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Introduction

- (Conditional) Quantile Regression (CQR) is a general approach to estimate conditional
quantile partial effects (CQPE), i.e., the effect of a covariate variable of interest (ceteris
paribus) on the conditional quantile distribution of the outcome.

- CQR is a useful way to represent heterogeneity.
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Introduction

- Unconditional Quantile Regression (UQR), proposed in a seminal paper by Firpo,
Fortin, and Lemieux (2009) (FFL), has attracted interest in both applied and theoretical
literatures.

- UQR provides a method to evaluate the impact of changes in the distribution of the
explanatory variables on quantiles of the unconditional (marginal) distribution of the
outcome variable.

- UQR leads to the unconditional quantile partial effect (UQPE), which refers to the
effect of a covariate (ceteris paribus) on the unconditional quantiles of the outcome
variable.
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Introduction

- FFL propose several ways to estimate the UQPE.

- The most popular approach is the recentered influence function (RIF) regression
method, commonly referred to as RIF regression. It is a two-step procedure, where in
the first stage one estimates the RIF, and in the second step, a standard OLS
regression of the RIF on covariates estimates the UQPE.

- While the method is appealing due to its simplicity, it relies on ability of the researcher
to specify a regression equation for the influence function, a relatively abstract object.
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Introduction

This paper makes the following contributions.

We obtain a new representation for the UQPE in terms of the CQPE. Following a result
by FFL, we show that the the UQPE can be written as the conditional average of the
CQPE effects, given the outcome variable (evaluated at the unconditional quantile).

Based on the new representation, we establish how heterogeneity in CQPE
propagates to heterogeneity in UQPE (a less studied topic).

Finally, we suggest an alternative method for estimation of UQPE using simple CQR.
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Related Literature

- Although the literature on applications of UQR methods is extensive, the literature on
theoretical developments is relatively small.

- The seminal paper is Firpo, Fortin, and Lemieux (2009).
- Rothe (2010, 2012) propose some generalizations.
- Inoue, Li, and Xu (2021) tackle UQR in a two-sample problem, Sasaki, Ura, and Zhang

(2022) develop high-dimensional UQR, and Martinez-Iriarte, Montes-Rojas, and Sun
(2022) considers policies that affect the dispersion (in addition to a location shift).
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CQPE and UQPE
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(Conditional) Quantile Regression

Consider a general model Y = r(X, U), where X = (Xj, X3)'.

Xi is the target variable of interest and is a scalar.

Xz isa (d — 1) x 1 vector consisting of other observable covariates.

U consists of unobservables.
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(Conditional) Quantile Regression

Let Qy[n] X1, X2] be the conditional #-quantile:

Pr(Y < Qy[n| X1, Xo]| X1, X2) = 77.

The typical object of study of CQR is the conditional quantile partial effect (CQPE):

aoy[77|X1 =2, X2 = Xg]
0z

CQPEy, (1,x) : =

Z=Xq

Interpretation: marginal effect of X; on the conditional quantiles of Y when X; = x4
and Xo = xo.

- If Qy[n| X1, Xo] = Bo(T) + B1(n) X1 + X3B2(n), then CQPEx, (17, x) = B1(n).
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Unconditional Quantile Regression

- Consider the counterfactual outcome
Y§,X1 = I’(X1 + (5,X2, U),
where ¢ captures a small location change in the variable Xj.

- Y; x, is the outcome we would observe if every individual receives an additional
quantity ¢ of Xj.

- The unconditional quantile partial effect (UQPE) is defined as

im QYo‘,x1 [T] - QY[T]

U(DPEX1 (T) L= }_}0 ;3
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CQPE vs UQPE

- The interpretations of CQPEy, (17, x) and UQPEy, (T) are different.

- The CQPEx, (17, x) amounts to manipulating X locally at x and evaluating a local
impact on the 77-conditional quantile of Y.

- The UQPEx, (7) is obtained by what we may refer to as a global change in X and
evaluating the impact on the T-unconditional quantile of Y.
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UQPE in terms of CQPE

- Under mild conditions, the CQPE can be written as

_ 1 OFyx(Qy[n|X = x|z, x)
fyix(Qy[n]X = x]|x) 0z

CQPEX1 (77, X) =

Z=Xq

- For the UQPE we have

de(X).

Z=Xq

1 /aFyx(QY[THZv X2)

VOPE (0) = ~ 1@y ) 9z

- Even if the conditional quantile is equal to the corresponding unconditional, that is,
Qy[7|X = x] = Qy/[7], one is not able to recover UQPEy, () from CQPEy, (7, -) by
simply integrating the latter over X.
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Matched Quantiles

- Consider the following matching map (introduced by FFL):
Gr(x) = {n: Qy[n|X =x] = Qy|[t]}.

