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Abstract

This paper investigates the nonexistence of unbiased estimators with finite variance
in parametric statistical models used in empirical economic studies. It presents two
results. The first result is a sufficient condition for the nonexistence of finite-variance
unbiased estimators. The second result is a method for verifying this sufficient condi-
tion. The application of this method gives support to the view that allowing for the
possibility of overparametrizations, such as those that would occur when modelling
instrumental variables, self-selection, endogeneity, or skewness, before knowing that
they are not features of the data, can lead to the impossibility of constructing finite-
variance unbiased estimators. The nonexistence of finite-variance unbiased estimators
motivates considering alternative criteria for evaluating estimators. As a by-product,
the second result gives a test of local identifiability with exact size control.

Keywords: Estimation, Unbiasedness, Minimum Variance, Metric Derivative, Over-
parametrization Test.
JEL Codes: C13, C24, C26, C34.

§1. Introduction

Parametric statistical models serve to produce evidence relevant to economic analysis,

among other uses. They offer the possibility of couching magnitudes representing economic

behaviour, such as elasticities, as parameters of density functions. The practical use of these

models requires choosing an estimator with desirable statistical properties for the param-

eters. A standard choice is the maximum likelihood estimator. This estimator can differ

in a systematic manner from parameters; i.e., the maximum likelihood estimator can be

1I would like to thank Santiago Oliveros, Sami Stouli, and Pietro Spini and participants at the 2023
Universita di Siena Workshop on Econometric Theory and Applications, the IAAE 2023 Annual Conference
for useful comments and discussions.
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biased. An alternative is to convert a biased maximum likelihood estimator into an unbiased

estimator using a debiasing method; see, e.g., Firth (1993), Müller and Wang (2019). What

are parametric statistical models in which trying the conversion from biased to unbiased

estimators is not desirable? Addressing this question is relevant, first, for justifying bias as

a feature of certain modeling requirements, rather than as a consequence of a poor choice of

an estimator, and, second, for motivating alternative criteria, other than unbiasedness, for

choosing estimators. The first order of business is to deal with the problem of existence. If

no unbiased estimator does exist, Doss and Sethuraman (1989) show that any nearly unbi-

ased estimator can yield erratic estimates, and consequently produce evidence of unreliable

quality, due to an inevitable nearly infinite variance. Little is known, however, about the

nonexistence of unbiased estimators in parametric statistical models employed in economic

studies, except for linear instrumental variable models; see, e.g., Hirano and Porter (2015).

This paper investigates the nonexistence of finite-variance unbiased estimators in a class

of parametric density models in use by empirical economic studies. The class includes models

that have not yet been examined in the literature dealing with the construction of finite-

variance unbiased estimators. Examples are the normal self-selection model described in

Gronau (1974); the normal bivariate binary response model with endogeneity in Heckman

(1978) and employed by, e.g., Evans and Schwab (1995); a variant of this model with en-

dogenous switching in Lokshin and Glinskaya (2009); the normal trivariate regression model

with endogenous switching in Helpman et al. (2017); and the skew-normal binary response

model in Stingo, Stanghellini and Capobianco (2012). It also includes the normal linear in-

strumental variable model, which has been largely studied in the literature; see, e.g., Hirano

and Porter (2015) and Phillips (1980). This paper presents two results.

The first result shows that a sufficient condition for the nonexistence of finite-variance

unbiased estimators is the presence of Hellinger speedless points in the parameter space.

Models featuring this type of point have, for at least one of the model’s parameters, no
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finite-variance unbiased estimator. This result provides motivation for considering alter-

native criteria, other than minimum-variance unbiasedness, when evaluating estimators in

models with Hellinger speedless points. This result is related to, but not a particular case

of, existing impossibility results for models with nonidentifiable points, see, e.g., Gourieroux

and Monfort (1995, Chapter 6), or models with singularities in the mapping from reduced

form to structural parameters, see, e.g., Hirano and Porter (2015). Hellinger speedless points

are vanishing points of the Hellinger pseudo-distance derivative. Nonidentifiable points are

observational equivalent points in the parameter space. Singularities are vertical asymptotes

of the mapping from reduced form to structural parameters. I use a normal squared location

model to illustrate the difference between the three. The reduced form parameter is the loca-

tion, and the structural parameter is the squared location. The mapping from reduced form

to structural parameters is the square function. In this illustration, zero is a Hellinger speed-

less point, but it is neither nonidentifiable nor a singularity of the mapping from reduced

form to structural parameters. I use this example because it serves well as an illustration.

I understand that it is of little practical relevance. The results of this paper concern more

interesting models for empirical economic analysis, such as the parametric density models

used by Lokshin and Glinskaya (2009), Evans and Schwab (1995), and Gronau (1974).

The second result is a method for detecting Hellinger speedless points. For quadratic

mean differentiable models, I show that a point in the parameter space is Hellinger speedless

if and only if the least eigenvalue of the Fisher matrix evaluated at that point is zero. In

models with a closed-form Fisher matrix, e.g., the normal self-selection model, the detection

of Hellinger speedless points only requires checking the existence of a solution to a system

of linear equations. In models without a closed-form Fisher matrix, e.g., the normal bivari-

ate binary response model with endogenous switching, the detection of Hellinger speedless

points requires further elaboration. Naive methods, such as comparing the least eigenvalue

of the sample Fisher matrix with zero or with a parametric bootstrap critical value, fail to
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control the probability of incorrectly rejecting the hypothesis that a point in the parameter

space is Hellinger speedless. For these models, I propose a randomization test. The test uses

the least eigenvalue of a simulated sample Fisher matrix as the test statistic. It exploits the

invariance of the set of Hellinger speedless points to scalar reparametrizations for controlling

the probability of incorrectly rejecting the hypothesis that a point in the parameter space is

Hellinger speedless. As a by-product, when the point being tested is a regular point of the

Fisher matrix in the sense defined by Rothenberg (1971), the test becomes a local identifia-

bility test with exact size control. Alternative methods for constructing tests on eigenvalues

exist in the literature (see e.g., Anderson, 2003; Cragg and Donald, 1993; Chen and Fang,

2019). These methods, if tailored to the problem of detecting Hellinger speedless points,

could guarantee large-sample size control. The randomization test, by contrast, guarantees

finite-sample size control. One could nevertheless use insights from these alternative methods

to motivate the choice of a randomization test. Anderson (2003) shows that the sampling

distribution of sample eigenvalues changes with the algebraic multiplicity of the eigenvalue

of interest, which in my case is an unknown nuisance parameter. Since asymptotic or para-

metric bootstrap tests are, in general, unable to control size when the algebraic multiplicity

of the zero eigenvalue is unknown, I consider using a randomization test instead.

The application of these results reveals that the nonexistence of finite-variance unbiased

estimators can arise because of using overparametrizing models. The Fisher matrix in the

normal self-selection model has a zero eigenvalue at the point in the parameter space rep-

resenting absence of selection; see, e.g., Lee and Chesher (1986). The Fisher matrix in the

skew-normal binary response model has a zero eigenvalue at the point representing absence

of skewness; see, e.g., Stingo et al. (2012). The Fisher matrix in the normal bivariate bi-

nary response model with endogenous switching has a zero eigenvalue at points representing

an irrelevant instrument, absence of endogeneity, or both. Consequently, there is no finite-

variance unbiased estimator in these models. One can still choose a biased estimator, such
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as the maximum likelihood estimator, and then apply a bias-reduction method. The nonex-

istence of finite-variance unbiased estimators does not make this choice inappropriate. It

rather suggests that, in these models, bias should not be pushed to zero.

Additional existing impossibility results that are applicable to parametric models are in

van der Vaart (1991), on the nonexistence of regular estimators in models with a singular

Fisher matrix; Liu and Brown (1993), on the nonexistence of finite-variance unbiased esti-

mators for functions of parameters that are not uniformly continuous; Dufour (1997), on the

nonexistence of valid confidence intervals with finite length in models with nonidentifiable

points in the parameter space; Hirano and Porter (2012), on the nonexistence of regular esti-

mators for nondifferentiable functions of parameters; and in Kaji (2021), on the nonexistence

of equivariant-in-law estimators for weakly regular parameters. My randomization test is not

a particular case of the results in these papers. One can use the results in van der Vaart

(1991) to additionaly view my randomization test as a numerical method, useful in models

without closed-form Fisher matrix, for predicting the nonexistence of regular estimators.

I organize the rest of the paper as follows. Section 2 presents motivating examples for the

theoretical developments in each of the subsequent sections. Section 3 sets up a framework

encompassing the motivating examples. It defines the notion of a Hellinger speedless point

within this framework, and it presents the nonexistence of finite-variance unbiased estima-

tors in models with Hellinger speedless points. Section 4 discusses the meaning of Hellinger

speedless points in quadratic mean differentiable models, and it compares Hellinger speed-

less points with nonidentifiable points and singularities of the mapping from reduced form

to structural parameters. Section 5 describes the randomization test for detecting Hellinger

speedless points and establishes the validity of the test for controlling size in finite samples.

Section 6 concludes. There are four appendices. Appendix A contains the proofs of the

propositions in the text. Appendix B derives the score in the binary bivariate switching

model. Appendix C establishes the impossiblity to construct regular estimators, as defined
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by Van der Vaart (1991), for Hellinger speedless points. Appendix D constructs an alterna-

tive resampling test for detecting Hellinger speedless points.

