Unconditional Quantile Partial Effects via Conditional Quantile Regression

Javier Alejo, IECON-Universidad de la Republica
Antonio F. Galvao, Michigan State University
Julian Martinez-Iriarte, University of California Santa Cruz
Gabriel Montes-Rojas, CONICET and Universidad de Buenos Aires

ESEM 2023

August 29, 2023

Introduction

CQPE and UQPE

Estimation

Asymptotic Theory

Empirical Application

Introduction

> CQPE and UQPE

Estimation

Asymptotic Theory

Empirical Application

Introduction

- (Conditional) Quantile Regression (CQR) is a general approach to estimate conditional quantile partial effects (CQPE), i.e., the effect of a covariate variable of interest (ceteris paribus) on the conditional quantile distribution of the outcome.
- CQR is a useful way to represent heterogeneity.

Introduction

- Unconditional Quantile Regression (UQR), proposed in a seminal paper by Firpo, Fortin, and Lemieux (2009) (FFL), has attracted interest in both applied and theoretical literatures.
- UQR provides a method to evaluate the impact of changes in the distribution of the explanatory variables on quantiles of the unconditional (marginal) distribution of the outcome variable.
- UQR leads to the unconditional quantile partial effect (UQPE), which refers to the effect of a covariate (ceteris paribus) on the unconditional quantiles of the outcome variable.

Introduction

- FFL propose several ways to estimate the UQPE.
- The most popular approach is the recentered influence function (RIF) regression method, commonly referred to as RIF regression. It is a two-step procedure, where in the first stage one estimates the RIF, and in the second step, a standard OLS regression of the RIF on covariates estimates the UQPE.
- While the method is appealing due to its simplicity, it relies on ability of the researcher to specify a regression equation for the influence function, a relatively abstract object.

Introduction

- This paper makes the following contributions.
- We obtain a new representation for the UQPE in terms of the CQPE. Following a result by FFL, we show that the the UQPE can be written as the conditional average of the CQPE effects, given the outcome variable (evaluated at the unconditional quantile).
- Based on the new representation, we establish how heterogeneity in CQPE propagates to heterogeneity in UQPE (a less studied topic).
- Finally, we suggest an alternative method for estimation of UQPE using simple CQR.

Related Literature

- Although the literature on applications of UQR methods is extensive, the literature on theoretical developments is relatively small.
- The seminal paper is Firpo, Fortin, and Lemieux (2009).
- Rothe (2010, 2012) propose some generalizations.
- Inoue, Li, and Xu (2021) tackle UQR in a two-sample problem, Sasaki, Ura, and Zhang (2022) develop high-dimensional UQR, and Martinez-Iriarte, Montes-Rojas, and Sun (2022) considers policies that affect the dispersion (in addition to a location shift).

Introduction

CQPE and UQPE

Estimation

Asymptotic Theory

Empirical Application

(Conditional) Quantile Regression

- Consider a general model $Y=r(X, U)$, where $X=\left(X_{1}, X_{2}^{\prime}\right)^{\prime}$.
- X_{1} is the target variable of interest and is a scalar.
- X_{2} is a $(d-1) \times 1$ vector consisting of other observable covariates.
- U consists of unobservables.

(Conditional) Quantile Regression

- Let $Q_{Y}\left[\eta \mid X_{1}, X_{2}\right]$ be the conditional η-quantile:

$$
\operatorname{Pr}\left(Y \leq Q_{Y}\left[\eta \mid X_{1}, X_{2}\right] \mid X_{1}, X_{2}\right)=\eta .
$$

- The typical object of study of CQR is the conditional quantile partial effect (CQPE):

$$
\operatorname{CQPE}_{X_{1}}(\eta, x):=\left.\frac{\partial Q_{Y}\left[\eta \mid X_{1}=z, X_{2}=x_{2}\right]}{\partial z}\right|_{z=x_{1}}
$$

- Interpretation: marginal effect of X_{1} on the conditional quantiles of Y when $X_{1}=x_{1}$ and $X_{2}=x_{2}$.
- If $Q_{Y}\left[\eta \mid X_{1}, X_{2}\right]=\beta_{0}(\tau)+\beta_{1}(\eta) X_{1}+X_{2}^{\prime} \beta_{2}(\eta)$, then $\operatorname{CQPE}_{X_{1}}(\eta, x)=\beta_{1}(\eta)$.

Unconditional Quantile Regression

- Consider the counterfactual outcome

$$
Y_{\delta, X_{1}}=r\left(X_{1}+\delta, X_{2}, U\right)
$$

where δ captures a small location change in the variable X_{1}.

