Subways or Minibuses?

Privatized Provision of Public Transit

Lucas Conwell August 2023

Long Commutes in Lower-Income Countries

Typical Recommendation: Formal "Bus Rapid Transit"

Sources: ODA Ltd.; Creamer Media's Engineering News

Typical Recommendation: Formal "Bus Rapid Transit"

Sources: ODA Ltd.; Creamer Media's Engineering News

The Limits of Bus Rapid Transit: A Cape Town Case Study

Why BRT isn't right for every city.

- Bloomberg

Privatized Shared Transit

- Model of privatized shared transit
 - **1** Minibuses enter + match with passengers \Rightarrow wait times
 - 2 Commuter home + work + mode choice [time + quality]

- Model of privatized shared transit
 - **1** Minibuses enter + match with passengers \Rightarrow wait times
 - 2 Commuter home + work + mode choice [time + quality]
- Data, newly-collected
 - 1 Matching: buses + passengers [ID: demand shocks w/i 44 routes]
 - 2 Stated preferences of commuters [ID: randomized time, quality]

- Model of privatized shared transit
 - **1** Minibuses enter + match with passengers \Rightarrow wait times
 - 2 Commuter home + work + mode choice [time + quality]
- Data, newly-collected

1 Matching: buses + passengers [ID: demand shocks w/i 44 routes]

2 Stated preferences of commuters [ID: randomized time, quality]

- Policies to optimize, vs. "typical" formal transit investments
 - Social Planner: optimally ↑ fares on high-wage, amenity routes
 - **2** Station Security: greatest *net* gains

- Model of privatized shared transit
 - **1** Minibuses enter + match with passengers \Rightarrow wait times
 - 2 Commuter home + work + mode choice [time + quality]
- Data, newly-collected

1 Matching: buses + passengers [ID: demand shocks w/i 44 routes]

2 Stated preferences of commuters [ID: randomized time, quality]

- Policies to optimize, vs. "typical" formal transit investments
 - Social Planner: optimally ↑ fares on high-wage, amenity routes
 - 2 Station Security: greatest net gains

commute time/quality + relocation + environmental

Minibus Entry ---> Lower Passenger Wait Times

1 Off-bus wait

avg. \approx 9 min.

Minibus Entry ----> Lower Passenger Wait Times

1 Off-bus wait

avg. \approx 9 min.

Queues, especially during certain times of the day are impossibl[y long]. -"Pros Cons of Minibus Taxis" on Medium

Minibus Entry ---> Lower Passenger Wait Times

1 Off-bus wait

avg. \approx 9 min.

avg. \approx 3 min.

ic ic

Minibus Entry ---> Lower Passenger Wait Times

1 Off-bus wait

avg. \approx 9 min.

2 On-bus wait

avg. \approx 3 min.

One...inefficient practice...is that minibus taxis generally only leave when they are *full.* -World Bank (2018)

2 On-bus wait avg. ≈ 3 min.

Ratio of Loading Buses to Waiting Passengers (Route by Time Level)

Minibus Entry ---- Lower Passenger Wait Times

Off-bus wait

avg. \approx 9 min.

Ratio of Loading Buses to Waiting Passengers (Route by Time Level)

Model

Data and Estimation

Transport Policies

Model

Data and Estimation

Transport Policies

Model Overview

Environment

Time: continuous

Geography: I locations

Emissions costs external, mode-specific

Model Overview

Minibuses

Environment

Time: continuous

Geography: I locations

Emissions costs external, mode-specific Entry at cost ∀ origin-destination

Fares: exogenous

Matching: frictional with passengers Trips: multiple

Model Overview

Environment

Time: continuous

Geography: I locations

Emissions costs external, mode-specific

Minibuses

Entry at cost ∀ origin-destination

Fares: exogenous

Matching: frictional with passengers

Trips: multiple

Commuters

Skill: heterogeneous $g \in \{low, high\}$

Choice:

- **1** Home *i* [amenity θ_i^g]
- **2** Work *j* [wage ω_i^g]
- 3 Mode $m \in$
 - minibus
 - formal transit
 - car