§2. Motivating Examples

I first give examples of models illustrating the issues I want to investigate and the chal-

lenges that they create. I set out, in the next Section, a framework that encompasses these

examples and other parametric density models in use by empirical economic studies.

Example 1 (Normal Linear Instrumental Variable Model). Let Yi = (Y1i, Y2i) denote a

bivariate continuous random variable. Consider the specification

Y1i = β0Y2i + U1i

Y2i = γ0xi + U2i

, where Ui|xi ∼ N

(
0

0
,

1 .5

.5 1

)

with Ui = (U1i, U2i). This is a simplified parametric version of the linear triangular instru-

mental variable model. Consider the problem of constructing a minimum-variance unbiased

estimator for β from a random sample {Yi, xi}Ni=1. There are at least two strategies to show

the nonexistence of such an unbiased estimator. The first strategy uses the observation

that, see e.g., Hirano and Porter (2015), vertical asymptote in the mapping from reduced

to structural parameters do not have unbiased estimators. Set θ = (β, γ) and π = (π1, π2)

with π1 = βγ and π2 = γ. The mapping from reduced form to the structural parameter of

interest is π → κ(π) = π1/γ = βγ/γ, so β = κ(θ). It has a vertical asymptote at γ0 = 0. The

second strategy uses the observation that, see e.g. Gourieroux and Monfort (1995, Chapter

6, Proposition 6.2, p. 129), nonidentifiable points do not have unbiased estimators. The

specification in this example has an identifiability failure at (β0, γ0) ∈ ((−∞,∞), 0). By

contrast, I seek to establish the nonexistence of finite-variance unbiased estimators without
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having to check whether there is an identifiability failure or a vertical asymptote. My moti-

vation comes from the following examples.

Example 2 (Normal Squared Location Model). This example is of little empirical interest

but it will serve to illustrate sources of nonexistence of finite-variance unbiased estimators

other than identifiability failures or vertical asymptotes. Let Yi denote a continuous random

variable. The specification is

Yi = θ2
0 + Ui, where Ui ∼ N (0, 1).

Consider the problem of constructing a minimum variance unbiased estimator for θ0 from

a random sample {Yi}Ni=1. The mapping θ → κ(θ) = θ2 does not have a vertical asymp-

tote. Any θ ∈ R is a locally identifiable point, see e.g., Gourieroux and Monfort (1995,

Chapter 3, Example 3.16, p. 89). The smallest Hellinger pseudo-distance derivative passing

through θ0 = 0, which is defined in the next section, is zero. Section 3 below shows that this

last observation implies that there is no finite-variance unbiased estimator for θ0 = 0 even

when θ0 = 0 is locally identifiable and the mapping θ → θ2 does not have vertical asymptotes.

Example 3 (Normal Self-Selection Model). Let Y ?
i = (Y ?

1i, Y
?

2i) denote a latent bivariate

continuous random variable. Consider the specification

Y ?
1i = x1iβ0 + σ1U1i

Y ?
2i = x1iγ1 + x2iγ2 − U2i

, where Ui|xi ∼ N

(
0

0
,

1 ρ0

ρ0 1

)

with Ui = (U1i, U2i) and xi = (x1i, x2i). The variables Y ?
1i and Y ?

2i are not observed. Instead,
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we observe

Y1i = Y ?
1iY2i

Y2i = 1(Y ?
2i > 0).

The specification in this example was proposed by Gronau (1974) to analyze reservation

wages. It has been used since then in several different applications, including studies in

health economics, see e.g., Jones (2000) for a review, and in empirical corporate finance, see

e.g. Li and Prabhala (2007) for a review.

Consider the problem of constructing a minimum-variance estimator for β0 from a ran-

dom sample {Y1i, Y2i, xi}Ni=1. The parameter β0 is identifiable. Section 4 below shows that

there is no finite-variance unbiased estimator for β0 without checking whether θ → κ(θ) = β0

has a vertical asymptote. I obtain this result from examining below the smallest Hellinger

pseudo-distance derivative for curves passing through (β0, γ1, γ2 = 0, σ1, ρ0 = 0).

Example 4 (Normal Bivariate Binary Response with Endogenous Switching). This example

will serve to motivate the introduction of a statistical test in Section 5. In this example,

the Hellinger pseudo-distance derivative is not available in closed-form. Let Y ?
i = (Y ?

1i, Y
?

2i)

denote a latent bivariate continuous random variable. Consider the latent specification

Y ?
1i = x1iβ1 + Y2iβ2 + x̃1iY2iβ3 − U1i

Y ?
2i = x1iγ1 + x2iγ2 − U2i

, where Ui|xi ∼ N

(
0

0
,

1 ρ0

ρ0 1

)

with Ui = (U1i, U2i), xi = (x1i, x2i), and x1i = (1, x̃1i)
′. The variables Y ?

1i and Y ?
2i are not
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observed. Instead, we observe

Y1i = 1(Y ?
1i > 0)

Y2i = 1(Y ?
2i > 0).

Lokshin and Glinskaya (2009) use this specification to examine the effect of seasonal migra-

tion decisions (Y1) by a husband on labor market participation decisions (Y2) by his wife

using data for Nepali households. The interactive covariate Y2ix̃1i captures differences in

home productivity x̃1i in households with and without a migrant. The disturbances U1i and

U2i capture unobserved variables affecting each decision. Nonnegative correlation between

the disturbances makes Y2i to be correlated with U1i, i.e., the migration decision and the

interactive covariate are endogenous covariates. For the simplest case when x̃1i and x2i have

only one component, this model has one instrumental variable (x2i measuring migration

costs) and two endogenous covariates (Y2i and Y2ix̃1i). The case with β3 = 0 corresponds to

the normal bivariate binary response model with endogeneity employed by, e.g., Evans and

Schwab (1995) to analyze the effect of attending a catholic school on college completion.

Consider the problem of constructing a minimum-variance unbiased estimator for β1 and

β1 + β3 from a random sample {Y1i, Y2i, xi}Ni=1. Identifiability of β1 or vertical asymptotes of

θ → κ(θ) = β1 have either only investigated for the special case β3 = 0 or have not yet been

investigated in the literature. I show that there is no finite-variance unbiased estimator for

β1, without checking whether β1 is identifiable or θ → κ(θ) = β1 has a vertical asymptote.

I obtain this result using below a statistical test for the null hypothesis that the smallest

Hellinger pseudo-metric derivative for curves passing through (β, γ1, γ2 = 0, ρ0 = 0) is zero.

§3. Nonexistence of Finite-Variance Unbiased Estimators
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This Section sets up a statistical model that encompasses the examples in the previous

Section. It defines the notion of a Hellinger speedless point within this model and it works

out the consequences on the nonexistence of finite-variance unbiased estimators from the

presence of these points.

Parametric Model. The observations consist of independent and identically distributed ran-

dom vectors Y1, .., YN with values in a subset Y of the Euclidean space. The random vector

Y1 has a probability function Pθ0 . The parameter θ0 belongs to the parameter space Θ. It

has two components θ0 = (β0, γ0). The parameter space Θ = B × Γ is an open subset of

R2. Assume that Pθ has a positive density function with respect to a σ-finite measure µ. To

interchange limits and integrals when required, I also assume that there exists an integrable

function ḡ such that fθ < ḡ2. The parametric model is the family of densities

FΘ :=

{
fθ : Y → R, fθ > 0,

∫
fθdµ = 1, fθ < ḡ2,

∫
ḡ2dµ <∞, θ ∈ Θ

}
.

One could work with the case when the parameter space is a more general space. However,

the results are more easily described in the specific case Θ ⊆ R2.

Estimation Problem. The parameter θ0 is unknown. An unbiased estimator for β0 is a

measurable function β̂N : YN → B from the sample space into the parameter space such

that ∫
β̂N fθ × ...× fθ︸ ︷︷ ︸

N times

dµ = β for every θ ∈ Θ.

I consider the problem of finding an unbiased estimator with the smallest variance among

all unbiased estimators. The minimum variance for unbiased estimators may not be finite.

Extreme estimates are likely to be encountered if such is the case. These extreme estimates
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could lead to distorted discoveries. This Section aims to clarify this phenomenon by using

a measure of the ability of the model to distinguish θ0 from relevant nearby points in the

parameter space.

Hellinger Speedless Points. The square of the Hellinger distance between the densities fθ

and fθ0 is

ρ(fθ, fθ0)
2 :=

∫ ∣∣f 1/2
θ − f 1/2

θ0

∣∣2
2

dµ.

It arises from adding up (over the different realizations y of the random variable Yi) the

areas of one of the two equivalent equilateral triangles making the square with side lenght

|f 1/2
θ (y)− f 1/2

θ0
(y)|. The Hellinger pseudo-distance between the points θ and θ0 is

h(θ, θ0) :=
√
ρ(fθ, fθ0)

2 =

√∫ ∣∣f 1/2
θ − f 1/2

θ0

∣∣2
2

dµ.

The Hellinger pseudo-distance takes values between zero and one. I call these values Hellingers.

They are invariant to the choice of µ. There are functions other than the Hellinger distance

to measure the distance between densities. I chose the Hellinger distance because it leads

to the Theorem below about the non-existence of unbiased estimators with finite-variance.

