Introdu 00000	ction Empi	irical Strategy 00	Results 0000000000	Conclusion O	References	Appendix 0000000000
	Со	ncentrating	g on Bailout	ts: Gover	nment	
	Gu	arantees an	d Rank As	set Comp	osition	
	Gu	arantees an	u Darik As	set comp	USILIOII	

Eufinger (IESE), Gorostiaga (IESE, PUC), and Richter (UPF)

EEA Conference - Barcelona 2023

jgorostiaga@iese.edu

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Introduction ●000000 mpirical Strategy

Results 00000000000 Conclusion

References

Appendix 000000000

Concentrated exposures often cause banking crises

THE WALL STREET JOURNAL. Who Killed Silicon Valley Bank?

Apparently no one at the firm perceived any risk from the Fed raising interest rates.

By Andy Kessler Follow March 12, 2023 3:04 pm ET

Was there regulatory failure? Perhaps. SVB was regulated like a bank but looked more like a money-market fund. Then there's this: In its proxy statement, SVB notes that besides 91% of their board being independent and 45%

Silicon Valley Bank

Introduction 000000	Empirical Strategy	Results 00000000000	Conclusion O	References	Appendix 0000000000
Recent c	autionary tal	les			

- **SVB**: tech start-up space and U.S. government bonds
- **Signature Bank**: digital assets space and commercial real estate in NYC (≈600% of T1-Capital)
- First Republic: single-family home loans represents 59% of lending portfolio

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Why do banks then often opt for high asset concentration?

- Existing literature: banks' asset composition results from trade-off between specialized/concentrated (e.g., Winton, 1999) versus diversified asset portfolios (e.g., Diamond, 1984).
- **Our paper:** Government guarantees (GG) skew this trade-off, encouraging banks to engage in risk-taking via asset concentration.
- GGs incentivize a bank to further load up on assets whose failure would bring down the bank anyway.

Introduction 0000000	Empirical Strategy	Results 00000000000	Conclusion O	References	Appendix 0000000000
Model I	ntuition I				

SVB-like Balance Sheet

Assets	Lb. & Eq.
<u>US Gov Bonds</u>	<u>Debt</u>
\$ 120 Bn	\$ 195 Bn
<u>Other Assets</u>	Equity
\$ 90 Bn	\$ 15 Bn

- GG make banks' financing costs largely insensitive to their investment behavior
- Increase exposures toward assets that raise returns in solvency states and lead to losses only in insolvency states

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Introduction 0000●00	Empirical Strategy	Results 0000000000	Conclusion O	References	Appendix 0000000000
Model In	tuition II				

SVB-like Balance Sheet

Assets	Lb. & Eq.
<u>US Gov Bonds</u>	<u>Debt</u>
\$ 120 Bn	\$ 195 Bn
<u>Other Assets</u>	Equity
\$ 90 Bn	\$ 15 Bn

- When an eventual value loss threatened its stability, a bank like SVB will be incentivized to double down on U.S. bonds
- Further loading up on "safe" government bonds increases the bank's risk level more than investing in other risky assets

・ロト・日本・日本・日本・日本・日本

Introduction 00000€0	Empirical Strategy	Results 00000000000	Conclusion O	References	Appendix 0000000000
Empirica	l Findings				

Exploiting political connections in the U.S. banking system, we verify GG protection induces risk-taking via asset concentration:

- Protected banks concentrate their lending portfolios (13.5%)
 Stronger for highly exposed banks (45%)
- Banks gaining (losing) GG protection load relatively more (less) on asset classes to which they had a high pre-exposure
 - Transitioning their portfolios over the following three years

Introduction 000000●	Empirical Strategy	Results 0000000000	Conclusion O	References	Appendix 0000000000
Contribut	tion				

- Government guarantees on bank investment behavior: risk-taking characterized by idiosyncratic risk of new loans.
 - Merton (1977); Allen et al. (2011); Cordella and Yeyati (2003); Gropp and Vesala (2004); Dam and Koetter (2012); Gropp et al. (2011); Brandao-Marques et al. (2013); Duchin and Sosyura (2014); Kostovetsky (2015)
- Bank specialization: determinants and implications for risk-taking
 - Agarwal et al. (2020); De Jonghe et al. (2020); Beck et al. (2022); Blickle et al. (2023); Casado and Martinez-Miera (2023)