- $Y_{\delta, X_{1}}$ is the outcome we would observe if every individual receives an additional quantity δ of X_{1}.
- The unconditional quantile partial effect (UQPE) is defined as

$$
U Q P E_{X_{1}}(\tau):=\lim _{\delta \rightarrow 0} \frac{Q_{Y_{\delta, X_{1}}}[\tau]-Q_{Y}[\tau]}{\delta}
$$

CQPE vs UQPE

- The interpretations of $\operatorname{CQPE}_{X_{1}}(\eta, x)$ and $U Q P E_{X_{1}}(\tau)$ are different.
- The $\operatorname{CQPE}_{X_{1}}(\eta, x)$ amounts to manipulating X_{1} locally at x and evaluating a local impact on the η-conditional quantile of Y.
- The $U_{Q P E} E_{X_{1}}(\tau)$ is obtained by what we may refer to as a global change in X_{1} and evaluating the impact on the τ-unconditional quantile of Y.

UQPE in terms of CQPE

- Under mild conditions, the CQPE can be written as

$$
\operatorname{CQPE}_{X_{1}}(\eta, x)=-\left.\frac{1}{f_{Y \mid X}\left(Q_{Y}[\eta \mid X=x] \mid x\right)} \frac{\partial F_{Y \mid X}\left(Q_{Y}[\eta \mid X=x] \mid z, x_{2}\right)}{\partial z}\right|_{z=x_{1}} .
$$

- For the UQPE we have

$$
\operatorname{UQPE} E_{X_{1}}(\tau)=-\left.\frac{1}{f_{Y}\left(Q_{Y}[\tau]\right)} \int \frac{\partial F_{Y \mid X}\left(Q_{Y}[\tau] \mid z, x_{2}\right)}{\partial z}\right|_{z=x_{1}} d F_{X}(x) .
$$

- Even if the conditional quantile is equal to the corresponding unconditional, that is, $Q_{Y}[\tau \mid X=x]=Q_{Y}[\tau]$, one is not able to recover $U Q P E_{X_{1}}(\tau)$ from $\operatorname{CQPE}_{X_{1}}(\tau, \cdot)$ by simply integrating the latter over X.

Matched Quantiles

- Consider the following matching map (introduced by FFL):

$$
\xi_{\tau}(x)=\left\{\eta: Q_{Y}[\eta \mid X=x]=Q_{Y}[\tau]\right\}
$$

- The $\operatorname{map} \xi_{\tau}(x):(0,1) \times \mathbb{R}^{d} \mapsto(0,1)$ corresponds to the quantile index(es) in the conditional model, η, that produces the closest match with the unconditional quantiles τ for different values of x.
- If $\xi_{\tau}(x)$ is a singleton, we have that, for every $x, Q_{Y}\left[\xi_{\tau}(x) \mid X=x\right]=Q_{Y}[\tau]$.

UQPE in terms of CQPE

- The $C Q P E_{X_{1}}$ evaluated at $\eta=\xi_{\tau}(x)$ is

$$
\operatorname{CQPE}_{X_{1}}\left(\xi_{\tau}(x), x\right)=-\left.\frac{1}{f_{Y \mid X}\left(Q_{Y}[\tau] \mid x\right)} \frac{\partial F_{Y \mid X}\left(Q_{Y}[\tau] \mid z, x_{2}\right)}{\partial z}\right|_{z=x_{1}}
$$

- Except for $f_{Y \mid X}\left(Q_{Y}[\tau] \mid x\right)$, it looks like the integrand in $U Q P E_{X_{1}}(\tau)$. Therefore

$$
\operatorname{UQPE}_{X_{1}}(\tau)=\int \operatorname{CQPE}_{X_{1}}\left(\xi_{\tau}(x), x\right) \frac{f_{Y \mid X}\left(Q_{Y}[\tau] \mid x\right)}{f_{Y}\left(Q_{Y}[\tau]\right)} d F_{X}(x)
$$

- This weighted average representation result appears in FFL.

UQPE in terms of CQPE

- To obtain a new representation, the weights are rearranged as

$$
\frac{f_{Y \mid X}\left(Q_{Y}[\tau] \mid x\right)}{f_{Y}\left(Q_{Y}[\tau]\right)} f_{X}(x)=\frac{f_{Y, X}\left(Q_{Y}[\tau], x\right)}{f_{Y}\left(Q_{Y}[\tau]\right) f_{X}(x)} f_{X}(x)=f_{X \mid Y}\left(x \mid Q_{Y}[\tau]\right)
$$

- So we obtain a reverse projection

$$
\begin{aligned}
\operatorname{UQPE}_{X_{1}}(\tau) & =\int \operatorname{CQPE}_{X_{1}}\left(\xi_{\tau}(x), x\right) f_{X \mid Y}\left(x \mid Q_{Y}[\tau]\right) d x \\
& =E\left[\operatorname{CQPE}_{X_{1}}\left(\xi_{\tau}(X), X\right) \mid Y=Q_{Y}[\tau]\right]
\end{aligned}
$$