The metric properties of (Θ, h) are not the same as those of (FΘ, ρ). I am going to exploit

this difference in the rest of the paper.

Let c : [0, 1] → Θ denote a curve from the closed interval [0, 1] to the parameter space

that is differentiable on the open interval (0, 1) and takes value θ0 at zero. The curve ε→ c(ε)

is Hellinger pseudo-distance differentiable at zero if the limit

|ḣθ0|(c) := lim
ε→0

h
(
c(ε), θ0

)
|ε|

exists. I call |ḣθ0|(c) the Hellinger pseudo-distance derivative of the function ε → c(ε). It
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is a particular case of the general concept of metric derivative for a curve studied by, e.g.,

Ambrosio, Gigli and Savare (2008, Chapter 1). Let Cθ0 denote the set of Hellinger pseudo-

distance differentiable curves. For ε = 1/N , I interpret |ḣθ0|(c) as the speed (in Hellingers per

observation) when approaching θ0 along the Hellinger pseudo-distance differentiable curve c.

The Hellinger sensitivity at θ0 is

vθ0 := inf
c∈Cθ0

|ḣθ0|(c) = inf
c∈Cθ0

lim
ε→0

h
(
c(ε), θ0

)
|ε|

.

For ε = 1/N , vθ0 is the speed when approaching θ0 along the slowest Hellinger pseudo-

distance differentiable curve. The Hellinger sensitivity measures the ability of the model to

distinguish θ0 from nearby (in the Hellinger pseudo-distance) points in the parameter space.

Definition (Hellinger Speedless Point). A point θ0 is Hellinger speedless if the Hellinger sen-

sitivity at θ0 is zero, i.e., vθ0 = 0.

At a Hellinger speedless point, there is a direction in the parameter space at which the

Hellinger pseudo-distance function is flat because the pseudo-metric derivative is zero. A

flat Hellinger pseudo-distance function cannot discriminate between nearby, in the Hellinger

pseudo-distance sense, points in the parameter space. The definition of Hellinger speedless

point does not presuppose that the mapping θ 7→ f
1/2
θ is differentiable, so it applies to models

that may not be differentiable in quadratic mean.

Impossibility Result. The following result works out a negative consequence of the presence

of Hellinger speedless points on the existence of minimum-variance unbiased estimators.

Theorem 1. An estimator β̂N of β0 cannot both be unbiased and have finite variance at
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any Hellinger speedless point.

This result follows from applying the Cauchy-Schwarz inequality to relate the Hellinger

pseudo-distance derivative with the bias and variance of any estimator. The choice of the

Hellinger distance induces an inner space structure, which, in turn, justifies the application

of the Cauchy-Schwarz inequality.

§4. Characterizing Hellinger Speedless Points

I get further insight in this Section about Hellinger speedless points, and how to detect

them, by considering models with Fisher matrix.

Definition (QMD Model). The density fθ0 belongs to the family of QMD models if there is

a measurable function sθ0 : Y → R2 such that

[ ∫
(f

1/2
θ0+∆ − f

1/2
θ0
−∆>sθ0f

1/2
θ0

)2dµ

]1/2

= o(‖∆‖2) for any {∆ ∈ R2} → 0 and any θ0 ∈ Θ.

The expectation of the outer product of gθ is the Fisher matrix evaluated at θ:

Iθ0(θ) :=

∫
sθs
>
θ fθ0dµ.

Eigenvectors of the Fisher matrix represent the directions of the largest variance of the

random vector sθ0 while the eigenvalues represent the magnitude of this variance in those

directions. The eigenvalues of the Fisher matrix depend on the particular parametrization

chosen. If we reparametrize a model in terms of ϑ = κ(θ) for a differentiable mapping κ,

then the Fisher matrix scales by the square of of the derivative of κ. I use this observation

in Section 5 below to construct a statistical test to detect Hellinger speedless points. The
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following result characterizes Hellinger speedless points in terms of the smallest eigenvalue

of the Fisher matrix.

Proposition 1. Assume that fθ0 belongs to the family of QMD models. Then, θ0 ∈ Θ is

Hellinger speedless point if and only if the smallest eigenvalue of the Fisher matrix evaluated

at θ0 is zero.

According to Proposition 1, a Hellinger speedless point indicates that there is a direction

in the parameter space at which the random vector sθ0 has no variability. Three remarks

are in order. First, Proposition 1 suggests that, for checking whether a given point in the

parameter space is Hellinger speedless, one can consider testing the null hypothesis that the

smallest eigenvalue of the Fisher matrix is zero versus the alternative that it is positive. I

describe, in Section 5 below, a statistical test for these hypotheses.

Second, the following corollary to Proposition 1 follows as a direct application of Sard’s

Theorem.2

Corollary. The set of square-root densities with Hellinger speedless points has Lebesgue

measure zero.

This Corollary indicates that, while the map θ 7→ f
1/2
θ may have many Hellinger speed-

less points in its domain, which is the parameter space, it must have critical values in its

codomain, which is the manifold of square-root densities, with zero Lebesgue measure. This

Corollary does not suggest that Hellinger speedless points should be neglected in applica-

tions; it just indicates that the class of Hellinger speedless densities is not dense in the space

of squared-root densities.

2I would like to thank Pietro Spini for suggesting this Corollary.
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Third, Proposition 1 suggests comparing Hellinger speedless points with nonidentifiable

points characterized in terms of the Fisher matrix, see, e.g., Rothenberg (1971). I perform

such a comparison in the next subsection.

4.1 Nonidentifiable Points

I proceed by recalling the definition of an identifiable point.

Definition (Identifiable Point). Two points θ and θ0 in the parameter space are observational

equivalent if and only if fθ = fθ0 µ-ae. The point θ0 is identifiable if there is no other θ in

the parameter space that is observational equivalent to θ0.

Proposition 2. Assume that fθ0 belongs to the family of quadratic mean differentiable

models. Then, every non-identifiable point is a Hellinger speedless point. The converse is

not true, i.e., there are Hellinger speedless points that are identifiable.

The next two examples illustrate the differences and similarities between Hellinger speed-

less points and nonidentifiable points.

Example 1 (Normal Linear Instrumental Variable Model, cont’ed). This is an example of a

Hellinger speedless point that is nonidentifiable. Consider the specification in Example 1.

The model for the density of Yi conditional on zi is

fθ(y) =
exp

(
− 1

2
(y − λθ)>Ω−1

β (y − λθ)
)√

(2π)2 det Ωβ

, where λθ =

βγzi
γzi

 and Ωβ =

β2 + β + 1 β + 1
2

β + 1
2

1

 .

The Hellinger pseudometric between θ and θ0 induced by the L2(µ) norm is (see e.g., Pardo,
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2004, p. 51)

h(θ, θ0) =

[
1− det(Ωβ)1/4 det(Ωβ0)

1/4

det
(
(Ωβ + Ωβ0)/2

)1/2
exp

(
− 1

8
(λθ − λθ0)>

(
Ωβ + Ωβ0

2

)−1

(λθ − λθ0)

)]1/2

.

For θ0 = (0, 0) =: 02, set the curve ε 7→ e(ε) = (ε, 0). Along this curve, we have λc(ε) − λ02 =

(ε, 0)>, det(Ωε) = 3/4 = det(Ω0), and det
(
(Ωε + Ω0)/2

)
= 3/4. Hence,

h(e(ε), 02) =

[
1− [(3/4)1/2(3/4)1/2]1/2

(3/4)1/2
exp(0)

]1/2

= 0.

We deduce that any θ0 ∈ R× 0 is a nonidentifiable point. We also have

|ḣθ0(e)| := lim
ε→0

h(e(ε), θ0)

|ε|
= lim

ε→0

0

|ε|
= 0 and 0 = |ḣθ0(e)|2 = inf

c∈Cθ0
|ḣθ0(c)|2.

The point θ0 = (0, 0) is a Hellinger speedless point. From Proposition 1, we know that the

smallest eigenvalue of the Fisher matrix evaluated at this point is zero.

Example 2 (Normal Squared Location Model, cont’ed). This example shows a Hellinger

speedless point that is identifiable. Consider the specification in Example 2. The model for

the density of Yi is

fθ(y) = (
√

2π)−1 exp

(
− (y − θ2)2/2

)
This model has

h(θ, θ0) = 1− exp

(
− (θ2 − θ2

0)2/8

)
and

∫
gθg
>
θ fθdµ = 4θ2.

Consider the point θ0 = 0. We have h(θ, 0) = 1 − exp(−θ4/8) and the unique minimizer of

θ → h(θ, 0) is zero. Hence, θ0 = 0 is identifiable. We also have
∫
g0g
>
0 f0dµ = 0. Hence,
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θ0 = 0 is also Hellinger speedless.

4.2 Singularities

I now compare Hellinger speedless points with singularities in the mapping from reduced

form to structural parameters introduced by Hirano and Porter (2015). I proceed by recall-

ing the definition of these singularities.

Definition (Singularity). Let κ : Θ → R denote a function from the parameter space into

the real line. A point θ0 is a singularity in κ if there is a convergent sequence {θj ∈ Θ}j such

that limj→∞ θj = θ0 and κ(θj)→ ±∞ as j →∞.

