Escaping Violent Death: Access to Credit and Female Mortality

Bernardus van Doornik

Bank for International Settlements Central Bank of Brazil David Schoenherr

Princeton University

Jānis Skrastiņš

Washington University in St. Louis

EEA

August 29, 2023

Research Question

- Stylized facts
 - ▶ Violent death top three cause (20%) of death for individuals aged 15-60
 - ▶ One in three women experience physical domestic violence during their lifetime (Devries et al. 2013)
- Typical solutions for reducing violence against women: education, healthcare, legal institutions, policing, jobs, etc.
 - Nevertheless, little evidence on the frictions behind violent death of women (Angelucci and Heath 2020)
- ► This paper: Does access to credit (and mobility) affect mortality?
 - ► Ambiguous predictions (next)
 - ▶ Status quo: RCTs document modest or no effects of extending credit on low-income households

Financial Access, Mobility, and Mortality

- ▶ Reduction in mortality:
 - ► Finance-growth nexus: should lead to long-term health improvements
 - Physical mobility: move to better area/avoid dangerous areas/improve transportation
 - ► Domestic violence:
 - ▶ Relax household budget constraint (Buller et al. 2018)
 - ▶ Improve women's bargaining power (e.g. Manser and Brown 1980, Pollak 2005)
 - ▶ Getting a job reduces exposure to an abusive partner (Dugan et al. 1999)
- Increase in mortality:
 - Domestic violence: more resources to women might threaten male dominance (backlash theories) (Akerlof and Kranton 2000, Angelucci 2008, Bertrand et al 2015)
 - ▶ Stress: debt obligations cause stress and anxiety
 - Physical mobility: motorcycle is a dangerous mode of transportation

Empirical Challenges

Credit constraints:

- ▶ Hard to identify and measure credit constraints at the individual level
- ▶ Relaxed endogenously: macro-economic shocks, changes in labor market opportunities, etc.

Endogeneity of mobility:

- ▶ Omitted variable bias: healthier individuals more likely to acquire a vehicle
- Reverse causality: better health leads to higher mobility

This Paper

- Exploit randomized timing of access to vehicle financing (motorcycle) through a credit product: Consorcio
 - ▶ Random timing in the allocation through credit lotteries
- We measure the effects on:
 - Mortality
 - ► Causes of death
 - Location of death
 - ► Time of death

Consorcios: Overview

- Group lending mechanism to acquire durable goods
 - ▶ We focus on motorcycles here
- Mechanism
 - Participants contribute identical monthly payments for the duration of a Consorcio
 - ▶ Good allocated to a participant once sufficient funds available
 - ► Allocation through lotteries and auctions
 - ▶ Payments continue after 'winning' the good
 - Ultimately, everyone (who does not default) receives the good

Consorcios: Overview

- ▶ Typically organized by a bank or a financial arm of a manufacturer
 - ▶ Virtually no screening of participants
 - No social connections required
 - No geographical restrictions
- ► Monthly payments
 - ► Save towards goods (i.e. installments)
 - Cover administrative fees
 - Establish reserve fund to cover losses from defaults (i.e. risk premium)

Consorcios: Market Size in 2015

Motorcycles:

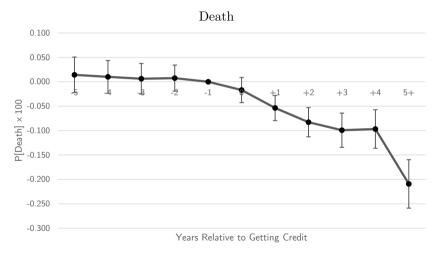
- ▶ 33% of motorcycle sales (50% of motorcycle financing)
- ► 1,070,000 motorcycles
- ▶ 2.2 billion USD in credit
- During 2009-2016, more than 10 million participants [6.6% of working age population]

Data

- Death records from mortality information system at the Ministry of Health
 - ▶ Date and time
 - Location
 - ▶ Specific causes (both internal and external)
- Data on consorcios from Central Bank of Brazil
 - ► Administrators and participants
 - Lottery dates and winners
- Family characteristics from social benefits system (Cadastro Unico)

Descriptives: Participant Characteristics

Individual Characteristics (means)	Formally Employed	Consorcios
Formal Employment Share	1.00	0.54
Salary	1596	1494
Age	34.69	35.01
Male	0.59	0.69
University Education	0.15	0.11
Agriculture & Fishing	0.04	0.05
Construction	0.07	0.09
Government	0.16	0.21
Health & Education	0.06	0.05
Hotel & Transport	0.09	0.08
Manufacturing	0.15	0.15
Real Estate & Finance	0.16	0.12
Repairs	0.20	0.28


