Macroprudential Policy and Housing

Joao Vasco Gama

Universidade Autónoma de Lisboa; Universidade Nova de Lisboa

August 2023

Bank mortgage and non-mortgage lending to GDP, 1870–2011: Average ratio to GDP by year for 17 countries

Notes: Mortgage (residential and commercial) and non-mortgage lending to the business and household sectors. Average across 17 countries.

Òscar Jordà & Moritz Schularick & Alan M. Taylor, 2016

Motivation

Macroprudential Policy and Housing

Deflated House Prices – Euro area – Index levels (2015 = 100), 2010Q1-2021Q4

Brief literature review

Macroprudential Policy and Housing

Occasionally-binding collateral constraints on credit:

- Fisher (1933)
- Auernheimer and Garcia-Saltos (2000)
- Caballero and Krishnamurthy (2001)
- Kiyotaki and Moore (2007)
- Lorenzoni (2008) and Korinek (2009)
- Bianchi (2011)

Studies that built on Bianchi's model:

- Bianchi et al. (2012)
- Benigno et al.(2013)
- Bengui and Bianchi (2014)
- Bianchi and Mendoza (2016)
- In general: no housing
- Housing as capital

Q1: I extend Bianchi and Mendoza's 2016 model in order to provide a quantitative assessment of the optimal macroprudential policy in a framework for small open economies that considers news shocks, shifts in global liquidity **and housing**.

Q2: I use the aformentioned model in order to study how an **exogenous rise in external demand** for housing changes the optimal macroprudential policy.

Model - Assumptions

Macroprudential Policy and Housing

Preferences:
$$U_t = \mathbb{E}_t \left[\sum_{i=0}^{\infty} \beta^i \frac{c_{t+i}^{1-\sigma} - 1}{1-\sigma} \right]$$

Basket of consumption:

$$\boldsymbol{c}_{t} = \left(\alpha \left[\omega \left(\boldsymbol{c}_{t}^{T}\right)^{-\eta} + (1-\omega) \boldsymbol{c}_{t}^{N}\right)^{-\eta}\right]^{\frac{\eta_{D}}{\eta}} + (1-\alpha)(\boldsymbol{A}_{t})^{-\eta_{D}}\right)^{-\frac{1}{\eta_{D}}}$$

Budget constraint: $\frac{b_{t+1}}{R_t} + c_t^T + p_t^N c_t^N = b_t + y_t^T + p_t^N y_t^N$

- Markets clear: $c_t^N = y_t^N$
- Collateral constraint: $q_t b_{t+1} \ge -\kappa_Y \left(y_t^T + p_t^N y_t^N \right) \kappa_A p_t^H A_t$

Stochastic process for the production of tradable goods: $y_t^T = (1 - \rho)\mu + \rho y_{t-1}^T + \epsilon_t^T$

Assume $y_t^N = y^N = 1$, $A_t = A = 1$: land does not increase or depreciate.

News are modeled as a noisy signal: $p(s_t = i | y_{t+1}^T = l) = \begin{cases} \theta, & i = l \\ \frac{1-\theta}{N-1}, & i \neq l \end{cases}$

Regime changes in global liquidity:

$$\begin{bmatrix} F_{hh} & F_{lh} \\ F_{hl} & F_{ll} \end{bmatrix} = \begin{bmatrix} p(R_{t+1} = R^h | R_t = R^h) & p(R_{t+1} = R^l | R_t = R^h) \\ p(R_{t+1} = R^h | R_t = R^l) & p(R_{t+1} = R^l | R_t = R^l) \end{bmatrix}$$