A singularity in κ is a vertical asymptote. We have the following result.

Proposition 3. Every singularity in κ : Θ→ R is a Hellinger speedless point. The converse

is not true, i.e., there are Hellinger speedless points that are not singularities.

The next illustration provides an example of a Hellinger speedless point that is not a

singularity of the mapping from reduced form to structural parameters.

Example 2 (Normal Squared Location Model, cont’ed). From our previous analysis, we known

that θ0 = 0 is a Hellnger critical point. Set κ(θ) = θ2 and consider any sequence {θj ∈ R}j

converging to zero. For any of such sequences, we have κ(θj) → 0 because θ → θ2 is differ-

entiable at θ0 = 0. Hence, θ0 = 0 is not a singularity of κ.
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I conclude this section by observing that the absence of Hellinger speedless points is a nec-

essary condition for the existence of finite-variance unbiased estimators (Theorem 1). This

necessary condition is stronger than either the absence of nonidentifiable points (Proposition

2) or the absence of singularities in the mapping from reduced form to structural parameters

(Proposition 3).

§5. Detecting Hellinger Speedless Points

The characterization of Hellinger speedless points in the previous Section suggests detect-

ing these points by calculating the smallest eigenvalue of the Fisher matrix and comparing

it with zero. I now develop this suggestion into a method.

5.1 Models with Fisher Matrix in Closed-Form

On the one hand, there are models where the Fisher matrix is available in analytical form.

In these models, the detection of Hellinger speedless points only involves checking for the

existence of a solution to a system of linear equations. Examples of models with closed-form

Fisher matrix includes the normal self-selection model, see e.g., Lee and Chesher (1986), and

the skew-normal binary response model, see e.g., Stingo et al. (1986). The analysis of these

models suggests that Hellinger speedless points arise as a consequence of overparametriza-

tion. I use this insight later in this section to hypothesize the existence of Hellinger speedless

points in models in which the smallest eigenvalue of the Fisher matrix is not already available

in closed-form. As an illustration, consider the following example.

Example 3 (Normal Self-Selection Model, cont’ed). This example illustrates the detection

of a Hellinger speedless point in a model a with closed-form Fisher matrix. The ultimate

objective is to verify that the point θ0 = (β, γ1, γ2 = 0, ρ = 0, σ1) is Hellinger speedless. But
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I simplify the calculations drastically for the sake of tractability. I confine calculations to

the special case where x1i only contains a constant. In this case, the Fisher matrix is, see

e.g., Lee and Chesher (1986),

Iθ0(θ0) =



Φ(γ1)

σ2
1

0 0 φ(γ1)
σ1

0 φ(γ1
Φ(γ1)[1−Φ(γ1)]

0 0

0 0 1
2σ4

1
Φ(γ1) 0

φ(γ1)
σ1

0 0 φ(γ1)2

Φ(γ1)


,

where φ(γ1) = (2π)−1/2 exp(−γ2
1/2) and Φ(γ1) =

∫ γ1
−∞ φ(u)du. Consider the first and last

columns. The system of linear equations relating these columns

Φ(γ1)

σ2
1

v − φ(γ1)

σ1

= 0

φ(γ1)

σ1

v − φ(γ1)2

Φ(γ1)
= 0

has solution v = −σ1φ(γ1)/Φ(γ1). This means that the Fisher matrix is singular, as the first

and last columns are linearly dependent. Hence, the smallest eigenvalue of the Fisher matrix

is zero. I now deduce, from Proposition 2, that θ0 is a Hellinger speedless point. At ρ = 0,

there is no self-selection, and at γ2 = 0, there are no excluded covariates.

5.2 Models with Intractable Fisher Matrix

On the other hand, there are models in which calculating the Fisher matrix in closed-

form is impractical or intractable. For illustrative purposes, consider the normal bivariate

binary response model with endogenous switching in Example 4. The calculations that we

have performed for the linear version of this model in Example 1 induce us to hypothesize

the presence of Hellinger speedless points. I do not find it instructive to perform similar
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calculations for Example 4. For models like this one, this section proposes a simulation-

based statistical test.

Consider the problem of testing

H0 : e(θ0) = 0 and H1 : e(θ0) > 0.

The objective is to construct a test for this problem that controls the probability of incor-

rectly rejecting the hypothesis H0 that θ0 is a Hellinger speedless point. Define the sample

eigenvalue statistic as

ê0 = q̂′NIN(θ0)q̂N , where q̂N ∈ arg min
q∈S

q′IN(θ0)q and IN(θ0) =
1

N

N∑
i=1

gθ0(Yi)gθ0(Yi)
′.

The next proposition gives the asymptotic null distribution of this test statistic. This result

is key to explaining the failure of the parametric bootstrap to deliver a test controlling size

and provides motivation for the randomization test I describe below.

Proposition 4. Assume that fθ belongs to a QMD model. Assume also that the fourth

moment of sθ0 is finite. Under e(θ0) = 0,

√
Nê0  Jθ0 = arg min

q∈Q0

q>Gθ0q
>

where Q0 = arg minq∈S q
>Iθ0(θ0)q, and Gθ0 ∼ N (0K×K , Vθ0) is a K2 ×K2 Gaussian random

matrix.

The asymptotic null distribution Jθ0 depends on Q0, which gives the algebraic multiplicity

of the zero eigenvalue. The parametric bootstrap fails to approximate the asymptotic distri-

bution Jθ0 because the mapping θ 7→ e(θ) fails to be differentiable unless Q0 is a singleton.
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To proceed, I show that the problem of testingH0 remains invariant under scalar reparametriza-

tions. The interested reader can find a review of the general theory of invariance in relation

to statistical testing problems in for example, Lehmann and Romano (2005, Chapter 6).

Write H0 as H0 : θ0 ∈ Θ0, where Θ0 = {θ ∈ Θ : e(θ) = 0} is the set of Hellinger speedless

points. Let G denote the group of scalar reparametrizations

gθ = κθ for any κ ∈ U(0,1) := {1− j/(J + 1)}Jj=1,

where gθ denote the action of g ∈ G on θ ∈ Θ. Since e(gθ0) = κ2e(θ0), the set of Hellinger

speedless points is invariant under scalar reparametrizations: gΘ0 = Θ0.

I now exploit the invariance of the set of Hellinger speedless points to construct a ran-

domization test for H0 against H1. A review of the general theory of randomization tests can

be found, for example, in Lehmann and Romano (2005, Chapter 15). Fix a nominal level α

between zero and one. Let {Yi,j}Ni=1 denote the Monte Carlo sample simulated under κjθ0 for

κj ∈ U[1,2). Let êj denote the value of the simulated sample eigenvalue statistic calculated

using the j − th simulated sample. Denote the ordered values of the simulated statistic as g

varies in G by

ê(1) ≤ ... ≤ ê(j) ≤ ... ≤ ê(J).

Let j? := dJ(1− α)e denote the smallest integer larger than J(1− α) and let

J+ :=
J∑
j=1

1(ê(j) > ê(j?)) and J− :=
J∑
j=1

1(ê(j) = ê(j?))

denote the number of simulated statistics that are, respectively, greater than and equal to
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ê(j?). The randomization test function is:

Tθ0 =


1 if ê0 > ê(j?)

(αJ − J+)/J0 if ê0 = ê(j?)

0 if ê0 < ê(j?).

The following result shows that the construction in the previous paragraph keeps under

control the probability of incorrectly rejecting the hypothesis that θ0 is a Hellinger speedless

point.

Proposition 5. For any α ∈ (0, 1), the test function Tθ0 satisfies

Eθ0(Tθ0) = α whenever θ0 ∈ Θ0.

Several remarks are in order. First, the randomization test Tθ0 controls size in finite

samples: the nominal level α is, for any sample size, equal to the probability of incorrectly

rejecting the hypothesis that θ0 is Hellinger speedless. Appendix B presents an alternative

resampling test and it shows that it controls size in large samples. Second, the randomiza-

tion test is similar: Tθ0 has rejection probability α for any Hellinger speedless point. Third,

for a point θ0 that is regular to the Fisher matrix, the randomization test becomes a lo-

cal identifiability test in view of the characterization of identifiability for regular points in

Rothenberg (1971, Theorem 1). Fourth, for the point θ0 = 0, the randomization test is

equivalent to the parametric bootstrap test. This is not in contradiction with the assertion

made in the Introduction that, in the general case when θ0 6= 0, the parametric bootstrap

test does guarantee size control, even in large samples. The randomization test controls size

in finite samples for any Hellinger speedless point.
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5.3 Numerical Exercises

Implementing the randomization test requires computing the smallest eigenvalue of the

sample Fisher matrix. There are alternative methods for carrying out such a computation.

Each method is subject to computational numerical errors, and the computed eigenvalue

may have low or even no accuracy, depending on the conditioning number of the matrix of

eigenvalues. All that one can hope for is to find a method that gives a solution suitably

close to the statistic ê. This Section explores three alternative methods to compute ê and

it warns about the need to take due care of computational numerical errors that could arise

when implementing the randomization test function described above.

The first method uses the QR algorithm for computing the eigenvalues of a symmetric

matrix, as implemented by the function eigen in the statistical software R. I denote the

solution given by this method by ẽ and I call it the QR computation of the smallest eigen-

value. The simulations show that the QR computation can return a negative number while

ê is non-negative because the Fisher matrix is positive semi-definite. The difference between

the QR computation and the smallest eigenvalue is due to computational numerical errors.