- The map &:(x) : (0,1) x R? + (0, 1) corresponds to the quantile index(es) in the
conditional model, 7, that produces the closest match with the unconditional quantiles
7 for different values of x.

- If &(x) is a singleton, we have that, for every x, Qy[Z:(x)|X = x] = Qy|t].
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UQPE in terms of CQPE

- The CQPEy, evaluated at 7 = {(x) is

_ 1 aFy|X(QY[T]|Z, Xg)
fy1x(Qy[T]|x) 0z

CQPEx, (5<(x), x) =

Z=X1

- Except for fy x(Qy/[7][X), it looks like the integrand in UQPEx, (). Therefore

fy1x(Qy[T]|x)

fy(Qy[T]) de(X)

UQPEy, (1) = / CQPEy, (£:(x), x)

- This weighted average representation result appears in FFL.
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UQPE in terms of CQPE

- To obtain a new representation, the weights are rearranged as

fY|X(QY[T]|X) o fy, (Q [T],X) B
el = Ayl XX) = av(xIQr (D).

- So we obtain a reverse projection

UQPEx, (1) = [ COPEx, (&:(x). x)hv (x|Qy[])dx
— E[CQPEx, (&<(X), X)|Y = Qy[1]].

15/38



n-heterogeneity vs. T-heterogeneity

- Question: Heterogeneous CQPE ¢—?> Heterogeneous UQPE.

- How does heterogeneity in the conditional effects across 17-quantiles propagate to
heterogeneity in unconditional effects across T-quantiles?

- Define:
PE
n-heterogeneity := dCQPE, (17, X) ’
on
and

T-heterogeneity := g )
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n-heterogeneity vs. T-heterogeneity

- Using the chain rule:

dUQPEy, (T) _/ dCQPEy, (17, x)
dt - Jx on

%) v (xlQy[e] e

dfx|y (x|y)
@y

17=gz(x)

+ 9 [ capey (e, ) d.

- The first term averages across the 77-heterogeneity.

- In general, even if there is no r7-heterogeneity, we may still have non-zero
T-heterogeneity through the second term.
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Estimation
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Estimation

- Assume first that
Qv X1 = x1, Xo = Xe] = x181(17) + xaB2(17) = X'B(1),
- Then CQPE, (§=(x), X) = B1(G<(x)).
- Therefore, UQPEy, (t) has the convenient form
UQPEx, (1) = E [B1(5(X))|Y = Qy[1]].

- Our proposed estimator is a nonparametric regression of {B1(&-(x;))}7_4 on {y;},
evaluated at Qy[7].
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Estimation

- To estimate B1({-(x;)) we first use CQR methods, and estimate () for a grid of m
values of s given by Hm = {e <y < -+ <yj < -+ <qym<1—¢€},e € (0,}).

- In the standard linear case we have that for a given value of 7;, and a sample
{yi, x,-},f’:p we simply apply standard quantile regression methods as

(B1 (1), B2(my)")" = B(;) ) = argmin me

where p-(u) = u(t — 1[u < 0]) is the check function.

- We also estimate the unconditional quantile Qy|[7] by

A

.1
Qy|t] = argmin — Epf(y,- —q).
a ni5
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Estimation

- To find the matched coefficients [31 (é:(x))), we employ the two previous estimates.

- Let
me€Hm if Qy[t] < x! B(1);
Ge(X)) =19 nj€Hm if {x,-’,B(mq) < Qylt] < x{B(y;) ¢ forj=2,...,m;
1—¢ if x! B(ym) < Qylt],

fori=1,.., n

- This is an inversion procedure (cf. Chernozhukov, Fernandez-Val, and Melly (2013)).
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Estimation

- Finally, to estimate the UQPEY, (), we use a Nadaraya-Watson type-estimator:

_ L Kn(yi— Qy[t ]) p1(6x(x))
2/:1 Kh(yl [ ])

where Kj, is the rescaled kernel Kp(u) := K (4).

- This estimator avoids the curse of dimensionality: Y is the only regressor.

- However, the dimension of X matters for CQR and the matching function.
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Estimation

An alternative approach is just a linear regression of B1(&:(X)) on a constant and Y.

The predicted fitat Y = Oy[r] is an easy-to-compute approximation to UQPExy, (7).

Yet another option is to do a local linear regression. Less bias?