We provide empirical evidence that government guarantees can induce banks to engage in risk-taking via asset concentration

Introduction	Empirical Strategy	Results	Conclusion	References	Appendix
0000000	●0000	00000000000	O		0000000000
Measurin	g bailout exp	pectations			

Empirical challenge: implicit GG not observable and endogenous to investment behavior

Conjecture: higher bailout likelihood if the state in which the bank is headquartered is represented in BHUA Senate Committee

- Task: Involved in monitoring, law deliberation, and bailout decisions (e.g., TARP) (Duchin and Sosyura, 2014) More Details
- Assignment: Based on party considerations and share, senators' qualifications and other factors
- **Dispersed**: State representation and banks are regionally dispersed, and change in state location is uncommon

- ロ ト - 4 回 ト - 4 □

Empirical	Strategy
00000	

Results 00000000000 Conclusion 0 References

Appendix 000000000

State representation in BHUA Senate Committee (1996)

Empirical	Strategy
00000	

Results 0000000000 Conclusion 0 References

Appendix 000000000

State representation in BHUA Senate Committee (2006)

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

ction	Empir
00	0000

npirical Strategy 00●0

Results 00000000000 Conclusion 0 References

Appendix 000000000

State representation in BHUA Senate Committee (2016)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

Introduction	Empirical Strategy	Results	Conclusion	References	Appendix
0000000	0000●	0000000000	O		0000000000
Portfolio	Data				

- Characterizing exposure based on lending portfolios at BHC level¹ (1996-2016) for >3,000 U.S. banks
 - Lending Classes (BHC): Residential Real Estate (RE) (3), Commercial RE (3), Agri (2), Consumer Credit (2), Commerce and Industry (2), and to other financial firms (2).

• Exposure:

Total or Class Lending Volume Tier 1 Capital

• **Controls**: Lagged Size (log Assets), ROA (EBIT/A), Liquidity (Cash + STI/A), Wholesale leverage ((A-E-D)/A), Dividends, State-level log-GDP.

Descriptive Statistics

¹Bank Holding Company database, derived from Y-9C reports and made available by Federal Reserve Bank of Chicago

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ▲ 三 ● ● ●

Protected banks have more concentrated portfolio

Empirical specification

Portfolio Concentration_{b,t+1} = $\beta_1 GG_{b,t} + \delta X_{b,t} + \alpha_t + \alpha_b + \epsilon_{i,t}$

$$CW_{b,c,t} = rac{Lending Volume to Class_{b,c,t}}{Total Lending Volume_{b,t}}$$

Ortfolio HHI:

$$\sum CW^2$$

Portfolio EDM:

$$\sum [CW * Log(CW)]$$

Introduction 0000000	Empirical Strategy	Results 0●000000000	Conclusion O	References	Appendix 0000000000
GG and	Concentratio	on			

Table: Portfolio Concentration

	Po	rtfolio HHI		Portfolio EDM		
	Full Sample	High Ex.	Low Ex.	Full Sample	High Ex.	Low Ex.
GG	0.292**	0.505**	0.242*	0.742*	1.515**	0.592
	(0.032)	(0.039)	(0.087)	(0.053)	(0.019)	(0.141)
Time FE	Yes	Yes	Yes	Yes	Yes	Yes
Bank FE	Yes	Yes	Yes	Yes	Yes	Yes
Ν	20,861	4,351	16,510	20,861	4,351	16,510
R^2	0.840	0.907	0.824	0.870	0.921	0.855