I explore two alternative methods. The first alternative uses the Rayleigh-Ritz characteriza-

tion of the smallest eigenvalue of a square matrix M as the solution to the quadratic problem

minq∈S q
′Mq, where S denotes the unit sphere. Let q̃ denote the eigenvalue corresponding

to the Jacobi computation ẽ. The Rayleigh-Ritz-Jacobi computation of the smallest eigen-

value is ĕ = q̃′Îθ(θ)q̃. The second alternative uses the Jacobi algorithm for computing the

eigenvalues of a symmetric matrix, as implemented by the function Jacobi in the statistical

software R.

I use the normal self-selection model in Example 3 to evaluate the alternative methods

to compute the smallest eigenvalue of the sample Fisher matrix. I have already verified in
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Section 5.1 that the smallest eigenvalue of the Fisher matrix at the point β1 = (1, 0), σ1 =

1, ρ = 0, γ1 = (1, 0), γ2 = 0 is zero. At this point, Proposition 5 indicates the randomization

test has a rejection rate equal to α. Table I reports the empirical rejection rates when the

smallest eigenvalue is computed using the QR, QR-Rayleigh-Ritz, and Jacobi methods. I

find that the numerical computation errors are non-negligible. The QR method gives the

most suitable approximation.

Table I: Empirical Rejection Probabilities for the Randomization Test

Example 3: Normal Self-Selection Model with β1 = (1, 0), σ1 = 1, ρ = 0, γ1 = (1, 0), γ2 = 0

Sample Size QR QR-Rayleigh-Ritz Jacobi

100 .052 .168 .185

400 .003 .204 .241

1,600 .000 .208 .172

Note: Nominal size is α = .05. The number of simulations is J = 99.
The number of Monte Carlo replications is 999.

Table II: Empirical Rejection Probabilities for the Randomization Test

Example 3: Normal Self-Selection Model with Local Alternatives θ0 + h/
√
N

Sample Size h = 1 h = 2 h = 3

100 .565 .595 .613

400 .797 .779 .815

1,600 .925 .945 .925

Note: Nominal size is α = .05. θ0 = (β1 = (1, 0), σ1 = 1, ρ = 0, γ1 = (1, 0), γ2 = 0).
The number of simulations is J = 99. Eigenvalues computed using the QR algorithm

implementation in R. The number of Monte Carlo replications is 999.

The last numerical exercise explores the power to local alternatives of the randomization

test. Table II reports the results.
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5.4 Application: Endogenous Recursive Switching Model

The objective of this exercise is to illustrate the use of the least eigenvalue randomization

test in a model without a closed-form expression for the Fisher matrix. The model is the

one described in Example 4:

Y ?
1i = x1iβ1 + Y2iβ2 + x̃1iY2iβ3 − U1i

Y ?
2i = x1iγ1 + x2iγ2 − U2i

, where Ui|xi ∼ N

(
0

0
,
1 ρ

ρ 1

)
,

x1 = (1, x̃1i) and x̃1i, x2i are independent normal random variables with zero mean and

variance .2 and .3, respectively. The parameters are θ := (β1, β2, β3, γ1, γ2, ρ). Appendix B

derives the individual score for this model. A non-normal version of this model, modeling

the joint distribution of the disturbances with a copula, has been studied by Han and Lee

(2019). The least eigenvalue randomization test also applies to parametric copula models of

the disturbances.

I consider four types of points in the parameter space: points representing the absence of

switching (β3 = 0), points representing the absence of recursion (β2 = β3 = 0), points repre-

senting the absence of endogeneity (ρ = 0), and points representing irrelevant instrumental

variables (γ2 = 0). The least eigenvalue of the Fisher matrix evaluated at each of these

points is the smallest root of an eight-degree polynomial. The roots of such a polynomial

do not exist in closed form. I then use the least eigenvalue randomization test, which does

not require to have a Fisher matrix in closed-form, to verify which of the four points are

Hellinger speedless.

The randomization test indicates that points representing the absence of endogeneity

and irrelevant instrumental variables are Hellinger speedless while points representing the

absence of recursion or switching are not.

§6. Conclusion
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There are econometric models where all finite-variance estimators are biased. Leading

examples include linear instrumental variable models, normal self-selection models, normal

bivariate binary response models with endogeneity and skew-normal binary response mod-

els. This impossibility result poses elementary questions, such as what the common cause

of this result is, how it can be detected, and by what means it should be handled. This

paper introduces Hellinger speedless points as a notion for explaining the nonexistence of

finite-variance unbiased estimators. For quadratic mean differentiable models, a point is

Hellinger speedless if and only if the smallest eigenvalue of the Fisher matrix evaluated at

the point is zero. This characterization provides a method for diagnosing the nonexistence of

finite-variance unbiased estimators. As a by-product, the method gives a test of local iden-

tifiability with exact size control. The application of this method gives support to the view

that unwittingly modelling instrumental variables, self-selection, endogeneity, or skewness

when they are not features of the data leads to the nonexistence of finite-variance unbiased

estimators. More generally, these results provide motivation for considering alternative cri-

teria other than minimum-variance unbiasedness when evaluating estimators in the presence

of Hellinger speedless points.

This paper focuses on the small-sample properties of estimators in models with Hellinger

speedless points in a finite-dimensional parameter space. The large-sample properties of the

maximum likelihood and generalised method-of-moments estimators have been investigated

by Rotnitzky, Cox, Bottai, and Robbins (2000) and Dovonon and Hall (2018), respectively.

Semiparametric density models, e.g., Bonhomme (2012), Khan and Nekipelov (2018), have

infinite-dimensional parameter spaces. To the best of my knowledge, the consequences of

the presence of Hellinger speedless points on the construction of finite-variance unbiased

estimators have not yet been systematically investigated in these models. The analysis of

semiparametric density models using the tools employed to study parametric models looks

promising. The notion of Hellinger-metric derivative does extend to infinite-dimensional
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spaces; see, e.g., Ambrosio, Gigli and Savare (2004, Chapter 1) for the general definition of

metric derivative. The notion of the Fisher matrix does also extend to infinite-dimensional

spaces; see, e.g., Escanciano (2022). Establishing the connection between these two notions

in semiparametric models, and their consequences for the nonexistence of a finite-variance

unbiased estimator is left for future work.
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Appendix A: Proofs

Proof of Theorem 1. I first derive an inequality relating the first two moments of the

estimator to the Hellinger pseudo-metric derivative. Without loss of generality, set N = 1.

Let β̂1 : Y → B be an estimator with moments

m1(θ0) :=

∫
β̂1fθ0dµ and m2(θ0) :=

∫
β̂2

1fθ0dµ.

The bias of β̂1 is b1(θ0) := m1(θ0)− β0. Fix a curve c : [0, 1]→ Θ in Cθ0 . Write

m1

(
c(ε)
)
−m1(θ0) =

∫
β̂1

[
fc(ε) − fθ0

]
dµ =

∫
β̂1

[
f

1/2
c(ε) + f

1/2
θ0

][
f

1/2
c(ε) − f

1/2
θ0

]
dµ.

By the Cauchy-Schwarz Inequality

|m1

(
c(ε)
)
−m1(θ0)|2 ≤

∫
β̂2

1

[
f

1/2
c(ε) + f

1/2
θ0

]2
dµ

∫ [
f

1/2
c(ε) − f

1/2
θ0

]2
dµ.

Dividing both sides by ε2, one has

|m1

(
c(ε)
)
−m1(θ0)|
|ε|

≤

√∫
β̂2

1

[
f

1/2
c(ε) + f

1/2
θ0

]2
dµ

√∫ [
f

1/2
c(ε) − f

1/2
θ0

]2
dµ

ε2
.

Taking lim inf to the left-hand-side and lim sup to the right-hand-side of the inequality yields

lim inf
ε↓0

|m1

(
c(ε)
)
−m1(θ0)|
ε

(1)

≤

√
lim sup

ε↓0

∫
β̂2

1

[
f

1/2
c(ε) + f

1/2
θ0

]2
dµ

(2)

lim sup
ε↓0

√∫ [
f

1/2
c(ε) − f

1/2
θ0

]2
dµ

ε
(3)

Define

ṁ1θ0(c) := lim inf
ε↓0

|m1

(
c(ε)
)
−m1(θ0)|
ε

.

Consider (2). Since we have assumed that there is an integrable function ḡ such that fc(ε) ≤ ḡ
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for any ε, the reversed Fatou Lemma implies

lim sup
ε↓0

∫
β̂2

1

[
f

1/2
c(ε) + f

1/2
θ0

]2
dµ ≤

∫
lim sup

ε↓0
β̂2

1

[
f

1/2
c(ε) + f

1/2
θ0

]2
dµ.

Since limε↓0 c(ε) = θ0, there is a subsequence {εj ∈ [0, 1]}j∈N such that limj→∞ c(εj) = θ0 and

∫
lim sup

ε↓0
β̂2

1

[
f

1/2
c(ε) + f

1/2
θ0

]2
dµ =

∫
lim
j→∞

β̂2
1

[
f

1/2
c(εj)

+ f
1/2
θ0

]2
dµ =

∫
β̂2

1 [2fθ0 ]
2dµ = 4m2(θ0).

