Churning in Cities

The Volatility Advantage of Dense Labor Markets

Maddalena Conte (CREST), Isabelle Mejean (Sciences Po), Tomasz Michalski (HEC), Benoît Schmutz (CREST)

EEA - 30/08/23

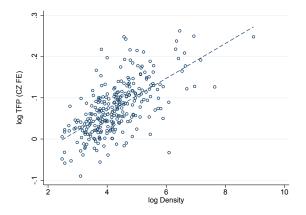
Roadmap

Motivation and research questions

Empirical facts

Theory

Location choice: empirical evidence


Quantitative insights

Concluding remarks

Appendix

Motivation

The productivity advantage of dense cities

January 2015 cross section of single-plant firms in DADS Postes. Average log productivity Details conditional on firm characteristics: sector, size bin, age. CZ stands for commuting zone. Slope: 0.042*. Results are robust to controlling for firm growth.

Motivation

- 1. Productive firms sort into larger/denser cities
 - \rightarrow Low-selection puzzle (Combes et al., 2012)
- 2. Pooling externalities: agglomeration facilitates cross-hiring between firms (Krugman, 1992)
 - \rightarrow High-productivity firms benefit the most from being able to hire more quickly (Bilal, 2023)
 - → High-volatility firms benefit the most from being able to hire more quickly (this paper)

What we do

- 1. Empirical facts about firm labor volatility across cities
 - → Positive correlation between (idiosyncratic component of) employment volatility and city density, conditional on firm productivity
- 2. Theoretical model, where
 - $\rightarrow\,$ Firms are heterogeneous both along the productivity and the volatility dimensions
 - $\rightarrow\,$ Firms' labor demand strategies depend on tightness of the local labor market
- 3. Empirical model of firm location choice, where firms choose location based on productivity and volatility

Roadmap

Motivation and research questions

Empirical facts

Theory

Location choice: empirical evidence

Quantitative insights

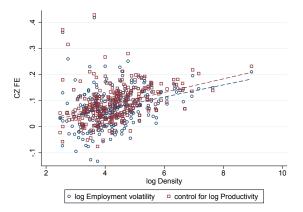
Concluding remarks

Appendix

Data

- Use French matched employer-employee data 2010-2019 at monthly frequency
 - $\rightarrow\,$ Develop measure to capture idiosyncratic component of labor demand volatility
 - \rightarrow 12 sectors: manufacturing, construction, services (including non-tradables)
- Cities are defined as Commuting Zones (CZs)
 - $\rightarrow N = 280$ partition continental France
 - $\rightarrow\,$ Density of working-age population: measure of urban scale

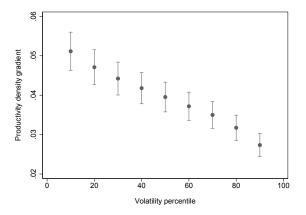
Firm labor demand volatility


Volatility of employment based on Davis et al. (2006)

• For each firm *f* and month *t*:

$$\sigma_{ft} = \sqrt{\frac{1}{2\omega + 1} \sum_{\tau = -\omega}^{\omega} \left(\gamma_{f,t+\tau} - \bar{\gamma}_{ft}\right)^2}$$

- $\rightarrow~\gamma_{ft}$ growth rate of number of employees between t-12 and t
- \rightarrow Time window $2\omega + 1 = 35$: approximately 3 years
- $\rightarrow \bar{\gamma}_{ft}$: mean value of γ_{ft} over the period
- γ_{ft} residualized in the sector×period and the CZ×period dimensions to measure "idiosyncratic" volatility (di Giovanni, Levchenko, and Mejean, 2014)


Fact 1: Labor demand volatility increases with city size

January 2015 cross section of single-plant firms. Average labor demand volatility conditional on firm characteristics: sector, size bin, age, firm growth (in blue) and log productivity (in red). Slopes: 0.023*** and 0.026***.

Fact 2: The productivity-density gradient decreases with labor demand volatility

Notes: Conditional correlation between log productivity of firms and density of the commuting zone where they locate, along the distribution of firms' employment volatility. Controls: sector, size bin, firm age, firm growth, and employment volatility. January 2015 cross section of firms.