Asset concentration conditional on lending exposure

Panel A: Inter-State		Portfolio HI	н	Portfolio EDM		
GG	-0.199	0.191	0.213	-0.807	0.468	0.475
	(0.439)	(0.169)	(0.106)	(0.296)	(0.224)	(0.194)
GG × Lending Exposure (Continuous)	0.065 * (0.059)			0.207 ** (0.042)		
GG x Lending Exposure		0.384**			0.994**	
(Top 25%)		(0.013)			(0.040)	
GG × Lending Exposure (Top 10%)			0.773 *** (0.008)			2.572 *** (0.005)
$\hat{\beta}_1 + \hat{\beta}_3$		0.575***	0.986***		1.461***	3.048***
		(0.001)	(0.001)		(0.007)	(0.001)
Time FE	Yes	Yes	Yes	Yes	Yes	Yes
Bank FE	Yes	Yes	Yes	Yes	Yes	Yes
Ν	20,861	20,861	20,861	20,861	20,861	20,861
R ²	0.840	0.839	0.839	0.870	0.869	0.869

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Asset concentration conditional on lending exposure

Panel B: Intra-State	Portfolio HHI			Portfolio EDM		
GG x Lending Exposure	0.070**			0.212**		
(Continuous)	(0.046)			(0.047)		
GG x Lending Exposure (Top 25%)		0.399 ** (0.010)			1.019 ** (0.041)	
GG x Lending Exposure (Top 10%)			0.721 ** (0.013)			2.421 *** (0.009)
State-Time FE	Yes	Yes	Yes	Yes	Yes	Yes
Bank FE	Yes	Yes	Yes	Yes	Yes	Yes
N	20,799	20,799	20,799	20,799	20,799	20,799
R ²	0.855	0.854	0.854	0.882	0.881	0.881

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 三臣 - ∽ � � �

Introduction

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

How do GG gainers and losers reallocate their portfolios?

Transition to more (less) concentrated portfolio after $\triangle GG$

Empirical specification

 \triangle Log(Class Weight or Volume)_{b,c,t+T} = $\beta_1 \triangle GG_{b,t} + \beta_2 Exposure Ratio_{b,c,t}$

 $+\beta_3 \triangle GG * Exposure Ratio_{b,c,t} + \delta X_{b,t} + Class_c * Year_t + Bank_b + \epsilon_{b,c,t}$

- Portfolio Weights: $\triangle Log(Portfolio Weight_{b,c,t+T})$
- **2** Lending Behaviour: $\triangle Log(Lending Volume_{b,c,t+T})$

Reallocation after change in GG coverage (3-year)

	Con	tinuous Exp	oosure	Top 25% Exposure		
	ΔPW	ΔPW	ΔPW	ΔPW	ΔPW	ΔPW
	(t+1)	(t+2)	(t+3)	(t+1)	(t+2)	(t+3)
$\triangle GG$	-0.025	-0.061**	-0.111***	-0.010	-0.036*	-0.073***
	(0.101)	(0.012)	(0.003)	(0.383)	(0.080)	(0.005)
riangle GGx	0.034*	0.083***	0.144***			
Exposure Ratio	(0.052)	(0.006)	(0.003)			
riangle GGx				0.043	0.168*	0.305**
Top 25% Exposure				(0.401)	(0.072)	(0.013)
$\hat{\beta}_1 + \hat{\beta}_3$				0.032	0.131*	0.232**
				(0.413)	(0.069)	(0.014)
Bank FE	Yes	Yes	Yes	Yes	Yes	Yes
Class-Time FE	Yes	Yes	Yes	Yes	Yes	Yes
N	184,062	156,198	132,980	184,062	156,198	132,980
R ²	0.089	0.142	0.185	0.087	0.136	0.175

troduction 000000 mpirical Strategy

Results 000000●0000 Conclusion

References

<ロト <回ト < 注ト < 注ト

æ

Appendix 0000000000

Effect of GG protection on Portfolio Weights (p.p.)