We then have √
lim sup

ε↓0

∫
β̂2

1

[
f

1/2
c(ε) + f

1/2
θ0

]2
dµ ≤ 2m2(θ0)1/2.

Consider now (3).

lim sup
ε↓0

√∫ [
f

1/2
c(ε) − f

1/2
θ0

]2
dµ

ε
= lim sup

ε→0

√∫ [
f

1/2
c(ε) − f

1/2
θ0

]2
dµ

|ε|
= lim sup

ε→0

√
2
h
(
c(ε), θ0

)
|ε|

=
√

2 lim
ε→0

h
(
c(ε), θ0

)
|ε|

,

where the last equality follows because c ∈ Cθ0 . We then have

lim sup
ε↓0

√∫ [
f

1/2
c(ε) − f

1/2
θ0

]2
dµ

ε
=
√

2|ḣθ0(c)|.

Combining the results, we have

ṁ1θ0(c) ≤ 2m2(θ0)1/2
√

2|ḣθ0(c)|.

Hence,

Lemma 1. infc∈Cθ0 ṁ1θ0(c) ≤
√

8m2(θ0)1/2vθ0 , on the proviso that m2(θ0) is finite, where

32



vθ0 = infc∈Cθ0 |ḣθ0(c)|.

We are now ready to use Lemma 1 to prove Theorem 1. The proof is by contradiction.

An unbiased estimator has

b1(θ0) = m1(θ0)− β0 = 0.

We have

0 = lim inf
ε↓0

|b1

(
c(ε)
)
− b1(θ0)|
ε

= lim inf
ε↓0

|m1

(
c(ε)
)
− βε −m1(θ0) + β0|

ε

= lim inf
ε↓0

|m1

(
c(ε)
)
−m1(θ0)|
ε

− lim inf
ε↓0

|βε − β0|
ε

,

where the last equality follows from the reversed triangle inequality. Since the curve c is

differentiable, there is a constant 0 < κc <∞ such that |βε − β0| = κcε. Hence,

ṁ1θ0(c) = κc > 0 for every c ∈ Cθ0 .

Assume now that β̂1 is unbiased, which implies κ := infc∈Cθ0 ṁ1θ0(c) is such that 0 < κ <∞,

and it has finite variance, which implies 0 ≤ m2(θ0) <∞, at a critical point θ0, i.e., vθ0 = 0.

This contradicts the inequality in Lemma 1. �

Proof of Proposition 1. Let e(Iθ0(θ0)) denote the smallest eigenvalue of the Fisher matrix

Iθ0(θ0) evaluated at θ0. Fix c ∈ Cθ0 . Let S := {q ∈ R2 : ‖q‖2 = 1} denote the unit sphere in

R2. Write c(ε) = θ0 + εqε for some qε ∈ R2 such that qε → q, q ∈ S.

We first verify that

|ḣθ0(c)| =
1√
2

∥∥∥∥ lim
ε↓0

ε−1(f
1/2
θ0+εqε

− f 1/2
θ0

)

∥∥∥∥
L2(µ)

.
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Start from

|ḣθ0(c)| := lim
ε→0

h(c(ε), θ0)

|ε|
= lim

ε→0

[
1
2

∫
(f

1/2
c(ε) − f

1/2
θ0

)2dµ

]1/2

|ε|

=
1√
2

lim
ε→0

[ ∫
(fθ0+εqε − f

1/2
θ0

)2dµ

|ε|2

]1/2

=
1√
2

[ ∫ (
lim
ε↓0

ε−1(fθ0+εqε − f
1/2
θ0

)

)2

dµ

]1/2

=
1√
2

∥∥∥∥ lim
ε↓0

ε−1(f
1/2
θ0+εqε

− f 1/2
θ0

)

∥∥∥∥
L2(µ)

.

We now verify

∥∥∥∥ lim
ε↓0

ε−1(f
1/2
θ0+εqε

− f 1/2
θ0

)

∥∥∥∥
L2(µ)

=

∫
q>sθ0s

>
θ0
fθ0qdµ.

Since θ → f
1/2
θ is differentiable in quadratic mean,

‖f 1/2
θ0+∆ − f

1/2
θ0
−∆>sθ0f

1/2
θ0
‖L2(µ) = o(‖∆‖2), for every ‖∆‖2 → 0.

Set ∆ = εqε. We have

‖f 1/2
θ0+εqε

− f 1/2
θ0
− εq>ε sθ0f

1/2
θ0
‖L2(µ) = ε‖qε‖2o(1) as ε ↓ 0 and qε → q.

and

ε−1(f
1/2
θ0+εqε

− f 1/2
θ0

) = q>sθ0f
1/2
θ0

+ o(1) as ε ↓ 0 and qε → q.

Taking L2(µ) norm to both sides

∥∥∥∥ lim
ε↓0

ε−1(f
1/2
θ0+εqε

− f 1/2
θ0

)

∥∥∥∥
L2(µ)

=

∥∥∥∥q>sθ0f 1/2
θ0

∥∥∥∥
L2(µ)

=

∫
q>sθ0s

>
θ0
fθ0qdµ as qε → q.
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We deduce

|ḣθ0(c)| =
1√
2

∫
q>sθ0s

>
θ0
fθ0qdµ

Taking inf to both sides,

vθ0 := inf
c∈Cθ0

|ḣθ0(c)| =
1√
2

inf
q∈S

q>Iθ0(θ0)q = e(Iθ0(θ0)),

where the last equality follows from the Rayleigh-Ritz Theorem (see e.g. Horn and John-

son, 1990, Theorem 4.2.2, p. 176) characterizing the smallest eigenvalue of a symmetric

matrix. We deduce, from the last display, that θ0 is a Hellinger speedless point if and only

if e
(
Iθ0(θ0)

)
= 0. �

Proof of Proposition 2. Fix θ0. By the Mean Value Theorem (see e.g., Coleman, 2012,

Theorem 3.2), there is a point θ? between θ and θ0 such that

f
1/2
θ − f 1/2

θ0
= (θ − θ0)>sθ?f

1/2
θ?

for any θ.

Assume that θ0 is a nonidentifiable point. Then, there is a sequence {θj ∈ Θ}j∈N converging

to θ0 such that f
1/2
θj
− f 1/2

θ0
= 0 and ‖θj − θ0‖2 6= 0. Evaluating the latter display at θ = θj

and dividing both sides by ‖θj − θ0‖2 yields

0 = f
1/2
θj
− f 1/2

θ0
= qjsθ?f

1/2
θ?

, where qj =
(θj − θ0)

‖θj − θ0‖2

.

The sequence {qj ∈ S}j∈N converges (passing to a subsequence is necessary) to a limit q0 ∈ S

because S is compact. Hence, qjgθ?f
1/2
θ?
→ q0sθ0f

1/2
θ0

= 0 and

∫
q>0 sθ0s

>
θ0
fθ0q0dµ = 0.
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From the Rayleigh-Ritz Theorem, we have e(Iθ0(θ0)) = 0. We deduce from the character-

ization of Hellinger speedless points in Proposition 1 that every non-identifiable point is a

Hellinger speedless point. The assertion that not every Hellinger speedless point is noniden-

tifiable follows from the example in Illustration I. �

Proof of Proposition 3. Let θ0 be a singularity of the mapping from reduced from to

structural parameters. Let {θj}j∈N be a sequence converging to θ0. Since κ(θj) diverges, we

have that for every positive number ε, there is a sufficiently large j such that

ε < |κ(θj)− κ(θ0)|.

Define b0(ε) = supθ:h(θ,θ0)≤ε |κ(θ) − κ(θ0)|. Divide both sides of the inequality by b0(ε) and

take lower and upper limits

lim inf
ε↓0

ε

b0(ε)
≤ lim sup

ε↓0

|κ(θj)− κ(θ0)|
b0(ε)

Consider the upper limit. Since ε < |κ(θj)− κ(θ0)| and ε→ b0(ε) is decreasing, we have

b0(ε) = sup
θ:h(θ,θ0)≤ε

|κ(θ)− κ(θ0)| ≥ sup
θ:h(θ,θ0)≤|κ(θj)−κ(θ0)|

|κ(θ)− κ(θ0)| ≥ |κ(θj)− κ(θ0)|.

Hence,

lim sup
ε↓0

|κ(θj)− κ(θ0)|
b0(ε)

≤ 0.
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Consider now the lower limit. For a sufficiently small δ > 0,

inf
θ:|θ−θ0|=δ

h(θ, θ0) = inf
ε∈(0,∞):b0(ε)>δ

ε.

Hence,

lim inf
ε↓0

ε

b0(ε)
= lim inf

θ→θ0

h(θ, θ0)

|θ − θ0|
.

There is a curve c ∈ Cθ0 such that

lim inf
θ→θ0

h(θ, θ0)

|θ − θ0|
≥ lim

ε↓0

h(c(ε), θ0)

|ε|
≥ vθ0 ≥ 0.

We deduce,

0 ≤ vθ0 ≤ lim inf
ε↓0

ε

b0(ε)
.

Combining the bounds on the lower and upper limits, one has

0 ≤ vθ0 ≤ 0.

