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Introduction

- (Conditional) Quantile Regression (CQR) is a general approach to estimate conditional
quantile partial effects (CQPE), i.e., the effect of a covariate variable of interest (ceteris
paribus) on the conditional quantile distribution of the outcome.

- CQR is a useful way to represent heterogeneity.
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Introduction

- Unconditional Quantile Regression (UQR), proposed in a seminal paper by Firpo,
Fortin, and Lemieux (2009) (FFL), has attracted interest in both applied and theoretical
literatures.

- UQR provides a method to evaluate the impact of changes in the distribution of the
explanatory variables on quantiles of the unconditional (marginal) distribution of the
outcome variable.

- UQR leads to the unconditional quantile partial effect (UQPE), which refers to the
effect of a covariate (ceteris paribus) on the unconditional quantiles of the outcome
variable.
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Introduction

- FFL propose several ways to estimate the UQPE.

- The most popular approach is the recentered influence function (RIF) regression
method, commonly referred to as RIF regression. It is a two-step procedure, where in
the first stage one estimates the RIF, and in the second step, a standard OLS
regression of the RIF on covariates estimates the UQPE.

- While the method is appealing due to its simplicity, it relies on ability of the researcher
to specify a regression equation for the influence function, a relatively abstract object.
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Introduction

- This paper makes the following contributions.

- We obtain a new representation for the UQPE in terms of the CQPE. Following a result
by FFL, we show that the the UQPE can be written as the conditional average of the
CQPE effects, given the outcome variable (evaluated at the unconditional quantile).

- Based on the new representation, we establish how heterogeneity in CQPE
propagates to heterogeneity in UQPE (a less studied topic).

- Finally, we suggest an alternative method for estimation of UQPE using simple CQR.
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Related Literature

- Although the literature on applications of UQR methods is extensive, the literature on
theoretical developments is relatively small.

- The seminal paper is Firpo, Fortin, and Lemieux (2009).

- Rothe (2010, 2012) propose some generalizations.

- Inoue, Li, and Xu (2021) tackle UQR in a two-sample problem, Sasaki, Ura, and Zhang
(2022) develop high-dimensional UQR, and Martinez-Iriarte, Montes-Rojas, and Sun
(2022) considers policies that affect the dispersion (in addition to a location shift).
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(Conditional) Quantile Regression

- Consider a general model Y = r (X ,U), where X = (X1,X ′
2)

′.

- X1 is the target variable of interest and is a scalar.

- X2 is a (d − 1)× 1 vector consisting of other observable covariates.

- U consists of unobservables.
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(Conditional) Quantile Regression

- Let QY [η|X1,X2] be the conditional η-quantile:

Pr(Y ≤ QY [η|X1,X2]|X1,X2) = η.

- The typical object of study of CQR is the conditional quantile partial effect (CQPE):

CQPEX1(η, x) : =
∂QY [η|X1 = z,X2 = x2]

∂z

∣∣∣∣
z=x1

.

- Interpretation: marginal effect of X1 on the conditional quantiles of Y when X1 = x1
and X2 = x2.

- If QY [η|X1,X2] = β0(τ) + β1(η)X1 + X ′
2β2(η), then CQPEX1(η, x) = β1(η).
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Unconditional Quantile Regression

- Consider the counterfactual outcome

Yδ,X1 = r (X1 + δ,X2,U),

where δ captures a small location change in the variable X1.

- Yδ,X1 is the outcome we would observe if every individual receives an additional
quantity δ of X1.

- The unconditional quantile partial effect (UQPE) is defined as

UQPEX1(τ) : = lim
δ→0

QYδ,X1
[τ]− QY [τ]

δ
.
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CQPE vs UQPE

- The interpretations of CQPEX1(η, x) and UQPEX1(τ) are different.

- The CQPEX1(η, x) amounts to manipulating X1 locally at x and evaluating a local
impact on the η-conditional quantile of Y .

- The UQPEX1(τ) is obtained by what we may refer to as a global change in X1 and
evaluating the impact on the τ-unconditional quantile of Y .
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UQPE in terms of CQPE

- Under mild conditions, the CQPE can be written as

CQPEX1(η, x) = − 1
fY |X (QY [η|X = x ]|x)

∂FY |X (QY [η|X = x ]|z, x2)

∂z

∣∣∣∣
z=x1

.