Conclusion

References

Appendix 000000000

Change in lending behavior (3-year)

	Continuous Exposure			Top 25% Exposure		
	ΔLCV	ΔLCV	ΔLCV	ΔLCV	ΔLCV	ΔLCV
	(t+1)	(t+2)	(t+3)	(t+1)	(t+2)	(t+3)
\triangle GG	-0.231	-1.744*	-2.634**	-0.165	-1.391	-2.110**
	(0.639)	(0.090)	(0.029)	(0.715)	(0.120)	(0.031)
riangle GG	0.132	1.131**	1.903***			
× Exposure Ratio	(0.617)	(0.018)	(0.002)			
riangle GGx				0.019	2.221**	4.032***
Top 25% Exposure				(0.976)	(0.014)	(0.000)
$\hat{\beta}_1 + \hat{\beta}_3$				-0.146	0.830	1.922**
				(0.768)	(0.311)	(0.049)
Bank FE	Yes	Yes	Yes	Yes	Yes	Yes
Class-Time FE	Yes	Yes	Yes	Yes	Yes	Yes
N	184,062	156,198	132,980	184,062	156,198	132,980
R^2	0.075	0.134	0.185	0.074	0.131	0.180

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ● ●

Introd	uction
0000	000

Conclusion

References

Appendix 0000000000

Matching Approach - Portfolio Weights

	Los	sers	Gainers	
	ΔPW	ΔPW	ΔPW	ΔPW
Treated × Post	0.098*	0.067	0.098**	-0.072**
	(0.096)	(0.128)	(0.036)	(0.038)
Treated × Post	-0.125**		0.128**	
× Exposure Ratio	(0.029)		(0.022)	
Treated × Post		-0.261**		0.289**
x Top 25% Exposure		(0.022)		(0.013)
N	22,979	22,989	34,565	34,583
R^2	0.219	0.217	0.260	0.257
Bank FE	Yes	Yes	Yes	Yes
Class-Time FE	Yes	Yes	Yes	Yes

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ○ ○ ○

Introduction
0000000

References

Matching Approach - Lending Volume

	Los	sers	Gainers	
	ΔLCV	ΔLCV	ΔLCV	ΔLCV
Treated x Post	3.122	2.627	-2.166	-1.886
	(0.196)	(0.261)	(0.401)	(0.395)
Treated × Post	-1.874**		2.548**	
x Exposure Ratio	(0.043)		(0.021)	
Treated × Post		-3.902**		5.964***
x Top 25% Exposure		(0.046)		(0.003)
N	22,979	22,989	34,565	34,583
R^2	0.228	0.227	0.242	0.240
Bank FE	Yes	Yes	Yes	Yes
Class-Time FE	Yes	Yes	Yes	Yes

・ロト ・ 一下・ モト ・ モト ・ モ

Introduction 0000000	Empirical Strategy	Results 000000000●	Conclusion O	References	Appendix 0000000000
Robustne	ess				

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

- Placebo Test Lending behavior
- Excluding years and states
- Within State

Introduction 0000000	Empirical Strategy	Results 00000000000	Conclusion •	References	Appendix 0000000000
Concluci	0 P				
Conclusi					

We show government guarantees risk-taking incentives have an important portfolio dimension and lead to asset concentration:

• Protected banks lend relatively more to the asset classes of higher pre-exposure and concentrate portfolios

This mechanism has relevant implications for expanding policy initiatives of government guarantees for banks

- Recent bailouts of institutions (e.g., SVB and Credit Suisse)
- Ongoing deliberations about potentially widening the scope deposit insurance schemes (US & EU)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Introduction 0000000	Empirical Strategy	Results 00000000000	Conclusion O	References	Appendix 0000000000
Reference	es				

- S. Agarwal, R. Correa, B. Morais, J. Roldán, and C. Ruiz Ortega. Owe a bank millions, the bank has a problem: Credit concentration in bad times. *Working Paper*, 2020.
- F. Allen, E. Carletti, and A. Leonello. Deposit insurance and risk taking. Oxford Review of Economic Policy, 27(3):464–478, 2011.
- T. Beck, O. De Jonghe, and K. Mulier. Bank sectoral concentration and risk: Evidence from a worldwide sample of banks. *Journal of Money, Credit and Banking*, 2022.
- K. Blickle, C. Parlatore, and A. Saunders. Specialization in banking. *Working Paper*, 2023.
- L. Brandao-Marques, R. Correa, and H. Sapriza. International evidence on government support and risk taking in the banking sector. *Working Paper*, 2013.
- A. Casado and D. Martinez-Miera. Local lending specialization and monetary policy. *Working Paper*, 2023.
- T. Cordella and E. L. Yeyati. Bank bailouts: moral hazard vs. value effect. *Journal of Financial intermediation*, 12(4):300–330, 2003.
- L. Dam and M. Koetter. Bank bailouts and moral hazard: Evidence from germany. *The Review of Financial Studies*, 25(8):2343–2380, 2012.
- O. De Jonghe, H. Dewachter, K. Mulier, S. Ongena, and G. Schepens. Some borrowers are more equal than others: Bank funding shocks and credit reallocation. *Review of Finance*, 24(1):1–43, 2020.
- D. W. Diamond. Financial intermediation and delegated monitoring. *The Review of Economic Studies*, 51(3):393–414, 1984.