Therefore, θ0 is a Hellinger speedless point. The assertion that not every Hellinger speedless

point is a singularity of θ → κ(θ) follows from the example in Illustration I. �

Proof of Proposition 4. This result is a direct application of the Delta Theorem for di-

rectionally differentiable statistics in Shapiro, Dentcheva and Ruszczynski (2009, Theorem

7.67, p.443). �

Proof of Proposition 5. Denote by gYi the random variable with density fgθ0 . By the
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invariance gΘ0 = Θ0, one has

Pθ0(gYi ∈ A) = Pgθ0(Yi ∈ A) for any θ0 ∈ Θ0, g ∈ G,

and any subset A in the sigma-algebra of Y . Fix θ0 ∈ Θ0. By construction,

Jα =
∑
g∈G

Tgθ0 .

Taking expectations to both sides

Jα =
∑
g∈G

Eθ0(Tgθ0).

By the invariance gΘ0 = Θ0, we have Eθ0(Tgθ0) = Eθ0(Tθ0). Hence,

Jα = JEθ0(Tθ0) for any θ0 ∈ Θ0,

which completes the proof. �
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Appendix B: Endogenous Recursive Switching Model

This appendix presents the derivation of the individual score in the endogenous switching

regression model described in Section 5. Recall that the model is

Y ?
1i = X ′1iβ1 + Y2iβ2 + Y2iX̃1iβ3 − U1i

Y ?
2i = X ′iγ1 − U2i,

where X1i = (1, X̃1i), Xi = (X1i, X2i)
′, and Ui = (U1i, U2i)

′ is a standard normal bivariate

random vector with a correlation coefficient ρ. The observed variables are (Y1i, Y2i, Xi),

where Yji = 1(Y ?
ji ≥ 0) for j ∈ {1, 2}. The joint density of the endogenous observed variables

given the exogenous observed covariates for a given observation is:

fθ(yi|xi) = P0

(
Y ?

1i ≥ 0, Y ?
2i ≥ 0

)y1iy2i × P0

(
Y ?

1i < 0, Y ?
2i ≥ 0

)(1−y1i)y2i

× P0

(
Y ?

1i ≥ 0, Y ?
2i < 0

)y1i(1−y2i) × P0

(
Y ?

1i < 0, Y ?
2i < 0

)(1−y1i)(1−y2i),

where θ = (β, γ, ρ)′. I next derive the individual score

si(θ) =
ln fθ(yi|xi)

∂θ

for this model. I use this individual score for calculating the randomization test statistic

based on the Fisher matrix.

I start by rewriting the joint density of a given observation in a way amenable to the

numerical computation of the individual scores. Define

t1i(β) = x′1iβ1 + y2iβ2 + y2ix̃
′
1iβ3

t2i(γ) = x′iγ
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Write fθ(yi|xi) as

fθ(yi|xi) = P0

(
U1i ≤ t1i(β), U2i ≤ t2i(γ)|xi

)y1iy2i × P0

(
− U1i < −t1i(β), U2i ≤ t2i(γ)|xi

)(1−y1i)y2i

× P0

(
U1i ≤ t1i(β),−U2i < −t2i(γ)|xi

)y1i(1−y2i)P0

(
− U1i < −t1i(β),−U2i < −t2i(γ)|xi

)(1−y1i)(1−y2i).

Let

ϕρ(u1, u2) =
1

2π
√

(1− ρ2)
exp

(
− u2

1 − 2ρu1u2 + u2
2

2× (1− ρ2)

)

denote the standard bivariate normal density with a correlation coefficient ρ. Let

Φρ(t1, t2) =

∫ t1

−∞

∫ t2

−∞
ϕρ(u1, u2)du1du2

denote the standard bivariate normal cumulative distribution function with a correlation

coefficient ρ. Write now fθ(yi|xi) as

fθ(yi|xi) = Φρ

(
t1i(β), t2i(γ)

)y1iy2i × Φ−ρ
(
− t1i(β), t2i(γ)

)(1−y1i)y2i

× Φ−ρ
(
t1i(β),−t2i(γ)

)y1i(1−y2i) × Φρ

(
− t1i(β),−t2i(γ)

)(1−y1i)(1−y2i).

I now calculate the individual scores. Using the chain rule, I have for the score associated
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to β

∂ ln fθ(yi|xi)
∂β

=
y1iy2i

Φρ

(
t1i(β), t2i(γ)

) ∂Φρ

(
t1i(β), t2i(γ)

)
∂t1

∂t1i(β)

∂β

+
(1− y1i)y2i

Φ−ρ
(
− t1i(β), t2i(γ)

) ∂Φ−ρ
(
− t1i(β), t2i(γ)

)
∂t1

∂ − t1i(β)

∂β

+
y1i(1− y2i)

Φ−ρ
(
t1i(β),−t2i(γ)

) ∂Φ−ρ
(
t1i(β),−t2i(γ)

)
∂t1

∂t1i(β)

∂β

+
(1− y1i)(1− y2i)

Φρ

(
− t1i(β),−t2i(γ)

) ∂Φ−ρ
(
− t1i(β),−t2i(γ)

)
∂t1

∂ − t1i(β)

∂β
.

Let

Φ(t) =

∫ t

−∞

1√
2π

exp(−v2/2)dv

denote the standard normal cumulative distribution function. Mukherjea et al. (1986) has

noted

∂fθ
(
t1, t2

)
∂t1

=
1

2π
exp

(
− t21

2

)
Φ

(
t2√

1− ρ2
− ρ√

1− ρ2
t1

)
.

Moreover, since

∂t1i(β)

∂β
= wi, where wi = (xi, y2i, y2ix̃1i)

′,
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I have

∂ ln fθ(yi|xi)
∂β

=
y1iy2i

Φρ

(
t1i(β), t2i(γ)

) 1

2π
exp

(
− t1i(β)2

2

)
Φ

(
t2i(γ)√
1− ρ2

− ρ√
1− ρ2

t1i(β)

)
wi

+
(1− y1i)y2i

Φ−ρ
(
− t1i(β), t2i(γ)

) 1

2π
exp

(
− −t1i(β)2

2

)
Φ

(
t2i(γ)√
1− ρ2

− (−ρ)√
1− ρ2

(−t1i
(
β)
))

(−wi)

+
y1i(1− y2i)

Φ−ρ
(
t1i(β),−t2i(γ)

) 1

2π
exp

(
− t1i(β)2

2

)
Φ

(
−t2i(γ)√

1− ρ2
− (−ρ)√

1− ρ2
t1i(β)

)
wi

+
(1− y1i)(1− y2i)

Φρ

(
− t1i(β),−t2i(γ)

) 1

2π
exp

(
− −t1i(β)2

2

)
Φ

(
−t2i(γ)√

1− ρ2
− (−ρ)√

1− ρ2
(−t1i

(
β)
))

(−wi).

Using a similar argument, I have for the score associated to γ

∂ ln fθ(yi|xi)
∂γ

= =
y1iy2i

Φρ

(
t1i(β), t2i(γ)

) 1

2π
exp

(
− t2i(γ)2

2

)
Φ

(
t1i(β)√
1− ρ2

− ρ√
1− ρ2

t2i(γ)

)
xi

+
(1− y1i)y2i

Φ−ρ
(
− t1i(β), t2i(γ)

) 1

2π
exp

(
− −t2i(γ)2

2

)
Φ

(
t1i(β)√
1− ρ2

− (−ρ)√
1− ρ2

(−t2i
(
γ)
))

(−xi)

+
y1i(1− y2i)

Φ−ρ
(
t1i(β),−t2i(γ)

) 1

2π
exp

(
− t2i(γ)2

2

)
Φ

(
−t1i(β)√

1− ρ2
− (−ρ)√

1− ρ2
t2i(γ)

)
xi

+
(1− y1i)(1− y2i)

Φρ

(
− t1i(β),−t2i(γ)

) 1

2π
exp

(
− −t2i(γ)2

2

)
Φ

(
−t1i(β)√

1− ρ2
− (−ρ)√

1− ρ2
(−t2i

(
γ)
))

(−xi).

Finally, I have for the score associated to ρ

∂ ln fθ(yi|xi)
∂ρ

=
y1iy2i

Φρ

(
t1i(β), t2i(γ)

) ∂Φρ

(
t1i(β), t2i(γ)

)
∂ρ

+
(1− y1i)y2i

Φ−ρ
(
− t1i(β), t2i(γ)

) ∂Φ−ρ
(
− t1i(β), t2i(γ)

)
∂ρ

+
y1i(1− y2i)

Φ−ρ
(
t1i(β),−t2i(γ)

) ∂Φ−ρ
(
t1i(β),−t2i(γ)

)
∂ρ

+
(1− y1i)(1− y2i)

Φρ

(
− t1i(β),−t2i(γ)

) ∂Φ−ρ
(
− t1i(β),−t2i(γ)

)
∂ρ

.
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Sungur (1990) has noted

∂Φρ(t1, t2)

∂ρ
= ϕρ(t1, t2).