Macroprudential Policy and Housing

Budget constraint and market clearing: $q_t b_{t+1} + c_t^T = b_t + y_t^T$

Dynamic programming problem of the agent:

$$V(b_{t}, A_{t}, y_{t}^{T}, y_{t}^{N}, s_{t}, q_{t}) = \\ \max_{c_{t}^{T}, c_{t}^{N}, A_{t}, b_{t+1}} \left[\frac{(c(c_{t}^{T}, c_{t}^{N}, A_{t}))^{1-\sigma} - 1}{1-\sigma} + \beta \mathbb{E}_{t} V(b_{t+1}, A_{t+1}, y_{t+1}^{T}, y_{t+1}^{N}, s_{t+1}, q_{t+1}) \right]$$

where:

$$\begin{aligned} q_t b_{t+1} &+ c_t^T = b_t + y_t^T \\ c^N &= y^N \\ q_t b_{t+1} &\geq -\kappa_Y \left(y_t^T + p_t^N y_t^N \right) - \kappa_A p_t^H A_t \end{aligned}$$

Model - Decentralized Equilibrium Prices

Macroprudential Policy and Housing

Prices denoted in tradables:
$$p_t^X = \frac{\frac{\partial U(x_t)}{\partial X_t}}{\frac{\partial U(c_t^T)}{\partial c_t}}$$

Price of non-tradables:
$$p_t^N = \left(\frac{1-\omega}{\omega}\right) \left(\frac{c_t^T}{c_t^N}\right)^{1+\eta}$$

Price of land:

$$p_t^H = rac{1}{lpha \omega} \, c_t^{\sigma-1-\eta_D} \, \left[\omega \left(c_t^{\mathcal{T}}
ight)^{-\eta} + (1-\omega) \, c_t^{\mathcal{N}}
ight)^{-\eta}
ight]^{\eta_D - \eta} \, (c_t^{\mathcal{T}})^{\eta+1} \, \, rac{\partial U_t}{\partial A_t}$$

• To obtain
$$\frac{\partial U_t}{\partial A_t}$$
, two disconnected states:

$$\bullet A^+ = A + \epsilon$$

$$A^{-} = A - \epsilon.$$

Model - Macroprudential policy

Macroprudential Policy and Housing

Social planner: takes prices into account

$$\frac{\partial u(c_t)}{\partial c_t^T} + \mu_t \,\psi_t = \frac{\beta}{q_t} \mathbb{E}_t \left[\frac{\partial u(c_{t+1})}{\partial c_{t+1}^T} + \mu_{t+1} \,\psi_{t+1} \right] + \mu_t \,\psi_t = \kappa_Y \,\frac{\partial p_t^N}{\partial c_t^T} + \kappa_A \,\frac{\partial p_t^H}{\partial c_t^T}$$

Macroprudential policy: constraint does not bind today but may bind tomorrow

• Optimal tax: decentralize
$$\tau_t = \frac{\mathbb{E}_t [\mu_{t+1} \ \psi_{t+1}]}{\mathbb{E}_t \left[\frac{\partial u(c_{t+1})}{\partial c_{t+1}^T} \right]}$$

- Global solution method necessary.
- Value function iteration method
 - interpolated decision rules (linear interpolation)
 - occasionally binding constraints
- With the policy function obtained: simulate the economy
 - unconditional moments
 - moments conditional on sudden stops
 - event analysis of sudden stops

Calibration - Argentina Macroprudential Policy and Housing

Table 1: Previous baseline model parameters

Parameter	Values
y^N	1
$\mathbb{E}\left[y^T\right]$	1
ρ_y^T	0.540
$Var\left[y^{T}\right]$	0.059
N_y^T	3
γ	2
η	0.205
ω	0.310
R^h	1.0145
R^l	0.9672
F^{hh}	0.9833
F^{ll}	0.90
θ	0.66

Table 2:	Parameters	for the	baseline-housing
	compariso	n when	$\kappa_A = 0$

Parameter	Baseline setting	Housing setting
α	1	0.595
η_D	0.282	0.282
β	0.910	0.910
κ_Y	0.320	0.320
κ_A	0	0

Table 3: Parameters for the full baseline-housing comparison

Parameter	Baseline setting	Housing setting
α	1	0.595
η_D	0.282	0.282
β	0.9375	0.9375
κ_Y	0.29	0.29
κ_A	0.03	0.03