Roadmap

Motivation and research questions

Empirical facts

Theory

Location choice: empirical evidence

Quantitative insights

Concluding remarks

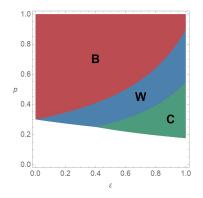
Appendix

Set-up

See Mortensen and Pissarides (1994)

We focus on firms' decision to churn

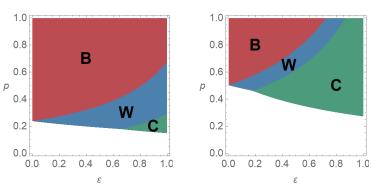
- Problem of single-job, risk-neutral firms, in continuous time
 - → Partial equilibrium: workers are homogeneous, immobile, always accept offered jobs and do not search on the job
 - $\rightarrow~$ The economy operates at steady-state
- Firms are heterogeneous in terms of
 - \rightarrow their mean productivity $p \in [p, \overline{p}]$ (known ex ante)
 - \rightarrow their demand volatility $\varepsilon \in [0, 1]$ (known ex ante)
- ⇒ Sales fluctuate between $p(1 + \varepsilon)$ in high state (*h*) and $p(1 \varepsilon)$ in low state (*l*) at rate σ


Firms' choice

1. A location $M \rightarrow$ operational costs R(M) and job-filling rate $\mu(M)$

- \rightarrow Assumptions: R'(M) > 0 and $\mu'(M) \ge 0$
- → No fixed cost → No selection at entry (\neq Melitz, 2003), selection on city size (as in Gaubert, 2018)
- 2. A strategy s, i.e. what to do in low state
 - \rightarrow Business as usual (B): no adjustment to labor demand
 - \rightarrow Wait-and-see (W): no hiring in low state
 - \rightarrow Churning (C): no workers in low state

 \Rightarrow Given (M, s), firms alternate between being vacant, filled or idle


Value functions

Calibration: c = 0.1, $\sigma = 0.01$, r = 0.01, $\delta = 0.01$, $\mu(M) = 0.02$, R(M) = 0.2, $\chi = 0$, $\overline{p} = 1$.

- 1. Churning is adopted by more volatile firms
- 2. Churning allows less productive firms to operate Proof

Comparative statics

A – Small city

B – Large city

 $\begin{array}{l} \mbox{Calibration: } c = 0.1, \ \sigma = 0.01, \ r = 0.01, \ \delta = 0.01, \ \chi = 0, \ \mu(M) = \sigma + B \sqrt{M}, \ R(M) = c + B M^2, \\ B = 5/1000, \ \overline{p} = 1 \ \mbox{and} \ M \in \{2, 8\}. \end{array}$

1. Denser cities have a higher share of churning firms **Proof**

2. Low-productivity firms are more volatile in denser cities

Sorting patterns: key take-aways

Location level Illustration

- 1. The share of churning firms increases with density Fact 1
- 2. The productivity-density gradient decreases with volatility Fact 2

Firm level

- 1. More volatile firms sort into denser cities
- 2. More productive firms sort into denser cities, especially if they are more volatile
- \Rightarrow Location choice model

Roadmap

Motivation and research questions

Empirical facts

Theory

Location choice: empirical evidence

Quantitative insights

Concluding remarks

Appendix

Firm location choice

- Goal: show that all else equal, firms sort on volatility
- One-stage discrete choice model based on conditional logit estimator
 - \rightarrow Location choice driven by CZ density \times firm{volatility, productivity}
 - → Location controls:
 - general: share of managers and college-educated
 - firm specific: localisation economies
 Details
- Sample of new firm openings in 2010-2019

From the model to the data

Need an exogenous measure of volatility: demand volatility

- · Measures the firm's exposure to product-specific demand variations
- Firm's product portfolio (in first 2 years since firm's creation)
- Interact with growth rate of product demand (world import data)
- Sum across all products of the firm \Rightarrow growth of firm-specific product demand $\gamma^D_{f,t+\tau}$
- Calculate volatility: the s.d. over 12 months prior to firm creation

$$\gamma_{f,t}^{D} = \sqrt{\frac{1}{12} \sum_{\tau=-11}^{0} \left(\gamma_{f,t+\tau}^{D} - \overline{\gamma^{D}}_{f,t}\right)^{2}}$$

ightarrow with $\overline{\gamma^D}_{f,t}$ mean value of $\gamma^D f$, t over the period