- For the UQPE we have

UQPEX1(τ) = − 1
fY (QY [τ])

∫ ∂FY |X (QY [τ]|z, x2)

∂z

∣∣∣∣
z=x1

dFX (x).

- Even if the conditional quantile is equal to the corresponding unconditional, that is,
QY [τ|X = x ] = QY [τ], one is not able to recover UQPEX1(τ) from CQPEX1(τ, ·) by
simply integrating the latter over X .
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Matched Quantiles

- Consider the following matching map (introduced by FFL):

ξτ(x) = {η : QY [η|X = x ] = QY [τ]} .

- The map ξτ(x) : (0,1)× Rd 7→ (0,1) corresponds to the quantile index(es) in the
conditional model, η, that produces the closest match with the unconditional quantiles
τ for different values of x .

- If ξτ(x) is a singleton, we have that, for every x , QY [ξτ(x)|X = x ] = QY [τ].
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UQPE in terms of CQPE

- The CQPEX1 evaluated at η = ξτ(x) is

CQPEX1(ξτ(x), x) = − 1
fY |X (QY [τ]|x)

∂FY |X (QY [τ]|z, x2)

∂z

∣∣∣∣
z=x1

.

- Except for fY |X (QY [τ]|x), it looks like the integrand in UQPEX1(τ). Therefore

UQPEX1(τ) =
∫

CQPEX1(ξτ(x), x)
fY |X (QY [τ]|x)

fY (QY [τ])
dFX (x).

- This weighted average representation result appears in FFL.
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UQPE in terms of CQPE

- To obtain a new representation, the weights are rearranged as

fY |X (QY [τ]|x)
fY (QY [τ])

fX (x) =
fY ,X (QY [τ], x)
fY (QY [τ])fX (x)

fX (x) = fX |Y (x |QY [τ]).

- So we obtain a reverse projection

UQPEX1(τ) =
∫

CQPEX1(ξτ(x), x)fX |Y (x |QY [τ])dx

= E [CQPEX1(ξτ(X ),X )|Y = QY [τ]].
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η-heterogeneity vs. τ-heterogeneity

- Question: Heterogeneous CQPE ¿?→ Heterogeneous UQPE.

- How does heterogeneity in the conditional effects across η-quantiles propagate to
heterogeneity in unconditional effects across τ-quantiles?

- Define:

η-heterogeneity :=
∂CQPEX1(η, x)

∂η
,

and

τ-heterogeneity :=
dUQPEX1(τ)

dτ
.
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η-heterogeneity vs. τ-heterogeneity

- Using the chain rule:

dUQPEX1(τ)

dτ
=
∫
X

∂CQPEX1(η, x)
∂η

∣∣∣∣
η=ξτ(x)

∂ξτ(x)
∂τ

fX |Y (x |QY [τ])dx

+
dQY [τ]

dτ

∫
X

CQPEX1(ξτ(x), x)
dfX |Y (x |y)

dy

∣∣∣∣
y=QY [τ]

dx .

- The first term averages across the η-heterogeneity.

- In general, even if there is no η-heterogeneity, we may still have non-zero
τ-heterogeneity through the second term.
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Estimation

- Assume first that

QY [η|X1 = x1,X2 = x2] = x1β1(η) + x ′
2β2(η) = x ′β(η),

- Then CQPEX1(ξτ(x), x) = β1(ξτ(x)).

- Therefore, UQPEX1(τ) has the convenient form

UQPEX1(τ) = E [β1(ξτ(X ))|Y = QY [τ]] .

- Our proposed estimator is a nonparametric regression of {β1(ξτ(xi))}n
i=1 on {yi}n

i=1
evaluated at QY [τ].
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Estimation
- To estimate β1(ξτ(xi)) we first use CQR methods, and estimate β(η) for a grid of m

values of η’s given by Hm = {ϵ < η1 < · · · < ηj < · · · < ηm < 1 − ϵ}, ϵ ∈ (0, 1
2 ).