Replacing this observation in the penultimate display,

∂ ln fθ(yi|xi)
∂ρ

=
y1iy2i

Φρ

(
t1i(β), t2i(γ)

)ϕρ(t1i(β), t2i(γ)
)

+
(1− y1i)y2i

Φ−ρ
(
− t1i(β), t2i(γ)

)ϕ−ρ(− t1i(β), t2i(γ)
)

+
y1i(1− y2i)

Φ−ρ
(
t1i(β),−t2i(γ)

)ϕ−ρ(t1i(β),−t2i(γ)
)

+
(1− y1i)(1− y2i)

Φρ

(
− t1i(β),−t2i(γ)

)ϕρ(− t1i(β),−t2i(γ)
)
.
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Appendix C: Nonexistence of Regular Estimators

This appendix establishes the impossibility to construct regular estimators, in the sense

defined by van der Vaart (1991), for Hellinger speedless points.

Let P be a class of probability functions on (Y ,A), where A is a sigma-algebra on Y .

Let H be a Hilbert space with inner product 〈·, ·〉H. Set PH = {Pη ∈ P : η ∈ H}. Fix η0

in H and set P0 = Pη0 . Let L2,0 denote the set of P0-square integrable functions with inner

product 〈s1, s2〉P0 =
∫
s1s2dP0. Let H0 be the class of paths ε → ηε from (0, ε̄) ⊂ R+ to H

such that:

lim
ε↓0

ηε − η0

ε
= η (1)

for elements η ∈ H. Let T0 be the set of all η obtained. Assume that η → ηhε is in H0 for

every h ∈ R+ if ε→ ηε is.

Furthermore, assume the existence of a continuous linear operator A0 : T0 → L2,0 satis-

fying

lim
ε↓0

∫ [
dP

1/2
ηε − dP

1/2
0

ε
− 1

2
A0ηdP

1/2
0

]2

= 0 for every ηε ∈ H0 and some η ∈ T0. (2)

To the set of paths ε→ Pηε satisfying the condition in the last display corresponds a tanget

set T0 consisting of all operators A0 satisfying the condition in the last display. The tangent

set is equal to the range of the operator A0: T0 = A0T0 = R(A0).

Let κ : PH → B be a function taking its values in an normed linear space B. Assume

that

lim
ε↓0

κ(Pηε)− κ(P0)

ε
and κ(Pη) = ϕ(η), (3)
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where ϕ : H→ B is differentiable at η0 in the sense that there exists a continuous linear map

ϕ̇0 : T0 → B satisfying

ϕ̇0(η) = lim
ε↓0

ϕ(ηε)− ϕ(η0)

ε
for every ηε ∈ H0. (4)

The adjoint operator of A0 is A?0 : L2,0 → T0 satisfying 〈A0η, s〉P0 = 〈η, A?0s〉H for every

η ∈ T0 and s ∈ L2,0.

We have the following results:

Lemma 1. Let N(·) denote the null space of the operator · and let ϕ̇?0 denote the adjoint

operator of ϕ̇0. Then,

R(ϕ̇?0) ⊂ R(A?0)
(range condition)

=⇒ N(A0) ⊂ N(ϕ̇0)
(nullspace condition)

Proof. The claim follows from taking orthocomplements.

Lemma 2. R(ϕ̇?0) ⊂ R(A?0)
(range condition)

holds if and only if there exists a continuous linear operator

κ̇0 : T0 → B such that

κ̇0(η) = lim
ε↓0

κ(Pηε)− κ(P0)

ε
for every ηε ∈ H0

(differentiability condition)

.

Proof. van der Vaart (1991, Theorem 3.1).

Lemma 3. Consider estimators TN = tN(Y1, .., YN) of κ(P0) generated by maps tN : YN → B.

Suppose that for every path εPηε and every sequence {hN ∈ R}N such that hn → h ∈ R+

we have

∫ ?

m
(√

N
(
TN − κ(PηN )

))
dPηN →

∫
mdL, where ηN = ηεN and εN = hN/

√
N

(regularity condition)

,
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for every continuous bounded function m : B → R, where L is a fixed tight Borel law on B

not depending on h ∈ R+.

Proof. van der Vaart (1991, Theorem 2.1).

An estimator satisfying the (regularity condition) in the last Lemma is called a regular

estimator. Combining the Lemmata, we have the following chain of implications:

(regularity condition)⇒ (differentiability condition)⇔ (range condition)⇒ (nullspace condition)

For latter use, I deduce from this chain of implications the following Lemma:

Lemma 4. ¬(nullspace condition)⇒ ¬(differentiability condition)⇒ ¬(regularity condition).

Set H = Θ, η0 = θ0, and ϕ(η) = θ. We have ϕ̇0 = IK , where IK is the K ×K identity

matrix, and A0 = Iθ0(θ0).

Proposition 7. If θ0 is a Hellinger speedless point, then

(i) There is no function κ : F → Θ such that κ(fθ0) = θ0 and

κ̇(s) = lim
ε↓0

κ(fθε)− κ(fθ0)

ε
, every θε ∈ H0,

for a continuous linear map κ̇0 : T0 → Θ.

(ii) There is no tight Borel law L on Θ, not depending on h ∈ R+, such that

∫
m
(√

N
(
TN − κ(fθN )

))
fθNdµ→

∫
mdL, where θN = θεN and εN = hN/

√
N,

for every continuous bounded function m : Θ→ R.

Proof of Proposition 7. Since θ0 is a Hellinger speedless point, it follows from Proposition

1 that N
(
Iθ0(θ0)

)
6⊂ N(IK). The claims then follow from Lemma 4.

Proposition 7 (ii) implies the nonexistence of regular estimators for Hellinger speed-

less points. The existence of regular estimators is a necessary condition for the validity of
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standard asymptotically normal inference based on Wald-type statistics. Furthermore, the

existence of regular estimators is also a necessary condition for the consistency of standard

parametric bootstrap inference; see e.g., Beran (1997). Since no regular estimator does ex-

ist for Hellinger speedless points, one cannot avoid using nonstandard asymptotic inference

procedures in their presence.

Distinct but related results to Proposition 7 are the impossibility results in Hirano and

Porter (2012) and in Kaji (2021). Hirano and Porter (2012, Theorem 2) show the nonexis-

tence of regular estimators for the value of a function τ : Θ→ R that it is nondifferentiable

at θ0 and θ0 is not a Hellinger speedless point, c.f. Hirano and Porter (2012, Assumption

1(b)) and Proposition 1. Kaji (2021, Theorem 2) shows the nonexistence of equivariant-in-

law sequence of estimators for weakly regular parameters. Hellinger speedless points are not

equivalent to the notion of weakly regular parameter, which is reproduced below for the sake

of completeness. Fix P0 ∈ P . Let P0 denote the collection of paths ε→ Pε from ε ∈ (0, 1] to

P for which there exists a measurable function s0 ∈ L2,0 such that

∫ [
dP

1/2
ε − dP 1/2

0

ε
− 1

2
s0dP

1/2
0

]2

→ 0 as ε→ 0.

Let P0 denote the collection of functions s0 ∈ L2,0 satisfying the last display and induced

by any path in P0. Let Pb be a subset of P on which a parameter value b ∈ B is uniquely

defined. Let b : Pb → B denote a function from Pb to the parameter space B. The tangent

set S0,b pertinent to the submodel Pb is the set of scores s0 such that there is exists a path

ε → Pε inducing s and every such paths shares the same limit of b(Pε). Define P0,b the

set of paths inducing scores in S0,b. Kaji (2021) defines b : Pb → B as a weakly regular

parameter at P0 if there exists a map b0 : S0,b → B that is continuous and homogenous of

degree zero such that b(Pε) → b0(s0) for every Pε ∈ P0,b. The definition above is for semi-

parametric models. To compare with parametric models, set B = Θ and P0 = Pθ0 . We have
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that {b(Pε) ∈ Θ}ε is a sequence in the parameter space. The notion of weakly regular pa-

rameter presuposses the existence of s0 while the notion of Hellinger speedless point does not.
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Appendix D: Subsampling Test

This Appendix constructs a resampling test for H0 against H1. It verifies that the test

asymptotically controls size. For a subsample of size BN , let êBN (θ0) denote the smallest

eigenvalue of the subsample analog of the Fisher matrix.

Step 1. Simulate under θ0 a sample {Yi}Ni=1 of size N and compute the sample analog of the

smallest Fisher matrix eigenvalue êN .

Step 2. Sample without replacement SN subsamples {Yij ,s}
BN
j=1 of size BN < N from {Yi}Ni=1

and compute for each subsample s the subsample statistic êBN ,s.

Step 3. Set the subsample critical value cvBN ,α to the 1−α quantile of {B1/2
N (êBN ,s− êN)}SNs=1.

Step 4. RejectH0 if the test statistic
√
NêN is bigger than the subsample critical value cvBN ,α.

The following conditions guarantee the asymptotic validity of this procedure to keep size

control. Let NCBN := N
BN !(N−BN )!

denote the number of subsamples of size BN .

Proposition 6. Let the assumptions of Proposition 4 hold. Also assume that: (i) SN →N

CBN , BN →∞ and BN/N → 0 as N →∞; and (ii) Jθ0 is continuous at its 1− α quantile.

Then,

lim
N→∞

Pθ0(
√
NêN ≤ cvBN ,α) = α whenever θ0 ∈ Θ0.

Proof of Proposition 6. This result follows from Proposition 4 by a direct application of

a result in Politis et al. (1999, Theorem 2.2.1, p. 43). �
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The study of the numerical properties of this subsampling test is out of the scope of this

paper and it is left for future research.
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