The estimator is &, o + &, 1 Qy|[1], where (&, 0, &, 1)’ solve

dr,0.4r1 ;

PN 2
(3o, Bc) = arg min 3 K(ys = Q) | Bs () — 2o — 2 (y‘fy[])] |
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Asymptotic Theory
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Asymptotic Theory

- The following assumptions are needed to establish that
B1(Gc(x)) = B1(E=(x)) = Op(n~1/?).
- We work with i.i.d. data.

- {¥i. x;}_, is a random sample of i.i.d. observations with y; a scalar and x; € RY.
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Asymptotic Theory

1. The conditional quantiles are linear: Qy[n|X = x] = X'B(), 1 € [e, 1 — €], € € (0,

)s
with X € R% and E|X| < co.

N =

2. For every x in the support of X, fy‘X(y|x) is bounded away from zero.

3. The conditional quantile regression estimators satisfy

Y (7~ 1 {ys < XB(N) ) x5+ 0p(n~172)

i=1

3\—*

B(n) — B(n) = E [fyx(X'B(n) |1 X)XX"] "

= % ZH:TI(W) +0p(n713),

i=1

uniformly in € [e,1 — €], e € (0, 3),and 7 — E [fyx(X'B(17)| X)XX'] has uniformly
bounded derivatives.
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Asymptotic Theory

4. The unconditional quantile estimator satisfies

Qyle] ~ Qrle] = f(@yle) ' L3 (e 1 (i < Qlel)

i=1

“hn Ly i) + op(m V).
i=1

5. The grid of quantiles {e <71 < ... <7 <...<nm<1—¢}, €€ (0, }), satisfies
Ay =o(n~12)as n — oo for Ay :=1;—1nj_1, j = 2,....m, and 11 _eandqm_ 1—€
forasmalle > 0.
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Asymptotic Theory

- Under the above assumptions, the CQR coefficient of X; evaluated at the random
quantile ¢;(x) satisfies B1(&:(x)) — B1(Ex(X)) = Op(n~1/2) and can be represented as

B1(&c(x)) — B1(Gc(x)) = B1(&c (%)) — B1(&c (X)) + B1 (G (x)) (§x (x) — G (X))
+0p(n17?),

where

£ — - ;ln . -1/2
Go(X) = Cr(x) = T (:T ; x’/%((;‘r(x))n;lp'(T)+op(n ).

- Here, B1(&:(x)) is the By component of the Jacobian vector B(&;(x)): the derivative
of the map 7 — B(n).
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Asymptotic Theory

- Our parameter of interest given is
UQPEx, (1) = E [B1(&-(X)|Y = Qyl1]].

- We propose the following nonparametric estimator:

SPE. () _ B[4 (4 y Y Kn(yi — []) B1 (& (x))

UGPEy(r) = E [p1(&00)IY = Qrlrl] = SEmto i S,
- The unfeasible (oracle) version is denoted by

UQPEx, (7) = E [B1(:(X))|¥ = Qyl]) = Zi=t Kplyr— Qr[r]) - Brlel)

Y1 Kn(yi — Qy[T])
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Asymptotic Theory

1. K(u) is a symmetric function around O that satisfies: (i) [ K(u)du = 1; (i) For r > 2,
[UK(u)du=0whenj=1,...,r—1,and [ |u]"K(u)du < oo; (iii) [ K'(u)du = 0; (iv)
UK(u) — 0as u— +oo forj=1,..r+1; (v) sup,cr |K'(U)| < oo and
supyer |K”(U)| < oo (vi) [ K'(u)2du < oo and [ uK'(u)?du < co.

2. (i) The density of Y is r + 1 times continuously differentiable, with uniformly bounded
derivatives; (i) The joint density fy x(y, x) is r + 1 times continuously differentiable,
with uniformly bounded derivatives for every x in the support of X.

3. As n — oo, the bandwidth satisfles hox n=@with1/(1+2r) <a< 1/2.

4. The following approximation rate holds for c’fT:

E [(n1/4 [B1(e(X)) — B4 (CT(X))])Z} |e:§} = 0p(1).
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Asymptotic Theory

- Under the above assumptions, we obtain

UQPEy, (1) = UQPEy, (T) + 0p(n~"/2h~1/2).

- The preliminary estimators of the CQR slopes, the matched quantiles and the
unconditional quantile of Y vanish asymptotically because they converge at a
parametric rate.

- The asymptotic distribution of the unfeasible estimator UQPE(, (7) is well-known and
can be readily established.
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Asymptotic Theory

- The following assumption is customary in order to apply the Lindeberg-Feller Central
Limit Theorem: (i) For U := B1(&<(X)) — E [B1(¢z(X))|Y],and § > O,
E[|Uc|?*°| Y] < C < o0 ass. for some C; (i) [ |K(u)|2°du < oo; (iii) The map
y— E[B1(E:(X))|Y = y]is r+ 1 times continuously differentiable, with uniformly
bounded derivatives; (iv) The map y +— ¢2(y) := E[U?|Y = y] is continuous.