- In the standard linear case we have that for a given value of ηj , and a sample
{yi , xi}n

i=1, we simply apply standard quantile regression methods as

(β̂1(ηj), β̂2(ηj)
′)′ = β̂(ηj) = argmin

b

1
n

n

∑
i=1

ρηj (yi − x ′
i b),

where ρτ(u) = u(τ − 1[u < 0]) is the check function.

- We also estimate the unconditional quantile QY [τ] by

Q̂Y [τ] = argmin
q

1
n

n

∑
i=1

ρτ(yi − q).
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Estimation

- To find the matched coefficients β̂1(ξ̂τ(xi)), we employ the two previous estimates.

- Let

ξ̂τ(xi) =


η1 ∈ Hm if Q̂Y [τ] < x ′

i β̂(η1);

ηj ∈ Hm if
{

x ′
i β̂(ηj−1) ≤ Q̂Y [τ] < x ′

i β̂(ηj)
}

for j = 2, ...,m;

1 − ϵ if x ′
i β̂(ηm) ≤ Q̂Y [τ],

for i = 1, ...,n.

- This is an inversion procedure (cf. Chernozhukov, Fernandez-Val, and Melly (2013)).
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Estimation

- Finally, to estimate the UQPEX1(τ), we use a Nadaraya-Watson type-estimator:

Ê
[

β̂1(ξ̂τ(X ))|Y = Q̂Y [τ]
]
=

∑n
i=1 Kh(yi − Q̂Y [τ]) · β̂1(ξ̂τ(xi))

∑n
i=1 Kh(yi − Q̂Y [τ])

,

where Kh is the rescaled kernel Kh(u) := 1
h K
(u

h

)
.

- This estimator avoids the curse of dimensionality: Y is the only regressor.

- However, the dimension of X matters for CQR and the matching function.
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Estimation

- An alternative approach is just a linear regression of β̂1(ξ̂τ(X )) on a constant and Y .

- The predicted fit at Y = Q̂Y [τ] is an easy-to-compute approximation to UQPEX1(τ).

- Yet another option is to do a local linear regression. Less bias?

- The estimator is âτ,0 + âτ,1Q̂Y [τ], where (âτ,0, âτ,1)
′ solve

(âτ,0, âτ,1)
′ = arg min

aτ,0,aτ,1

n

∑
i=1

Kh(yi − Q̂Y [τ])

[
β1(ξ̂τ(xi))− aτ,0 − aτ,1

(
yi − Q̂Y [τ]

h

)]2

.
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Asymptotic Theory

- The following assumptions are needed to establish that

β̂1(ξ̂τ(x))− β1(ξτ(x)) = Op(n−1/2).

- We work with i.i.d. data.

- {yi , xi}n
i=1 is a random sample of i.i.d. observations with yi a scalar and xi ∈ Rd .
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Asymptotic Theory

1. The conditional quantiles are linear: QY [η|X = x ] = x ′β(η), η ∈ [ϵ,1 − ϵ], ϵ ∈ (0, 1
2 ),

with X ∈ Rd and E |X | < ∞.
2. For every x in the support of X , fY |X (y |x) is bounded away from zero.

3. The conditional quantile regression estimators satisfy

β̂(η)− β(η) = E
[
fY |X (X

′β(η)|X )XX ′]−1 1
n

n

∑
i=1

(
η − 1

{
yi ≤ x ′

i β(η)
})

xi + op(n−1/2)

=
1
n

n

∑
i=1

Ψi(η) + op(n−1/2),

uniformly in η ∈ [ϵ,1 − ϵ], ϵ ∈ (0, 1
2 ), and η 7→ E

[
fY |X (X ′β(η)|X )XX ′] has uniformly

bounded derivatives.
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Asymptotic Theory

4. The unconditional quantile estimator satisfies

Q̂Y [τ]− QY [τ] = fY (QY [τ])
−1 1

n

n

∑
i=1

(τ − 1 {yi ≤ QY [τ]})

=
1
n

n

∑
i=1

ψi(τ) + op(n−1/2).