Introduction	Empirical Strategy	Results	Conclusion	References	Appendix
0000000	00000	0000000000	O		●000000000
Corpora	te Finance N	lodel			

- Two dates and three RN parties: G, B, C. Bank has legacy investment (L) and two alternative marginal assets (A)
- Low-exposure case: bank defaults only when both assets fail. High-exposure case: bank defaults whenever legacy asset fails
- Higher ρ_A increases expected returns in solvency states (CFC) but lowers liquidation value in insolvency states (FCC)
- GG drives a wedge: creditors assign a lower value to the liquidation value of marginal asset. *CFC dominates FCC*
- Banks with high pre-exposure will further concentrate their portfolio on this asset when GG increases

Introduction	Empirical Strategy	Results	Conclusion	References	Appendix
0000000	00000	00000000000	O		o●oooooooo

Example: Simplified Balance Sheet

Assets	units	Return	EQ. & LB.	units
Other Assets	4	1.00	Equity	4
Loans Type A	1	1.10	Debt	6
Loans Type B	5	1.10		

- With only two states for Loans: success or failure
 ⇒ When Loan Type B defaults, bank is insolvent.
- Bank's creditors don't completely adjust their required interest rate after changes in bank's portfolio (GG).

Introduction 0000000	Empirical Strategy	Results 0000000000	Conclusion O	References	Appendix 00●0000000
Example:	Pavoffs				

Exp. Payoffs	A & B	A & <i>Ē</i>	<i>Ā</i> & B	Ā & Ē
Bank	4.6	0	3.5	0
Creditor	6	5.1	6	4

Example (Payoffs for each scenario)

 $\Pi_b = P_{A,B}[4+6*1.1-6] + P_{\bar{A},\bar{B}}[0] + P_{\bar{A},B}[4+5*1.1-6] + P_{\bar{A},\bar{B}}[0]$

 $\Pi_{c} = P_{A,B}[6] + P_{A,\bar{B}}[5.1] + P_{\bar{A},B}[6] + P_{\bar{A},\bar{B}}[4]$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

roduction	Empirical	Strateg
00000	00000	

Example: Risk-taking via asset concentration

Assets	units	Return	Load on A	Load on B
Other Assets	4	1.0	3	3
Loans Type A	1	1.1	2	1
Loans Type B	5	1.1	5	6

- Bank's P(default) depends on Loan B, not shift direction
- Creditors don't adjust rates accordingly
- bank cannot reap value from improving diversification and lowering bankruptcy probability
- Consequently, further loading on high pre-existing exposure (i.e., Loan B) dominates

• Creditors' expected payment is better with increased diversification, as payoff is higher for (A, \bar{B}) state

Load A	A & B	A & <i>Ē</i>	<i>Ā</i> & B	Ā & B
Bank	4.7	0	2.5	0
Creditor	6	5.2	6	3

 Shareholders' expected profit is better with increased concentration, as payoff is higher in solvency state (A,B)

Load B	A & B	A & Ē	<i>Ā</i> & B	Ā & Ē
Bank	4.7	0	3.6	0
Creditor	6	4.1	6	3

Low exposure case: Equity may be indifferent

Assets	units	Return	Load on A	Load on B
Other Assets	4	1.0	3	3
Loans Type A	3	1.1	4	3
Loans Type B	3	1.1	3	4

