sb
t+1, that is, the investor must still initiate a position in the one-month for-
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ward contract. At the start (January 1996) and at the end (December 2013) of the sample,

the investor is assumed to start and close positions in all foreign currencies.

D Additional Results

We also examine the currency portfolios formed on network connectedness measures

including contemporaneous correlations between volatility shocks. Table A1 reports sum-

mary statistics of net-directional network portfolios and shows that they produce similar

patterns as the corresponding portfolios formed on free-from-correlation connectedness

measures. Table A2 presents the correlations of net-directional network portfolios with

standard currency strategies and regression outputs when controlling for common risk fac-

tors. The returns of a network portfolio formed on transitory volatility shocks are partially

subsumed by the dollar and carry trade factors, however, they remain economically and

statistically significant. It is worth noting that the network strategies that do not control

for contemporaneous effects exhibit a positive and strong correlation with carry trade, es-

pecially those formed on more persistent volatility linkages. Table A3 shows that this gen-

erates smaller diversification gains. Table A4 further demonstrates that the performance of

the net-directional network portfolio deteriorates after the 2007-2008 financial crisis, sim-

ilar to common currency strategies. Table A5 reports an allocation analysis for quintile

portfolios sorted by short-term net-directional connectedness based on volatility linkages

excluding or including contemporaneous correlations. Table A6 presents summary statis-

tics of a contemporaneous regression of monthly returns of a short-term net-directional

strategy (N (S)) on the equity and hedge fund strategies.

58



Table A1. Net-directional Network Portfolios: Including Contemporaneous Correlations

This table presents descriptive statistics for quintile (Pi : i = 1, . . . , 5) and long-short portfolios (N (·)) sorted
by short- (S), medium- (M), and long-term (L) as well as total (T) net-directional connectedness based on
volatility linkages including contemporaneous correlations. The portfolio P1(P5) comprises currencies with
the highest (lowest) network characteristic. The long-short portfolio buys P5 and sells P1. Mean, standard
deviation, and Sharpe ratio are annualized, but the t-statistic of mean, skewness, kurtosis, and the first-order
autocorrelation are based on monthly returns. We also report the annualized mean of the exchange rate
(fx = −∆sk) and interest rate (ir = ik − i) components of excess returns. The t-statistics are based on Newey
and West (1987) standard errors. The sample is from January 1996 to January 2023.

P1 P2 P3 P4 P5 N (S) P1 P2 P3 P4 P5 N (M)

mean (%) −1.32 −1.05 −0.80 1.31 3.04 4.35 −1.14 −0.59 0.19 0.73 1.71 2.84
t-stat −0.64 −0.50 −0.41 0.82 1.74 2.57 −0.56 −0.32 0.10 0.40 0.94 1.63

fx (%) −1.63 −1.67 −2.71 −1.39 −0.36 1.27 −1.18 −1.14 −1.33 −2.29 −2.16 −0.97
ir (%) 0.31 0.63 1.91 2.71 3.39 3.08 0.05 0.55 1.52 3.03 3.86 3.82

net 0.11 0.07 0.01 −0.05 −0.14 -0.25 0.09 0.06 0.00 −0.04 −0.10 −0.19
Sharpe −0.13 −0.11 −0.09 0.16 0.38 0.54 −0.11 −0.06 0.02 0.08 0.21 0.34
std (%) 10.18 9.86 9.06 8.35 8.06 8.03 10.12 9.42 8.61 9.21 8.28 8.44
skew −0.25 −0.74 −0.55 −0.14 0.15 0.01 −0.20 −0.46 −0.35 −0.53 −0.39 −0.19
kurt 4.13 6.45 4.91 4.29 3.79 3.60 3.45 4.98 3.90 4.52 5.29 4.47
ac1 0.05 0.09 0.09 −0.01 0.08 0.04 0.04 0.02 0.06 0.00 0.21 0.10

P1 P2 P3 P4 P5 N (L) P1 P2 P3 P4 P5 N (T)

mean (%) −0.98 −0.02 0.56 0.24 0.97 1.94 −0.74 −0.94 0.24 1.08 1.33 2.07
t-stat −0.49 −0.01 0.28 0.14 0.53 1.15 −0.38 −0.47 0.13 0.60 0.77 1.23

fx (%) −1.07 −0.59 −1.07 −2.50 −2.98 -1.91 −0.83 −1.42 −1.43 −1.70 −2.64 −1.81
ir (%) 0.10 0.58 1.63 2.74 3.94 3.85 0.09 0.48 1.67 2.77 3.97 3.88

net 0.07 0.04 0.00 −0.03 −0.08 -0.15 0.27 0.17 0.01 −0.14 −0.30 −0.57
Sharpe −0.10 0.00 0.06 0.03 0.11 0.24 −0.07 −0.10 0.03 0.12 0.17 0.25
std (%) 9.86 9.29 9.05 8.80 8.59 8.22 9.96 9.53 9.17 8.95 7.89 8.18
skew −0.21 −0.39 −0.40 −0.35 −0.54 -0.26 −0.11 −0.56 −0.56 −0.28 −0.57 −0.16
kurt 3.46 4.58 5.80 3.52 5.59 4.93 3.55 5.20 4.82 3.87 5.80 3.24
ac1 0.06 0.04 0.09 −0.04 0.15 0.10 0.03 0.06 0.02 0.00 0.19 0.06
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Table A2. Net-directional Network Portfolios and Benchmark Strategies:
Including Contemporaneous Correlations