Market Structure

mmuter Mode <u>Choic</u>

🕩 Equilibriu

2 Depart when reach capacity $\overline{\eta}$ [exogenous] • Evidence

- **2** Depart when reach capacity $\overline{\eta}$ [exogenous] Evidence
- 3 Collect fares τ_{ijM} [calibrated to data] \bullet Data

- **2** Depart when reach capacity $\overline{\eta}$ [exogenous] Evidence
- 3 Collect fares τ_{ijM} [calibrated to data] \bullet Data
- **4** Travel to *j*, operating cost χ per distance Δ_{ij}

- 2 Depart when reach capacity $\overline{\eta}$ [exogenous] Evidence
- 3 Collect fares τ_{ijM} [calibrated to data] \bullet Data
- **4** Travel to *j*, operating cost χ per distance Δ_{ij}
- **5** Arrive at rate d_{ij} and end work "shift" with Pr = g(trip time)

• Matching function for each route *ij*:

$$\mathcal{M}_{ij} \equiv \mu_{ij} p^{\alpha}_{ij} b^{\beta}_{ij}$$
 } $\left. \begin{array}{c} \mu_{ij} = \text{matching efficiency} \\ p_{ij}, b_{ij} = \text{passengers, buses} \end{array} \right.$

 \Rightarrow Passenger **boarding** (λ_{ij}) and bus **loading** (ι_{ij}) rates

• Matching function for each route *ij*:

$$\mathcal{M}_{ij} \equiv \mu_{ij} p^{\alpha}_{ij} b^{\beta}_{ij}$$
 } P_{ij}, b_{ij} = matching efficiency

 \Rightarrow Passenger **boarding** (λ_{ij}) and bus **loading** (ι_{ij}) rates

• Minibus passengers' expected wait time [$\mu_{ij} = 1$ and CRS]:

Social Planner Optimum via Minibus Fares + Taxes

Social Planner Problem

$$\max_{\substack{b_{ij}, \pi_{ijm}^g}} \left\{ \sum_{g} N^g \overline{W}^g + \prod_{\substack{\uparrow \\ expected \\ commuter utility}} \prod_{\substack{profits \\ costs}} E^{minibus} emissions \\ costs \\ costs} \right\} s.t. matching matching statements and statements$$

Social Planner Optimum via Minibus Fares + Taxes

Social Planner Problem

$$\max_{\substack{b_{ij}, \pi_{ijm}^g}} \left\{ \sum_{g} N^g \overline{W}^g + \prod_{\substack{\uparrow \\ expected \\ commuter utility}} - E_{\substack{\downarrow \\ rofits}} \right\} \text{ s.t. } \underset{\substack{\text{matching} \\ \text{technology.}}{\text{minibus}}$$

Optimal Minibus Fares

Assume $\alpha + \beta = 1$ and $\mu_{ij} = 1$.

$$\tau_{ijM}^{*} \propto \underbrace{\chi \Delta_{ij}}_{\text{operating costs}} + \overline{\psi}g \left[\overline{\eta}^{\beta} \left(\frac{2\beta}{1-\beta} \right)^{1-\beta} + \frac{1}{d_{ij}} \right] b_{ij}^{*\phi}$$

Model

Data and Estimation

Transport Policies

Data Collection

- Loading process [M-F 6-10:00]
 - bus arrival/departure
 - waiting passengers
- Sample: N = 44 routes 2-stage, stratified by bus entry

Data Collection

Minibus Station Counts

- Loading process [M-F 6-10:00]
 - bus arrival/departure
 - waiting passengers
- Sample: *N* = 44 routes 2-stage, stratified by bus entry

2 Stated Preference Surveys Over Commute Modes

- 5 randomized choice sets
- 2 minibus options/set
- Sample (N = 526) vs. pop. at mall, minibus stations
- 2 Existing: other modes

Estimation

1 Station Counts \Rightarrow Matching Function \bullet Details

$$\log \iota_{ijt} = \hat{\alpha} \log p_{ijt} + \left(\hat{\beta} - 1\right) \log b_{ijt} + \overline{\mu}_{ij} + \overline{\mu}_{it} + \epsilon_{ijt}$$

ID Strategy: assume CRS \Rightarrow IV for $\log \left(\frac{p_{ijt}}{b_{ijt}}\right)$ = commuters in *i* leaving at *t*