Load B	A & B	A & <i>Ē</i>	<i>Ā</i> & B	Ā & Ē
Bank Craditor	4.7	1.4	0.3	0
Creditor	0	0	0	5
Load B	A & B	A & <i>Ē</i>	<i>Ā</i> & B	Ā & B
Bank	4.7	0.3	1.4	0
Creditor	6	6	6	3

Introduction	Empirical Strategy	Results	Conclusion	References	Appendix
0000000	00000	0000000000	O		000000€000

Model - High Exposure: Bank Profit Maximization

$$\Pi_{A,hi} = \Delta_A + \rho_A \left[lR_L + xR_A - dD \right] + (\lambda_L - \rho_A) \left[lR_L - dD \right] - e.$$
(3.10)

$$\rho_A dD + (\lambda_L - \rho_A) dD + (\lambda_A - \rho_A) [\alpha dD + (1 - \alpha) x R_A] + (1 - \lambda_L - \lambda_A + \rho_A) \alpha dD \ge d.$$
(3.11)

$$\Pi_{A,hi}^{*} = \Delta_{A} + \underbrace{(\lambda_{L} l R_{L} + \lambda_{A} x R_{A})}_{=PV_{A,hi}} + \underbrace{(1 - \lambda_{L})\alpha \frac{d - (\lambda_{A} - \rho_{A})(1 - \alpha)x R_{A}}{\lambda_{L} + (1 - \lambda_{L})\alpha} - (\lambda_{A} - \rho_{A})\alpha x R_{A}}_{=G_{A,hi}} - 1. \quad (3.13)$$

$$\frac{\partial F_{\overline{A},hi}}{\partial \alpha} = \frac{1}{2\delta} \frac{\lambda_L(\rho_{\overline{A}} - \rho_{\underline{A}}) x R}{\lambda(\lambda_L + (1 - \lambda_L)\alpha)^2} > 0.$$
(3.18)

Go Back

Go Back

Go Back

Introduction 0000000	Empirical Strategy	Results 0000000000	Conclusion O	References	Appendix 0000000●00

BHUA Senate Committee Representation

- **Causality** Incoming senators are interested in other committees of greater exposure and power²,
- Committee composition is hardly defined by a particular firm.
- **Reasons for change** Leave to another committee or other tasks³, retire or death, followed by a new incorporation.
- Change in Rep-Dem proportion can modify the committee, as parties re-assign (scarcer) members.

Go Back

²Most seek committees: Appropriations, Armed Services, Finance, and Foreign Relationships; according to Congressional Research Service (Kostovetsky, 2015)

³e.g., electoral campaigns

Introduction 0000000	Empirical Strategy	Results 0000000000	Conclusion O	References	Appendix 00000000●0

Table: Descriptive Statistics on BHC Call Report Data

	Observation	Mean	Std. Dev.	10 %	50 %	90 %
66	05 000	0.407	0 401	0.000	0.000	1 000
GG	25,203	0.407	0.491	0.000	0.000	1.000
Size	25,203	13.390	1.322	12.124	13.134	14.925
Wholesale Debt	25,203	0.104	0.092	0.016	0.081	0.213
Liquidity	25,071	0.048	0.034	0.019	0.038	0.087
ROA	25,203	0.023	0.018	0.007	0.024	0.041
Dividends	25,203	0.770	0.421	0.000	1.000	1.000
State GDP	25,203	12.53	0.94	11.28	12.59	13.70
Portfolio HHI	25,203	24.72	7.35	16.33	22.94	34.05
Portfolio EDM	25,203	-164.75	23.64	-192.00	-168.16	-133.23
Lending Exposure	25,067	7.595	3.285	3.948	7.161	11.604
Exposure Ratio	259,629	0.725	1.012	0.012	0.263	2.118
$\Delta Log(PW)$	219,075	-0.002	1.485	-1.438	-0.016	1.468
$\Delta Log(LV)$	219,075	5.694	41.718	-29.916	3.220	44.343

Introduction 0000000	Empirical Strategy	Results 0000000000	Conclusion O	References	Appendix 000000000●
Placebo	Test				