5. The grid of quantiles {ϵ < η1 < . . . < ηj < . . . < ηm < 1 − ϵ}, ϵ ∈ (0, 1
2 ), satisfies

∆η = o(n−1/2) as n → ∞ for ∆η := ηj − ηj−1, j = 2, ...,m, and η1 = ϵ and ηm = 1 − ϵ
for a small ϵ > 0.
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Asymptotic Theory

- Under the above assumptions, the CQR coefficient of X1 evaluated at the random
quantile ξ̂τ(x) satisfies β̂1(ξ̂τ(x))− β1(ξτ(x)) = Op(n−1/2) and can be represented as

β̂1(ξ̂τ(x))− β1(ξτ(x)) = β̂1(ξτ(x))− β1(ξτ(x)) + β̇1(ξτ(x))(ξ̂τ(x)− ξτ(x))

+ op(n−1/2),

where

ξ̂τ(x)− ξτ(x) = − 1
x ′ β̇(ξτ(x))

1
n

n

∑
i=1

x ′Ψi(ξτ(x)) +
1

x ′ β̇(ξτ(x))
1
n

n

∑
i=1

ψi(τ) + op(n−1/2).

- Here, β̇1(ξτ(x)) is the β1 component of the Jacobian vector β̇(ξτ(x)): the derivative
of the map η 7→ β(η).
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Asymptotic Theory

- Our parameter of interest given is

UQPEX1(τ) = E [β1(ξτ(X ))|Y = QY [τ]] .

- We propose the following nonparametric estimator:

̂UQPEX1(τ) = Ê
[

β̂1(ξ̂τ(X ))|Y = Q̂Y [τ]
]
=

∑n
i=1 Kh(yi − Q̂Y [τ]) · β̂1(ξ̂τ(xi))

∑n
i=1 Kh(yi − Q̂Y [τ])

.

- The unfeasible (oracle) version is denoted by

˜UQPEX1(τ) = Ê [β1(ξτ(X ))|Y = QY [τ]] =
∑n

i=1 Kh(yi − QY [τ]) · β1(ξτ(xi))

∑n
i=1 Kh(yi − QY [τ])

.
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Asymptotic Theory

1. K (u) is a symmetric function around 0 that satisfies: (i)
∫

K (u)du = 1; (ii) For r ≥ 2,∫
ujK (u)du = 0 when j = 1, ..., r − 1, and

∫
|u|r K (u)du < ∞; (iii)

∫
K ′(u)du = 0 ; (iv)

ujK (u) → 0 as u → ±∞ for j=1,...,r+1; (v) supu∈R |K ′(u)| < ∞ and
supu∈R |K ′′(u)| < ∞ ; (vi)

∫
K ′(u)2du < ∞ and

∫
uK ′(u)2du < ∞.

2. (i) The density of Y is r + 1 times continuously differentiable, with uniformly bounded
derivatives; (ii) The joint density fY ,X (y , x) is r + 1 times continuously differentiable,
with uniformly bounded derivatives for every x in the support of X .

3. As n → ∞, the bandwidth satisfies h ∝ n−a with 1/(1 + 2r ) ≤ a < 1/2.
4. The following approximation rate holds for ξ̂τ:

E
[(

n1/4 [β1(e(X ))− β1(ξτ(X ))]
)2
] ∣∣

e=ξ̂τ
= op(1).

28 / 38



Asymptotic Theory

- Under the above assumptions, we obtain

̂UQPEX1(τ) =
˜UQPEX1(τ) + op(n−1/2h−1/2).

- The preliminary estimators of the CQR slopes, the matched quantiles and the
unconditional quantile of Y vanish asymptotically because they converge at a
parametric rate.

- The asymptotic distribution of the unfeasible estimator ˜UQPEX1(τ) is well-known and
can be readily established.
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Asymptotic Theory

- The following assumption is customary in order to apply the Lindeberg-Feller Central
Limit Theorem: (i) For Uτ := β1(ξτ(X ))− E [β1(ξτ(X ))|Y ], and δ > 0,
E [|Uτ|2+δ|Y ] < C < ∞ a.s. for some C; (ii)

∫
|K (u)|2+δdu < ∞; (iii) The map

y 7→ E [β1(ξτ(X ))|Y = y ] is r + 1 times continuously differentiable, with uniformly
bounded derivatives; (iv) The map y 7→ σ2

τ (y) := E [U2
τ |Y = y ] is continuous.