This table presents correlations (Panel A) and a contemporaneous regression (Panels B and C) of monthly
returns of net-directional network portfolios (N (d) : d ∈ {S, M, L, T}) on benchmark strategies — dollar
(dol), carry trade (car), volatility (vol), volatility risk premium (vrp), and momentum (mom). The table
reports the results for volatility linkages including contemporaneous correlations. Constants reported in the
“alpha” row are expressed in percentage per annum. The numbers in rows with a grey font are t-statistics
of estimates. The t-statistics are based on Newey and West (1987) standard errors. The last two rows report
adjusted R2 values (in percentage) and the number of observations. The sample is from January 1996 to
January 2023.

Panel A: Correlations with trading strategies

N (S) N (M) N (L) N (T)

dol −0.36 −0.32 −0.25 −0.36
car 0.15 0.33 0.41 0.31
vol −0.11 −0.08 −0.03 −0.15
vrp 0.25 0.29 0.27 0.27
mom 0.12 0.12 0.12 0.15

Panel B: Returns of network portfolios on benchmarks

N (S) N (M) N (L) N (T)

alpha 3.07 0.85 −0.25 0.23
2.09 0.56 −0.17 0.16

dollar −0.48 −0.49 −0.43 −0.48
−7.05 −7.03 −5.83 −6.74

car 0.15 0.32 0.38 0.33
1.94 4.70 5.56 4.90

vol 0.11 0.05 0.02 −0.02
1.10 0.59 0.32 −0.25

vrp 0.14 0.12 0.07 0.07
1.79 1.51 0.92 0.99

mom 0.06 0.04 0.04 0.05
1.15 0.71 0.64 0.93

R2(%) 23.77 33.10 35.02 34.46
Obs. 324 324 324 324
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Table A3. Diversification Gains: Including Contemporaneous Correlations

This table presents the impact of adding a short-term net-directional strategy (N (S)) to benchmark strate-
gies — dollar (dol), carry trade (car), volatility (vol), volatility risk premium (vrp), and momentum (mom).
We construct a naive 50%-50% portfolio of N (S) and one of the benchmark strategies. The “1/N” column
presents the statistics of an equally weighted portfolio of all benchmarks and a network strategy. The table
reports the results for volatility linkages including contemporaneous correlations. Mean, standard deviation,
and Sharpe ratio are annualized, but the t-statistic of mean, skewness, kurtosis, and the first-order autocor-
relation are based on monthly returns. The t-statistics are based on Newey and West (1987) standard errors.
The last row in each panel shows the percentage increase in the Sharpe ratio of a diversified portfolio relative
to the original benchmark strategy. The sample is from January 1996 to January 2023.

dol car vol vrp mom

+ N (S) 1/N

mean (%, annual) 2.25 4.86 3.48 2.67 3.60 3.37
t-stat 2.26 3.01 2.98 1.79 2.86 3.16
Sharpe 0.50 0.66 0.59 0.39 0.56 0.70
std (%) 4.49 7.36 5.92 6.81 6.46 4.83
skew −0.03 −0.04 0.41 0.31 0.06 0.01
kurt 3.56 3.60 4.92 5.68 3.53 3.53
ac1 0.09 0.10 −0.03 0.12 −0.01 0.09

%∆ Sharpe 2715.64 38.00 117.57 265.75 80.32 46.80

Table A4. Subsamples: Including Contemporaneous Correlations

This table presents a robustness analysis of currency strategies for subsamples from January 1996 to June
2007 and from July 2007 to January 2023. The table reports descriptive statistics of net-directional network
portfolios based on volatility linkages including contemporaneous correlations. Mean, standard deviation,
and Sharpe ratio are annualized, but the t-statistic of mean, skewness, kurtosis, and the first-order auto-
correlation are based on monthly returns. The t-statistics are based on Newey and West (1987) standard
errors.

1996.1-2007.6 2007.7-2023.1

N (S) N (M) N (L) N (T) N (S) N (M) N (L) N (T)

mean (%) 6.23 4.38 3.42 3.69 2.98 1.72 0.86 0.88
t-stat 2.14 1.31 1.06 1.22 1.53 1.00 0.52 0.48
Sharpe 0.72 0.45 0.35 0.40 0.39 0.23 0.12 0.12
std (%) 8.64 9.65 9.69 9.23 7.55 7.44 6.97 7.32
skew −0.22 −0.39 −0.54 −0.37 0.21 0.05 0.19 0.07
kurt 2.67 4.67 4.77 2.87 4.75 3.35 3.87 3.60
ac1 0.09 0.21 0.14 0.15 −0.01 −0.04 0.03 −0.04
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Table A5. Allocation Analysis for the Network Portfolios

This table presents an allocation analysis for quintile portfolios (Pi : i = 1, . . . , 5) sorted by short-term net-
directional connectedness based on volatility linkages excluding or including contemporaneous correlations.
The portfolio P1(P5) comprises currencies with the highest (lowest) network characteristic. The columns
report the fraction of months each currency belongs to a particular portfolio. The sample is from January
1996 to January 2023.