Estimation

1 Station Counts \Rightarrow Matching Function \bigcirc Details

$$\log \iota_{ijt} = \hat{\alpha} \log p_{ijt} + \left(\hat{\beta} - 1\right) \log b_{ijt} + \overline{\mu}_{ij} + \overline{\mu}_{it} + \epsilon_{ijt}$$

ID Strategy: assume CRS \Rightarrow IV for log $\left(\frac{p_{ijt}}{p_{iit}}\right)$ = commuters in *i* leaving at *t*

- 2 Stated Preference Survey \Rightarrow Demand \bigcirc Details ID Strategy: exogenously-varied attributes
 - Low rate of time preference r
 - High minibus utility costs κ_M^g
 - Security = most-valued guality improvement.

Model

Data and Estimation

Transport Policies

1 MyCiti Formal Bus Rapid Transit [existing]

Monetary costs: construction + operations, via lump-sum tax.

2 Social Planner Optimum

Optimal Minibus Fares + Mode-Specific Commuter Taxes

↑ Suburb to Suburb Commutes

 $[\Delta$ Home-Work Flow > 0]

Reallocation Benefits Low-Skill

[Decomposition of Gains in %]

2 Social Planner Optimum

Optimal Minibus Fares + Mode-Specific Commuter Taxes

Comparing Policies [Net Welfare Gains]

3 Minibus Station Security: ↓ utility cost by stated pref. effect

Monetary costs: guard wages covered with lump-sum tax.

Comparing Policies [Net Welfare Gains]

Literature

• Public transit and (developing-country) cities

Glaeser, Kahn, Rappaport '08; Ahlfeldt, Redding, Sturm, Wolf '15 Heblich, Redding, Sturm '20; Balboni, Bryan, Morten, Siddiqi '20 Tsivanidis '22; Severen '23; Warnes '21, Zarate '23

\Rightarrow Privatized transit.

Road congestion and optimal networks

Duranton and Turner '11; Kreindler '22; Fajgelbaum and Schaal '20 Allen and Arkolakis '22; Almagro, Barbieri, Castillo, Hickok, Salz '23 Barwick, Li, Waxman, Wu, Xia '22; Brancaccio, Kalouptsidi, Papageorgiou, Rosaia '22 Kreindler, Gaduh, Graff, Hanna, Olken '23; Akbar, Couture, Duranton, Storeygard '23

\Rightarrow Optimal minibus entry.

Methodology

 Matching ⇒ Observe passengers and buses. Brancaccio, Kalouptsidi, Papageorgiou '20; Castillo '22

Stated preference ⇒ Plausible context. Ameriks, Briggs, Caplin, Shapiro, Tonetti '20; Andrew and Adams-Prassl '23

◀ Back

Minibuses in Cape Town

- Large market share $\frac{1}{3}$ of low-skill commuters
- Small firms avg. < 2 buses $\frac{1}{2}$ informal
- Enter specific route s.t. fee = origin × destination
- Fares: distance-based set by gov't + route "association."

Cape Town Transit Networks: # Routes

Mode Shares by Home Location

Back to context

Most Boardings/Alightings at Endpoints

Back

Free entry at cost?

[Associations'] main income derives from owners' membership fees. . . it is **in [their] interest to have as many members as possible**" - Schalekamp (2017)

Most associations are still taking on new members and going out on recruitment drives to **encourage new members to join**. These new members pay an exorbitant amount of money to join the association - City of Cape Town Operating Licence Strategy (2014)

Cartel-like quantity controls?

Taxi associations prevent entry by other operators through a number of different means, not all of which are used by every association...**Entry deterrence and cartel price setting** make owning a taxi extremely lucrative on many routes. - World Bank (2018)

Long Passenger Lines + Multiple Buses Loading

Minibuses: 15-Passenger + Depart When Full

Restrictions) > Back

Legal Restrictions on Minibus Size

The [National Land Transport Act] specifies the vehicles...to be used for non-contracted PT purposes. - City of Cape Town Comprehensive Integrated Transport Plan (2018)