- Under the above assumptions
√

nh
(

̂UQPEX1(τ)− UQPEX1(τ)
)

d→ N
(

0, σ2
τ (QY [τ])fY (QY [τ])

−1
∫

K (u)2du
)
.
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Empirical Application

- We illustrate the UQPE estimator with an analysis of Engel’s curves.

- The original concept corresponds to Ernst Engel who studied the European working
class households consumption in the 19th century.

- Engel curves describe how household expenditures on particular goods and services
depend on household income.

- An empirical result commonly referred to as “Engel’s law” states that the poorer a
family is, the larger the budget share it spends on food.
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Empirical Application

- We apply this framework to food household expenditures in Argentina using the
national survey of expenditures (Encuesta Nacional de Gasto de los Hogares, known
as ENGHO 2017-2018).

- The ENGHO 2017-2018 surveys the households’ living conditions in terms of their
access to goods and services, as well as their income.

- The data contains information about household expenditures.

- About 21,547 households were randomly selected and participated on the survey.
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Table: Engel’s curve for food expenditures.

Quantile Partial Effect

10 25 50 75 90

Conditional distribution

CQR 0.383*** 0.407*** 0.408*** 0.408*** 0.425***
(0.000571) (0.000422) (0.000246) (0.000278) (0.000336)

Unconditional distribution

RIF (linear model) 0.367*** 0.388*** 0.427*** 0.396*** 0.393***
(0.0285) (0.0170) (0.0139) (0.0130) (0.0181)

RIF (quadratic model) 0.360*** 0.383*** 0.427*** 0.403*** 0.406***
(0.0275) (0.0166) (0.0140) (0.0129) (0.0182)

RIF (cubic model) 0.370*** 0.394*** 0.440*** 0.415*** 0.412***
(0.0279) (0.0169) (0.0143) (0.0137) (0.0183)

RIF (Logit) 0.327*** 0.395*** 0.434*** 0.403*** 0.427***
(0.0373) (0.0260) (0.0234) (0.0242) (0.0316)

NW 0.395*** 0.405*** 0.408*** 0.409*** 0.410***
(0.0166) (0.0111) (0.00851) (0.00809) (0.00870)

Observations 21,017 21,017 21,017 21,012 21,017

Notes: The CQR analysis corresponds to a regression of log food expenditures on log income. UQPE estimates
the effect of a marginal change in log income on the unconditional distribution of log food expenditures.
Standard errors in parentheses (analytical for CQR, bootstrap with 200 replications for RIF and NW). *

indicates significance at 10 %, ** at 5 % and *** at 1 %. 33 / 38



Empirical Application
Figure: Engel’s curves for food expenditures

Notes: UQPE NW (black), RIF-OLS (cubic polynomial, blue) and RIF-Logit (red) estimates together with 95%
confidence intervals estimated using bootstrap with 200 replications.
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Empirical Application

- The results for food expenditures show evidence that CQR coefficients are roughly
constant across η, although mildly increasing.

- The proposed UQPE NW estimator is then also roughly constant across τ.

- The RIF estimates also have this pattern although they are estimated in a less precise
manner.

- In all cases, the estimated effects can be interpreted as elasticities, implying that a 1%
increase in income increase food consumption in less than 1%, about a 0.4.
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Empirical Application

- Since the CQR coefficients are mildly increasing, the variation in the UQPE has to be
coming from the variation in the density of X given Y = Qτ[Y ].

- As τ increases, for the UQPE to increase, higher CQR coefficients must be getting
higher weight. This happens if the density of “income given food= Qτ[food]” is
moving to the right.

- Observing this pattern in the results indicates that this shift happens relatively quickly:
given food expenditure is getting higher, we expect income to become higher, but at a
faster rate than the increase in food expenditure, so the share of food spending on
income is falling.
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Conclusion

- This paper considers the use of conditional quantile regression analysis to estimate
unconditional quantile partial effects.

- The proposed methodology is based on an interesting byproduct of quantile analysis,
that is, the unconditional effects can be recovered from conditional analysis.

- The current methodology can be extended to evaluate unconditional effects, starting
from any initial consistent conditional estimation procedure.
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Thank you!
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