Excl. Contemporaneous Corr. Incl. Contemporaneous Corr.

P1 P2 P3 P4 P5 P1 P2 P3 P4 P5

Australia 0.14 0.16 0.23 0.30 0.17 0.22 0.27 0.26 0.17 0.08
Brazil 0.24 0.10 0.13 0.21 0.33 0.02 0.04 0.15 0.31 0.48
Canada 0.21 0.27 0.25 0.19 0.07 0.10 0.16 0.28 0.28 0.18
Czech Republic 0.18 0.24 0.25 0.23 0.10 0.22 0.24 0.25 0.15 0.13
Denmark 0.12 0.30 0.32 0.19 0.07 0.38 0.34 0.15 0.08 0.04
Euro Area 0.17 0.31 0.33 0.14 0.04 0.53 0.33 0.10 0.04 0.01
Hungary 0.21 0.21 0.16 0.22 0.20 0.19 0.20 0.21 0.19 0.20
Japan 0.22 0.16 0.14 0.23 0.25 0.05 0.12 0.22 0.27 0.33
Mexico 0.11 0.07 0.08 0.11 0.64 0.03 0.07 0.14 0.29 0.46
New Zealand 0.13 0.23 0.24 0.28 0.11 0.13 0.21 0.32 0.22 0.12
Norway 0.13 0.27 0.35 0.19 0.06 0.51 0.27 0.13 0.07 0.02
Poland 0.17 0.17 0.15 0.20 0.31 0.20 0.24 0.22 0.20 0.15
Singapore 0.31 0.23 0.21 0.15 0.10 0.10 0.19 0.25 0.27 0.18
South Africa 0.29 0.17 0.13 0.18 0.23 0.09 0.11 0.24 0.27 0.28
South Korea 0.08 0.05 0.06 0.14 0.68 0.03 0.09 0.22 0.32 0.34
Sweden 0.16 0.31 0.35 0.15 0.03 0.44 0.33 0.16 0.05 0.02
Switzerland 0.13 0.29 0.25 0.25 0.08 0.31 0.36 0.15 0.08 0.09
Taiwan 0.46 0.17 0.09 0.14 0.14 0.02 0.08 0.23 0.28 0.39
Turkey 0.31 0.10 0.06 0.16 0.37 0.01 0.08 0.21 0.29 0.40
United Kingdom 0.22 0.16 0.18 0.25 0.19 0.15 0.19 0.23 0.21 0.22
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Table A6. Equity and Hedge Fund Factors: Excluding Contemporaneous Correlations

This table presents a contemporaneous regression of monthly returns of a short-term net-directional strategy
(N (S)) on the equity and hedge fund strategies. The table reports the results for volatility linkages excluding
contemporaneous correlations. For the equity factors, we consider five Fama-French factors — market (MKT),
size (SMB), value (HML), profitability (RMW), investment (CMA) — and momentum (MOM), which are
constructed for the U.S., developed or emerging markets. For the hedge fund factors, we consider seven
Fung-Hsieh factors — bond (BOND), currency (CURR), and commodity (COMM) trend-following factors,
equity market (EMKT), equity size (ESIZE), bond market (BMKT), and bond size spread (CSPREAD) factors.
Constants reported in the “alpha” row are expressed in percentage per annum. The numbers in rows with
a grey font are t-statistics of estimates. The t-statistics are based on Newey and West (1987) standard errors.
The last two rows report adjusted R2 values (in percentage) and the number of observations. The sample is
from January 1996 to January 2023.

Equity Factors

US Developed Emerging Hedge Fund Factors

alpha 5.44 5.79 5.20 Alpha 6.63
3.27 3.40 2.84 3.48

MKT −0.08 −0.10 −0.07 BOND 0.01
−1.97 −2.36 −2.11 0.57

SMB 0.07 0.01 0.06 CURR 0.01
1.33 0.18 0.93 0.88

HML −0.10 −0.15 −0.02 COMM −0.01
−1.70 −1.75 −0.20 −0.63

RMW 0.05 0.06 0.29 EMKT −0.11
0.69 0.57 2.63 −2.20

CMA 0.03 0.07 0.07 ESIZE 0.03
0.35 0.70 0.92 0.48

MOM 0.00 −0.02 −0.08 BMKT 0.01
−0.16 −0.45 −1.69 0.92

CSPREAD 0.01
0.36

R2(%) 4.06 5.56 8.06 6.16
Obs. 324 324 324 324
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