Empirical Specification

Specification:

$$Death_{it} = \alpha_i + \alpha_{gt} + \delta \cdot win_{it} + \epsilon_{it}$$

- \triangleright win_{it}: one from the month when individual i wins the good via lottery
- $\triangleright \alpha_i$: individual fixed effects
- ightharpoonup comparison)

Mortality *Declines* with Access to Credit

Mortality Declines due to External Causes

Dependent variable: Mean:	Death 0.16%	External 0.06%	Internal 0.09%	
win _{it}	-0.070*** (0.030)	-0.060*** (0.020)	-0.020 (0.020)	
Individual FE	yes	yes	yes	
Group-time FE	yes	yes	yes	
Observations	44,912,112	44,912,112	44,912,112	
R2	0.88	0.87	0.49	

▶ Bottom line: access to credit reduces death, primarily through external causes

Treatment effect: ~44% decline in mortality

NB: the average participant is 35 years old

Violent Deaths Decline with Access to Credit

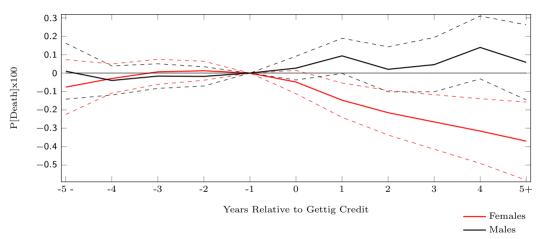
	Death Type						
Dependent variable:	Accident	Work Accident	Suicide	Homicide	Other		
Mean:	0.05%	0.01%	0.003%	0.03%	0.01%		
win _{it}	-0.030** (0.002)	-0.010 (0.003)	-0.004* (0.002)	-0.020** (0.010)	-0.010 (0.003)		
Individual FE	yes	yes	yes	yes	yes		
Group-time FE	yes	yes	yes	yes	yes		
Observations	44,912,112	44,912,112	44,912,112	44,912,112	44,912,112		
R2	0.37	0.36	0.36	0.36	0.36		

Bottom line: effects driven by reduction in *violent* causes (homicide, suicide, accidents)

Traffic Accidents Decline

			Type of Traffic Accident					
Dependent variable:	Traffic	Non-Traffic	Pedestrian	Cyclist	Motorcycle	Car	Heavy Transport	
Mean:	0.050%	0.006%	0.003%	0.001%	0.002%	0.010%	0.001%	
win _{it}	-0.002**	-0.007	-0.003**	-0.001**	-0.012*	0.0001	-0.001	
	(0.011)	(0.004)	(0.002)	(0.001)	(0.007)	(0.001)	(0.001)	
Individual FE	yes	yes	yes	yes	yes	yes	yes	
Group-time FE	yes	yes	yes	yes	yes	yes	yes	
Observations	44,912,112	44,912,112	44,912,112	44,912,112	44,912,112	44,912,112	44,912,112	
R2	0.36	0.35	0.35	0.36	0.36	0.36	0.36	

Bottom line: traffic accidents decline


Specifically with 'vulnerable' modes of transportation

Suggests improvement in the mode of transportation

Time and Location of Death

- ▶ Time of Death: declines primarily in evening (6pm-10pm) and night (10pm-6am)
- Location of Death:
 - ▶ Homicides at *home* decline (consistent with theories of domestic violence)
 - Accidents in public space decline (consistent improved mode of commuting)
 - Suicides in public space decline

Mortality Declines for Women

▶ Bottom line: mortality declines for women

Mortality Declines for Women

		Internal	Death Type				
Dependent variable:	Death	Death	Accident	Work Accident	Suicide	Homicide	
Mean:	0.16%	0.09%	0.05%	0.01%	0.01%	0.03%	
win _{it}	-0.006	-0.009	0.009	-0.002	-0.004	0.0002	
	(0.022)	(0.008)	(0.014)	(0.005)	(0.003)	(0.009)	
$win_{it} * female_i$	-0.240***	0.001	-0.124***	-0.009	-0.006**	-0.077***	
	(0.027)	(0.014)	(0.014)	(0.003)	(0.003)	(0.009)	
Individual FE	yes	yes	yes	yes	yes	yes	
Group-time FE	yes	yes	yes	yes	yes	yes	
Observations	44,912,112	44,912,112	44,912,112	44,912,112	44,912,112	44,912,112	
R2	0.36	0.35	0.35	0.36	0.36	0.36	

Conclusion

- Access to credit (and mobility) reduces mortality risk
 - ▶ By 44% relative to the unconditional mean of 0.2%
 - Results exclusively driven by women
- Effects driven by external (e.g., homicide) rather than by internal (e.g., illness) causes
 - ▶ Homicide, suicide, and traffic accidents decrease
- ► Mechanisms. Results mainly consistent with:
 - ► Lower domestic violence
 - ► Improved mode of transportation
- ▶ Contribution: credit constraints prevent vulnerable minorities from evading violent death