- Under the above assumptions

Vnh (Uﬁ)ﬁ (1) — UQPEy, (T)) LYY (o,af(oy[ Dy (Qylt /K du)
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Empirical Application
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Empirical Application

- We illustrate the UQPE estimator with an analysis of Engel’s curves.

- The original concept corresponds to Ernst Engel who studied the European working
class households consumption in the 19th century.

- Engel curves describe how household expenditures on particular goods and services
depend on household income.

- An empirical result commonly referred to as “Engel’s law” states that the poorer a
family is, the larger the budget share it spends on food.
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Empirical Application

- We apply this framework to food household expenditures in Argentina using the
national survey of expenditures (Encuesta Nacional de Gasto de los Hogares, known
as ENGHO 2017-2018).

- The ENGHO 2017-2018 surveys the households’ living conditions in terms of their
access to goods and services, as well as their income.

- The data contains information about household expenditures.

- About 21,547 households were randomly selected and participated on the survey.
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Table: Engel’s curve for food expenditures.

Quantile Partial Effect

10 25 50 75 90

Conditional distribution

CQR 0.383*** 0.407*** 0.408*** 0.408*** 0.425***
(0.000571) (0.000422) (0.000246) (0.000278) (0.000336)
Unconditional distribution

RIF (linear model) 0.367*** 0.388*** 0.427*** 0.396"** 0.393***
(0.0285) (0.0170) (0.0139) (0.0130) (0.0181)
RIF (quadratic model) 0.360"** 0.383*** 0.427*** 0.403*** 0.406***
(0.0275) (0.0166) (0.0140) (0.0129) (0.0182)
RIF (cubic model) 0.370*** 0.394*** 0.440"** 0.415** 0.412***
(0.0279) (0.0169) (0.0143) (0.0137) (0.0183)
RIF (Logit) 0.327*** 0.395*** 0.434*** 0.403*** 0.427***
(0.0373) (0.0260) (0.0234) (0.0242) (0.0316)
NwW 0.395"** 0.405*** 0.408*** 0.409*** 0.410**
(0.0166) (0.0111) (0.00851) (0.00809) (0.00870)
Observations 21,017 21,017 21,017 21,012 21,017

Notes: The CQR analysis corresponds to a regression of log food expenditures on log income. UQPE estimates
the effect of a marginal change in log income on the unconditional distribution of log food expenditures.
Standard errors in parentheses (analytical for CQR, bootstrap with 200 replications for RIF and NW). *

indicates significance at 10 %, ** at 5 % and *** at 1 %. 33/38



Empirical Application

Figure: Engel’s curves for food expenditures

0 2 8 1
quantile
RIF-OLS (cubic) ————- 95% Conf. Interval
RIF-Logit ~  ————- 95% Conf. Interval
W mme- 95% Conf. Interval

Notes: UQPE NW (black), RIF-OLS (cubic polynomial, blue) and RIF-Logit (red) estimates together with 95%
confidence intervals estimated using bootstrap with 200 replications.
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Empirical Application

- The results for food expenditures show evidence that CQR coefficients are roughly
constant across 7, although mildly increasing.

- The proposed UQPE NW estimator is then also roughly constant across 7.

- The RIF estimates also have this pattern although they are estimated in a less precise
manner.

- In all cases, the estimated effects can be interpreted as elasticities, implying that a 1%
increase in income increase food consumption in less than 1%, about a 0.4.
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Empirical Application

- Since the CQR coefficients are mildly increasing, the variation in the UQPE has to be
coming from the variation in the density of X given Y = Q[Y].

- As T increases, for the UQPE to increase, higher CQR coefficients must be getting
higher weight. This happens if the density of “income given food= Q:[food]” is
moving to the right.

- Observing this pattern in the results indicates that this shift happens relatively quickly:
given food expenditure is getting higher, we expect income to become higher, but at a
faster rate than the increase in food expenditure, so the share of food spending on
income is falling.
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Conclusion

- This paper considers the use of conditional quantile regression analysis to estimate
unconditional quantile partial effects.

- The proposed methodology is based on an interesting byproduct of quantile analysis,
that is, the unconditional effects can be recovered from conditional analysis.

- The current methodology can be extended to evaluate unconditional effects, starting
from any initial consistent conditional estimation procedure.
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Thank you!
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