A selected sample Demand and employment volatilit

Results

	CZ choice					
	(1)	(2)	(3)	(4)	(5)	(6)
М	0.551***	0.549***	0.550***	0.550***	0.338***	0.337***
	(0.019)	(0.019)	(0.019)	(0.019)	(0.027)	(0.027)
$M\times \varepsilon$			0.033**	0.032**	0.033**	0.027**
			(0.018)	(0.018)	(0.016)	(0.017)
$M \times p$		0.058**		0.057**	0.048**	0.053**
		(0.021)		(0.020)	(0.018)	(0.015)
$M\times \varepsilon \times p$						0.030**
						(0.013)
CZ controls	No	No	No	No	Yes	Yes
Pseudo R2	0.038	0.039	0.038	0.039	0.045	0.045

Notes: Coefficient estimates from a conditional logit model with firm fixed effects. The sample is based on all firm entries from January 2010 to December 2019 (1,682 entries, N=470,960). M is the log of CZ density, ε is the standardized value of demand volatility, and p is the standardized value of productivity. Standard errors in round parentheses. Results are significant at the 10% significance level (*), 5% level (**), 1% level (***).

Interaction coefficients robust to region, department, and even CZ FE

Roadmap

Motivation and research questions

Empirical facts

Theory

Location choice: empirical evidence

Quantitative insights

Concluding remarks

Appendix

Quantitative insights

Work in progress

- What is the role of churning (C) and sorting on volatility (ε) on labor market pooling externalities?
- Use model to examine how the job filling rate $\mu(M)$ changes
 - 1. With and without the possibility of churning C
 - 2. With and without sorting on arepsilon
- $\mu(M)$ is now a function of labor market tightness = $\frac{V}{U}$
 - ightarrow Derive V for each strategy in each city M
 - $ightarrow U \Rightarrow$ unemployment rate is 10% in each city
 - \to Numerical simulation $\Rightarrow \mu(M)$ in each city, accounting for the possibility that firms churn
- Result: compared to a model without churning, job filling rates are increased by 8% at the median city density

Quantitative insights

Work in progress

- Up to now: direct effect of churning on pooling externalities
 - $\rightarrow\,$ More expensive to operate in larger cities \Rightarrow if firms are volatile and have the possibility of churning, they will do this more in larger cities
 - $\rightarrow\,$ Churning has positive labor market pooling externalities
- Add firm sorting on volatility
 - $\rightarrow\,$ Location choice model: distribution of ε by city size
 - → Indirect effect: if firms can choose location based on ε , they will sort into larger cities ⇒ more volatile firms in large cities
- Result: this increases job filling rates by an additional 1% at the median city density
 - $\rightarrow\,$ Sorting on volatility further raises the labor market pooling externalities of churning

Roadmap

Motivation and research questions

Empirical facts

Theory

Location choice: empirical evidence

Quantitative insights

Concluding remarks

Appendix

Conclusion

New facts about firm location decisions

- Firms that anticipate a volatile activity locate in larger cities:
 - $\rightarrow\,$ There is a volatility-density nexus
 - $\rightarrow\,$ On top of the well-known productivity-density nexus
- Dense labor market provide "insurance" against volatility:
 - \rightarrow By enabling labor churning
- Churning and firm sorting on volatility have positive labor market pooling externalities

Roadmap

Motivation and research questions

Empirical facts

Theory

Location choice: empirical evidence

Quantitative insights

Concluding remarks

Appendix

Productivity

• Combes et al. (2012): for firm f and year y,

$$ln(V_{fy}) = \beta_{0y} + \beta_1 ln(k_{fy}) + \beta_2 ln(l_{fy}) + \sum_{s=1}^{3} \sigma_s l_{sfy} + \phi_{fy}$$

- V_{fy} : value-added, k_{fy} : capital, l_{fy} labor (n. paid hours in y)
- 3 skill levels \Rightarrow l_{sfy} : share of firm's workers with skill level s
- Estimate the equation separately for each 2-digit sector using the Levinshon-Petrin estimation technique, with the Ackerberg, Caves, and Frazer (2015) correction.
- Robustness: OLS TFP is residual \Rightarrow all results hold

$$\hat{\phi}_{ft} = ln(V_{ft}) - \hat{\beta}_{0t} - \hat{\beta}_1 ln(k_{ft}) - \hat{\beta}_2 ln(l_{ft}) - \sum_{s=1}^3 \hat{\sigma}_s l_{sft}$$