Type of Vehicle	Seating Capacities including the Driver	Current OLs per vehicle group
Sedan	5	205
Avanza (8 +1)	9	400
Minibuses (15+1)	16	9 500 to 10 100
Midi-buses (16<35)	35	negligible
Buses	35 +	n/a

Table 6 2: Approved vehicle types, capacities and number of legal OLs issued

Back to context

▲ Back to fact

Fares \uparrow with Distance, not Ability to Pay

Why? City considers "cost to the user" in route approvals

City of Cape Town: New Route Approvals

Considerations and recommended procedure for new minibus-taxi routes

- The potential for conflict with existing associations and members
- Existing travel patterns
- Existing public transport network coverage
- Cost to the user (portion of monthly income spent on public transport)
- :

- City of Cape Town Operating Licence Strategy (2014)

Route-Level Fares Versus Bus Entry

Back to fact

Security = Major Rider Complaint

 \Rightarrow <u>Counterfactual</u>: station security guards. • Back

Minibus Market Structure on each route ij

• Entry cost, increasing in mass of loading buses b_{ij}

 $\overline{\psi}b_{ij}^{\phi}$

- Multiple trips during effectively finite "work shift"
- Fares exogenously calibrated Evidence

$$\tau_{ijM} \equiv h\left(\overrightarrow{\Delta}_{ij}\right)$$

🕨 Back

Minibus Profits on route ij

$$\Pi_{ij} \equiv \underbrace{\left[\overline{\eta}\tau_{ijM} - \chi\Delta_{ij}\right]}_{\text{per-trip net revenue}} \underbrace{\frac{1}{g\left(\frac{\overline{\eta}}{\iota_{ij}} + \frac{1}{d_{ij}}\right)}}_{E \, [\# \, \text{trips}]} - \overline{\psi}b_{ij}^{\phi}$$

- Per-trip net revenue $\overline{\eta} au_{ijM}$ –
- Expected total trip time
- Entry cost

$$ar{\eta} au_{ij\mathsf{M}} - \chi\Delta_{ij} \ rac{\overline{\eta}}{\iota_{ij}} + rac{1}{d_{ij}} \ \overline{\psi}b^{\phi}_{ij}$$

Back to trip

Commuters: Choose Home + Work + Mode

• Example: minibus choice utility for home i, work j

Gumbel shock, shape
$$\nu \Rightarrow$$
 choice Pr. $\pi_{ijM}^g \equiv \exp\left(\frac{\overline{U}_{ijM}^g}{\nu}\right) / \sum_{i,j,m} \exp\left(\frac{\overline{U}_{ijm}^g}{\nu}\right)$.

• **Policies,** e.g. security $\Rightarrow \kappa_M^g$.

Commute Utility: Other Modes

• Formal transit: travel \rightarrow arrive at rate d_{ijF}

• **Car:** travel \rightarrow arrive at rate d_{ij}

Equilibrium

A vector $\{b, \pi, \lambda, \iota\}$ satisfying (i) free entry, (ii) 3 sets of choice probability equations, (iii) boarding as well as (iv) loading rate equations.

Welfare

$$\Omega \equiv \sum_{g} N^{g} \nu \log \left[\sum_{i,j,m} \exp\left(\overline{U}_{ijm}^{g}\right)^{1/\nu} \right]_{commute utility}$$

Station Counts \Rightarrow Matching Function

Estimate bus loading rate equation in logs
 Histograms

 across 44 routes (ij) × 48 5-min. periods (t)

$$\log \iota_{ijt} = \hat{\alpha} \log \left(p_{ijt} / b_{ijt} \right) \qquad \underbrace{+ \overline{\mu}_{ij} + \epsilon_{ijt}}_{\text{T}}$$

matching efficiency

Parameter	OLS route+origin-time FE	IV route FE
α	0.645 (0.0264)	0.841 (0.106)
β	0.435 (0.043)	0.159 (0.106)

Note: Robust standard errors in parentheses, clustered at origin level.