Results - Introducing Housing only with DTI condition, low liquidity

Results - Introducing Housing only with DTI condition, high liquidity

Results - Introducing Housing only with DTI condition

Macroprudential Policy and Housing

Moment	Without housing	With housing	Variation
P(SS)	-27.40%	-25.76%	-5.78%
$\sigma_{CA/Y}$	-36.68%	-36.16%	-1.42%
$\Delta \epsilon$	-33.49%	-33.47%	-0.06%
ΔY	-22.27%	-21.93%	-1.51%
Δc	-29.13%	-28.94%	-0.64%

Macroprudential policy effects ($\kappa_A = 0$)

Results - DTI and LTV, Low liquidity

Results - DTI and LTV, High liquidity

Results - DTI and LTV

Macroprudential Policy and Housing

Moment	Without housing	With housing
$P_{DE}(SS)$	3.764~%	3.897%
$P_{SP}(SS)$	2.160~%	2.341%
$P(\tau \neq 0)$	75.89%	82.54%
$B\bar/Y_{DE}$	-26.61%	-29.34%
$B\bar/Y_{SP}$	-26.46%	-29.36%
$\sigma_{CA/YDE}$	2.03%	2.49%
$\sigma_{CA/YSP}$	1.32%	1.54%
$\Delta \epsilon_{DE}$	-31.29%	-38.29%
$\Delta \epsilon_{SP}$	-21.62%	-23.72%
ΔY_{DE}	-25.91%	-29.30%
ΔY_{SP}	-20.27%	-21.46%
Δc_{DE}	-10.04%	-11.89%
Δc_{SP}	-7.23%	-7.83%
$\bar{\tau}$	1.550~%	2.150%

Comparison between model moments ($\kappa_A > 0$)

1 38.7%

- No assets in the collateral condition: housing decreases the need for macroprudential policy (-6.64% in the average tax).
- With assets in the collateral condition: housing increases the need for macroprudential policy, and significantly so (+38.7% in the average tax).
- With assets in the collateral condition: housing eases implementation.

Model - The surge in House prices

Macroprudential Policy and Housing

Comparative statics

- e proportion of land rented to foreign buyers

 - 10% increase in prices
 increase in income: e^l_Pp^H_tA_t

The effect of the surge in prices is, *a priori*, ambiguous.

Calibration - Spain

Macroprudential Policy and Housing

Table 1: Baseline model parameters

Results - Low liquidity

Macroprudential Policy and Housing

Comparison between both scenarios - Low liquidity

Results - High liquidity

Macroprudential Policy and Housing

Comparison between both scenarios - High liquidity

Liquidity Regime	Shock to y^T	News	Increase (%)
		Bad News	35.88
	Bad Shock	Avg News	48.81
		Good news	49.45
	Avg Shock	Bad News	38.72
Low liquidity		Avg News	42.67
		Good news	59.59
		Bad News	52.88
	Good Shock	Avg News	41.91
		Good news	66.16
High liquidity Good Shock	Bad Shock	Bad News	39.08
		Avg News	40.30
	Good news	49.18	
		Bad News	41.87
	Avg Shock	Avg News	40.69
		Good news	55.11
		Bad News	47.10
	Good Shock	Avg News	43.62
		Good news	48.83

Table 6: Increase in taxes as a result of the high external demand

Table 5: Comparison between the effect of macroprudential policy in both settings

Effect of policy	Baseline	Price Surge
$\Delta P(SS)$	87.5%	64.0%
$\Delta \sigma_{CA/Y}$	21.2~%	18.2%
$\Delta(\Delta \epsilon)$	14.2~%	17.2%
$\Delta(\Delta Y)$	12.2%	14.9%
$\Delta(\Delta c)$	14.0%	16.9%

Q2's Conclusions

- Even when by construction the increase in average land prices was completely exogenous and permanent, macroprudential policy should lean against the wind. This is a novel result when using the pecuniary externality approach.
- The strengthening of optimal macroprudential policy should be commensurate with the average increase in prices (45.4% increase for a 10% increase in prices).
- Implementation eases with the increase in prices (and vice-versa)