Volatility-density gradient: Robustness

Dep variable	log volatility of					
	idiosyncratic	idiosyncratic	idiosyncratic		idiosyncratic	
	L, yoy	L, yoy	L, yoy	L, yoy	L, mom	
	(1)	(2)	(3)	(4)	(5)	
log CZ density	.041***	.02***	.034***	.035***	.017***	
	(.000)	(.001)	(.001)	(.001)	(.001)	
log employment			386***	389***	364***	
			(.001)	(.001)	(.001)	
log age			181***	183***	113***	
			(.001)	(.002)	(.001)	
log productivity			075***	076***	056***	
			(.002)	(.002)	(.002)	
Firm growth			.511***	.506***	.313***	
			(.003)	(.003)	(.003)	
Share temp workers			.650***	.655***	.839***	
			(.008)	(.007)		
sector FE	No	Yes	Yes	Yes	Yes	
# Obs	330,552	330,552	330,552	330,552	330,552	
Adjusted R^2	.009	.064	.435	.416	.422	

Dependent variable: log σ_{ft} . January 2015 cross section of single-plant firms. In column (4), the dependent variable is the volatility of hours. To be consistent, employment and growth are also computed based on hours. *** indicates statistical significance at the 1% level.

Value functions

$$\begin{split} rV_s^h(p,\varepsilon,M) &= -c + \mu(M)[F_s^h(p,\varepsilon,M) - V_s^h(p,\varepsilon,M)] \\ &+ \sigma[W_s(p,\varepsilon,M) - V_s^h(p,\varepsilon,M)] \\ rV_s^l(p,\varepsilon,M) &= -c + \mu(M)[F_s^l(p,\varepsilon,M) - V_s^l(p,\varepsilon,M)] \\ &+ \sigma[V_s^h(p,\varepsilon,M) - V_s^l(p,\varepsilon,M)] \\ rF_s^h(p,\varepsilon,M) &= p(1+\varepsilon) - R(M) + \delta[V_s^h(p,\varepsilon,M) - F_s^h(p,\varepsilon,M)] \\ &+ \sigma[C_s(p,\varepsilon,M) - F_s^h(p,\varepsilon,M)] \\ rF_s^l(p,\varepsilon,M) &= p(1-\varepsilon) - R(M) + \delta[W_s(p,\varepsilon,M) - F_s^l(p,\varepsilon,M)] \\ &+ \sigma[F_s^h(p,\varepsilon,M) - F_s^l(p,\varepsilon,M)] \\ rA_s(p,\varepsilon,M) &= \sigma[V_s^h(p,\varepsilon,M) - A_s(p,\varepsilon,M)] \end{split}$$

• with c vacancy cost and δ exogenous match destruction rate

Business-as-usual > Wait-and-see

Business-as-usual > Wait-and-see ⇔

$$\left\{ \begin{array}{ll} V_B^h + W_B &> V_W^h + W_W \\ V_B^h + W_B &> 0 \end{array} \Leftrightarrow p > p_{BW}(\varepsilon, M) \ge p_B(M) \end{array} \right.$$

with

$$p_B(\overset{?}{M}) \equiv R(M) + \frac{c(r+\delta)}{\mu(M)}$$

 $p_{BW}(\varepsilon, M) \equiv f(\overset{+}{\varepsilon}, \overset{+}{M})p_B(M)$

Wait-and-see > Churning

Wait-and-see > Churning ⇔

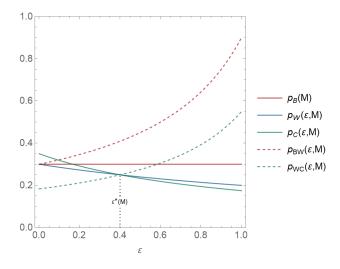
$$\left\{ \begin{array}{ll} V_W^h + W_W & > & V_C^h + W_C \\ V_W^h + W_W & > & 0 \end{array} \right. \Leftrightarrow p > p_{WC}(\varepsilon, M) \ge p_W(M)$$

with

$$p_W(\varepsilon, M) \equiv g(\bar{\varepsilon})p_B(M) \le p_B(M)$$
$$p_{WC}(\varepsilon, M) \equiv p_{BW}(\varepsilon, M) - h(\overset{+}{\varepsilon}, M)$$