• Threat to ID: matching efficiency shocks over t w/i same origin i ID Strategy: assume CRS \Rightarrow IV for $\log \left(\frac{p_{ijt}}{b_{ijt}}\right) = \underbrace{\text{commuters}}_{2013}$ in i leaving at t • Back

Stated Preference Survey $\Rightarrow \kappa_m^g$, r, ν

Estimate multinomial logit [model-implied]
 Details

 ID Strategy: exogenously-varied attributes

Matching Estimation: Distributions of Variables

Estimated Parameters

Parameter	Description	Value
Externally Co	alibrated	
I	Number Locations	18
N ^g	Commuter Populations	
d _{ij}	Road-Based Destination Arrival Rate	
d _{ijF}	Formal Destination Arrival Rate	
$ au_{ijF}$	Formal Fare	
$ au_{A}$	Car Commute Cost	5.2
δ_0	Minibus Shift Length	240
δ_1	Minibus Inverse # Trips	0.01
χ	Per-km. Operating Cost	0.06
Δ_{ij}	Route Driving Distance	
χ^{e}_{M}	Minibus CO2-equiv./km.	0.06
χ^e_F	Formal CO2-equiv./km.	0.04
χ^e_{A}	Car CO2-equiv./km.	0.55
ς	Social cost of carbon	0.0485
Minibus Sup	ply • ϕ	Γ ₁
α	Passenger Elasticity	0.84
β	Bus Elasticity	0.16
ϕ	Entry Cost Elasticity	0.602

Parameter	Description	Value
Г ₀ Г ₁	Fare Intercept Fare Distance Slope	2.23 0.29
Stated Prefer	rence	
r $ u$ κ_{M}^{l} κ_{K}^{h} κ_{F}^{l}	Commuter Rate of Time Pref. Gumbel Shape Low-Skill Minibus Util. Cost High-Skill Minibus Util. Cost Low-Skill Formal Util. Cost High-Skill Formal Util. Cost	0.001 4.76 7.7 15 3.6 9.2
Internally Ca	librated	$\cdot \overline{\psi}, \overline{\eta}, \mu$
$\frac{\overline{\psi}}{\overline{\eta}}_{\mu}$	Minibus Entry Cost Intercept Minibus Capacity Minibus Matching Efficiency	3.1 6.2 0.2
Model Invers	ion	
$ heta^g_i \ \omega^g_j$	Amenities Wages	
N Back		

Entry Congestion Estimation

Station counts yield route-level average

- loading buses b_{ij}
- bus loading time $\overline{\eta}/\iota_{ij}$
- travel time $1/d_{ij}$
- Estimate ϕ across N = 43 routes using free entry:

$$\log b_{ij} = \zeta_0 + \frac{1}{\phi} \log \left\{ 1 + \exp \left[-\delta_1 \left(\frac{\overline{\eta}}{\iota_{ij}} + \frac{1}{d_{ij}} - \delta_0 \right) \right] \right\} + \mathbf{X}_{ij} \zeta + \varepsilon_{ij}.$$

$$\Rightarrow \hat{\phi} =$$
 0.602 (0.326)

Back to parameter table

Fare Function Estimation: Γ_1

- Onboard tracking data yield route-level average
 - fare τ_{ijM}
 - straight-line distance $\overline{\Delta}_{ij}$
- Estimate Γ_1 using $\log \tau_{ijM} = \Gamma_0 + \Gamma_1 \log \overline{\Delta}_{ij} + \epsilon_{ij}$.

Parameter	(1) log mean fare			
Γ ₁ Constant	0.292*** (0.0232) 2.231*** (0.0591)			
Observations R-Squared	43 0.798			
Robust standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1				

Moment				Parameter		
Description	Data	Model	Description		Value	
Median Loading Buses/ Waiting Passengers	0.09	0.09	$\overline{\psi}$	Entry Cost Intercept	3.1	
Median Bus Loading Time	4	4	$\overline{\eta}$	Minibus Capacity	6.2	
Median Off-Bus Passenger Wait Time	7.18	7.18	μ	Matching Efficiency	0.2	

• Back to parameter table

Pr. individual *i* in group *g* chooses alternative *l* in choice set *c*:

$$\pi_{icl}^{g} = \frac{\exp\left[\zeta_{m(c,l)}^{g} + \sum_{z} \beta_{z}^{g} q_{cl}(z) + \beta_{\text{time}} \omega_{i} \left(W_{cl} + t_{cl}\right) + \beta_{\text{fare}} \tau_{cl} + \beta_{\text{resid}} W_{cl} \tau_{cl}\right]}{\sum_{l'} \exp\left(U_{icl'}^{g} / \nu\right)}$$