Churning > Wait-and-see and Business-as-usual

$$\begin{cases} V_C^h + W_C > V_W^h + W_W \\ V_C^h + W_C > V_B^h + W_B \\ V_C^h + W_C > 0 \end{cases} \Leftrightarrow \begin{cases} p < p_{WC}(\varepsilon, M) & (< p_{BW}(\varepsilon, M)) \\ p > p_C(\varepsilon, M) \\ p > p_C(\varepsilon, M) \end{cases}$$

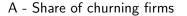

Note: Churning exists iff

$$\begin{array}{ll} p_{WC}(\varepsilon,M) &> & p_C(\varepsilon,M) \Leftrightarrow \varepsilon > \varepsilon^*(M) \\ \Rightarrow \varepsilon^*(M) < 1 & \Leftrightarrow & \frac{c}{\mu(M)} < \frac{R(M)}{\sigma} \end{array}$$

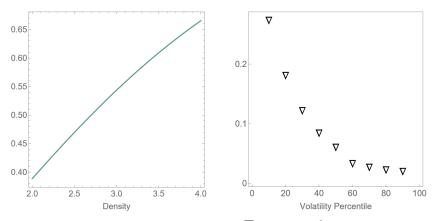
i.e. expected vacancy cost < expected operational cost under low state

Choosing a strategy: Summary

Calibration: c = 0.1, $\sigma = 0.01$, r = 0.01, $\delta = 0.01$, $\chi = 0$ $\mu(M) = 0.02$, R(M) = 0.2, $\overline{p} = 1$.



Equilibria across city sizes


- 1. The share of churning firms increases with city size
 - → Under A1 and A2: $\partial p_{BW}(\varepsilon, M)/\partial M > 0 \Rightarrow$ red area decreases with city size
 - → Under no assumption: $\partial [p_{BW}(\varepsilon, M) p_{WC}(\varepsilon, M)]/\partial M < 0$. Under A2: $\partial p_W(\varepsilon, M)/\partial M > 0 \Rightarrow$ blue area decreases with city size
 - → Under A2: $\partial [p_{WC}(\varepsilon, M) p_C(\varepsilon, M)]/\partial M > 0$. Under no assumption: $\partial \varepsilon^*(M)/\partial M < 0 \Rightarrow$ green area increases with city size
- 2. Structural volatility attenuates firm selection with respect to density
 - → The productivity-volatility substitution at entry is represented by $p_W(\varepsilon, M)$ for $\varepsilon \in [0, \varepsilon^*(M)]$ and $p_C(\varepsilon, M)$ for $\varepsilon \in [\varepsilon^*(M), 1]$
 - → Under A2, $\partial^2 p_W(\varepsilon, M) / \partial \varepsilon \partial M < 0$ and $\partial^2 p_C(\varepsilon, M) / \partial \varepsilon \partial M < 0$ ⇒ volatility and productivity are more substitute for allowing the entry of firms in larger cities

Illustration

B - Productivity gradient

Calibration: c = 0.1, $\sigma = 0.01$, r = 0.01, $\delta = 0.01$, $\mu(M) = \sigma + B\sqrt{M}$, $R(M) = c + BM^2$, B = 5/1000, $\overline{p} = 1$. We assume that p and ε are independent, ε is uniformly distributed over [0, 1] and p follows a (truncated) Pareto distribution, so that $h(p, \varepsilon) = 4(0.1^4)/p^5$. The optimum is found by a numerical search. Back to Main

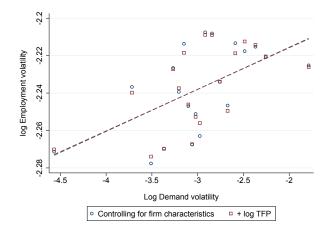
Localization economies

Localization economies: sectoral network following Mayer, I. Mejean, and Nefussi (2010)

$$SN_{i,y-1}^{s} = \sum_{u < y} \sum_{a} D_{ai,u}^{s}$$
(1)

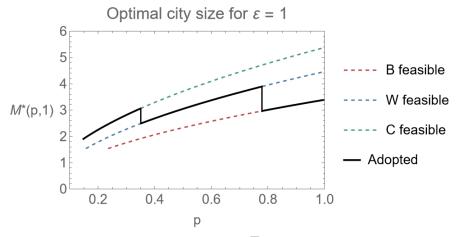
- D^s_{ai,u}: dummy variable equal to one for all firms a of sector s located in CZ i and created in year u or before
- Only include firms with positive employment
- Specific to the firm's sector

Demand volatility: a selected sample

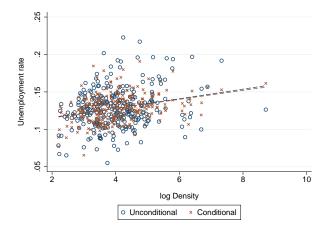

Mean characteristics of samples

	Not Missing	Missing	T-test
Sizo	24.95	10.12	57.55
Size 24 (35) Age (years) 24 log CZ Density 5. log Productivity (1. log Productivity (0. Growth of employment 0. log Employment volatility -2 log Employment volatility -1	(35.44)	(20.22)	[0.00]
	24.21	16.89	68.69
Age (years)	(14.49)	(12.13)	[0.00]
lag CZ Dancity	5.03	5.62	-55.00
log CZ Density	(1.43)	(1.78)	[0.00]
lag Braductivity	2.93	3.19	-57.50
log Productivity	(0.59)	(0.71)	[0.00]
Growth of omniourment	0.01	0.04	-14.33
Growth of employment	(0.23)	(0.33)	[0.00]
log Employment velatility	-2.24	-1.72	-88.52
log Employment volatility	(0.79)	(0.77)	[0.00]
residualized log Employment valatility	-1.78	-1.75	-6.25
residualized log Employment volatility	(0.61)	(0.63)	[0.00]
N observations	19,297	311,255	

Notes: Means and standard deviations in round brackets, p-values of T-tests in square brackets. Residualized log employment volatility is the residual from regressing employment volatility on CZ, sector, firm size, and age FEs, firm growth, as well as log productivity.


Demand volatility is predictive of employment volatility

January 2015 cross section of single-plant firms with information on demand volatility. Correlation is conditional on CZ FEs and firm characteristics: sector, size bin, age, growth rate.


City choice for the most volatile firms

Calibration: c = 0.1, $\sigma = 0.01$, r = 0.01, $\delta = 0.01$, $\mu(M) = \sigma + B\sqrt{M}$, $R(M) = c + BM^2$, B = 5/1000, $\overline{p} = 1$. The optimum is found by a numerical search.

▶ Back to Main

CZ unemployment and density

Notes: Unemployment rate of the working-age population (aged 15-54) by commuting zone as a function of (working-age) population density. Red: controlling for the share of university graduates in the population above 15, the share of managers among employed workers, the shares of old and young workers in the working-age population, and 22 (old) region fixed effects. Source: 2018 Census

References I

- Ackerberg, Daniel A., Kevin Caves, and Garth Frazer (2015). "Identification Properties of Recent Production Function Estimators". *Econometrica* 83.6, pp. 2411–2451.
 Bilal, Adrien (Mar. 2023). "The Geography of Unemployment". *The Quarterly Journal of Economics*.
- Combes, Pierre-Philippe et al. (2012). "The Productivity Advantages of Large Cities: Distinguishing Agglomeration From Firm Selection". *Econometrica* 80 (6), pp. 2543–2594.
- Davis, Steven J et al. (2006). "Volatility and Dispersion in Business Growth Rates: Publicly Traded versus Privately Held Firms". *NBER Macroeconomics Annual* 21.
 di Giovanni, Julian, Andrei Levchenko, and Mejean (2014). "Firms, Destinations, and Aggregate Fluctuations". *Econometrica* 82 (4), pp. 1303–1340.
- Krugman, Paul (Dec. 1992). Geography and Trade. Vol. 1. The MIT Press.

References II

Mayer, T., I. Mejean, and B. Nefussi (2010). "The location of domestic and foreign production affiliates by French multinational firms". *Journal of Urban Economics* 68 (2), pp. 115–128.

Mortensen, Dale T. and Christopher A. Pissarides (1994). "Job Creation and Job Destruction in the Theory of Unemployment". *The Review of Economic Studies* 61.3, pp. 397–415.