•
$$\zeta^g_{m(c,l)}$$
 = group-mode fixed effect $\Rightarrow \kappa^g_m$

- $q_{cl}(z)$ = indicator: quality improvement z in set c, alternative l
- ω_i = personal income
- w_{cl} and t_{cl} = wait and travel time
- τ_{cl} = fare

▶ Back

Stated Preference Sample

	Stated Pre	Stated Pref. Samples		
Variable	Own	City-Run	Cape Town	
Share Auto Owners	0.448	0.581	0.561	
Share Female	0.458	0.494	0.458	
Share College-Educated	0.295	0.228	0.190	
Median Monthly Personal Income [bin]	\$182-\$364	\$182-\$364	\$182-\$364	
Median Age	35	39	39	
Commute Mode Shares of				
Minibus Formal Transit Auto	59.56 19.61 12.11	22.56 27.69 40	23.55 22.81 39.40	
Share Using Minibuses > 1x/week	0.951	0.635		
N	413	407		

Stated Preference Robustness

Parameter	Skill	Baseline	Intermodal Sample Only	Commute Mode- Weighted
r commuter rate of time pref. ν Gumbel pref. shock shape		0.001 (0.0004) 4.76 (1.26)	0.0014 (0.0007) 6.83 (2.73)	0.0011 (.0005) 5.84 (1.99)
к _М minibus (baseline) utility cost	Low	7.68 (1.56)	10.61 (3.54)	9.25 (2.55)
	ніўп	(3.55)	(7.82)	(5.67)
$\kappa_{ extsf{F}}$ formal utility cost	Low	3.63 (0.51)	4.53 (1.08)	4.14 (0.80)
	High	9.17 (1.89)	12.5 (4.20)	10.96 (3.05)
N Respondents		820	546	820

Note: Robust standard errors in parentheses

Stated Preference Robustness

Parameter	Skill	Baseline	Intermodal Sample Only	Commute Mode- Weighted
ξsecurity	Low	-1.09	-2.13	-1.55
effect of security on κ_{M}		(0.39)	(1.06)	(0.69)
	High	-2.75	-4.91	-5.1
		(0.84)	(2.29)	(1.86)
ξ no overloading	Low	-1.38	-2.02	-1.26
effect of no overloading on $\kappa_{\scriptscriptstyle M}$		(0.437)	(1.01)	(0.596)
	High	-1.39	-1.25	-1.43
		(0.543)	(1.28)	(0.83)
$\xi_{ m no\ speeding}$	Low	-1.36	-3.03	-2.12
effect of no speeding on $\kappa_{ extsf{M}}$		(0.44)	(1.38)	(0.85)
	High	-0.825	-1.86	-0.582
		(0.465)	(1.39)	(0.73)
N Respondents		820	546	820

Note: Robust standard errors in parentheses

Stated Preference Respondents: Predicted Mode Shares

		Mode Utility Cost		Effects on Minibus Utility Cost		
Dimension	r rate of time pref.	к _М minibus	к _F formal	ξ _{overload} no overload.	ξ _{security} security	ξ _{speed} no speed.
Female	+	-	-		-	
College	+	+	+		+	
Age>45	+		-		+	+

Note: (+) indicates larger effect magnitude, (-) smaller. Only effects significant at 5% level displayed.

Only Low-Skill Use Minibuses <= Due to Utility Costs

Decomposition) > O-D mode choice pr.

or.) (🕨 Network) (🛛

► Back

Why Don't the Rich Use Minibuses?

Validation: Mode Choice by Origin-Destination-Skill

	Minibus	Car			
Variables	Mode Share, Data	Mode Share, Data			
Mode Share, Model origin×destination×skill Constant	1.209*** (0.153) -0.00558 (0.0208)	0.992*** (0.0814) 0.0335 (0.0493)			
Observations R-squared	507 0.106	507 0.230			
Robust standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1					

Minibus Network

Data

10km

Back

Opposing Matching Externalities

Boarding

Back

Opposing Matching Externalities

Boarding

Back