η-heterogeneity vs. τ-heterogeneity

- Question: Heterogeneous CQPE $\stackrel{i ?}{\rightarrow}$ Heterogeneous UQPE.
- How does heterogeneity in the conditional effects across η-quantiles propagate to heterogeneity in unconditional effects across τ-quantiles?
- Define:

$$
\eta \text {-heterogeneity }:=\frac{\partial C Q P E_{X_{1}}(\eta, x)}{\partial \eta}
$$

and

$$
\tau \text {-heterogeneity }:=\frac{d U Q P E_{X_{1}}(\tau)}{d \tau} .
$$

η-heterogeneity vs. τ-heterogeneity

- Using the chain rule:

$$
\begin{aligned}
\frac{d U Q P E_{X_{1}}(\tau)}{d \tau} & =\left.\int_{\mathcal{X}} \frac{\partial C Q P E_{X_{1}}(\eta, x)}{\partial \eta}\right|_{\eta=\xi_{\tau}(x)} \frac{\partial \xi_{\tau}(x)}{\partial \tau} f_{X \mid Y}\left(x \mid Q_{Y}[\tau]\right) d x \\
& +\left.\frac{d Q_{Y}[\tau]}{d \tau} \int_{\mathcal{X}} \operatorname{CQPE}_{X_{1}}\left(\xi_{\tau}(x), x\right) \frac{d f_{X \mid Y}(x \mid y)}{d y}\right|_{y=Q_{Y}[\tau]} d x
\end{aligned}
$$

- The first term averages across the η-heterogeneity.
- In general, even if there is no η-heterogeneity, we may still have non-zero τ-heterogeneity through the second term.

```
Introduction
```

```
CQPE and UQPE
```

```
CQPE and UQPE
```


Estimation

Asymptotic Theory

Empirical Application

Estimation

- Assume first that

$$
Q_{Y}\left[\eta \mid X_{1}=x_{1}, X_{2}=x_{2}\right]=x_{1} \beta_{1}(\eta)+x_{2}^{\prime} \beta_{2}(\eta)=x^{\prime} \beta(\eta)
$$

- Then $\operatorname{CQPE}_{X_{1}}\left(\xi_{\tau}(x), x\right)=\beta_{1}\left(\xi_{\tau}(x)\right)$.
- Therefore, $U Q P E_{X_{1}}(\tau)$ has the convenient form

$$
U Q P E_{X_{1}}(\tau)=E\left[\beta_{1}\left(\xi_{\tau}(X)\right) \mid Y=Q_{Y}[\tau]\right] .
$$

- Our proposed estimator is a nonparametric regression of $\left\{\beta_{1}\left(\xi_{\tau}\left(x_{i}\right)\right)\right\}_{i=1}^{n}$ on $\left\{y_{i}\right\}_{i=1}^{n}$ evaluated at $Q_{Y}[\tau]$.

Estimation

- To estimate $\beta_{1}\left(\xi_{\tau}\left(x_{i}\right)\right)$ we first use CQR methods, and estimate $\beta(\eta)$ for a grid of m values of η 's given by $\mathcal{H}_{m}=\left\{\epsilon<\eta_{1}<\cdots<\eta_{j}<\cdots<\eta_{m}<1-\epsilon\right\}, \epsilon \in\left(0, \frac{1}{2}\right)$.
- In the standard linear case we have that for a given value of η_{j}, and a sample $\left\{y_{i}, x_{i}\right\}_{i=1}^{n}$, we simply apply standard quantile regression methods as

$$
\left(\hat{\beta}_{1}\left(\eta_{j}\right), \hat{\beta}_{2}\left(\eta_{j}\right)^{\prime}\right)^{\prime}=\hat{\beta}\left(\eta_{j}\right)=\arg \min _{b} \frac{1}{n} \sum_{i=1}^{n} \rho_{\eta_{j}}\left(y_{i}-x_{i}^{\prime} b\right),
$$

where $\rho_{\tau}(u)=u(\tau-1[u<0])$ is the check function.

- We also estimate the unconditional quantile $Q_{Y}[\tau]$ by

$$
\hat{Q}_{Y}[\tau]=\arg \min _{q} \frac{1}{n} \sum_{i=1}^{n} \rho_{\tau}\left(y_{i}-q\right) .
$$

Estimation

- To find the matched coefficients $\hat{\beta}_{1}\left(\hat{\xi}_{\tau}\left(x_{i}\right)\right)$, we employ the two previous estimates.
- Let

$$
\hat{\zeta}_{\tau}\left(x_{i}\right)=\left\{\begin{array}{ccc}
\eta_{1} \in \mathcal{H}_{m} & \text { if } & \hat{Q}_{Y}[\tau]<x_{i}^{\prime} \hat{\beta}\left(\eta_{1}\right) ; \\
\eta_{j} \in \mathcal{H}_{m} & \text { if } & \left\{x_{i}^{\prime} \hat{\beta}\left(\eta_{j-1}\right) \leq \hat{Q}_{Y}[\tau]<x_{i}^{\prime} \hat{\beta}\left(\eta_{j}\right)\right\} \text { for } j=2, \ldots, m ; \\
1-\epsilon & \text { if } & x_{i}^{\prime} \hat{\beta}\left(\eta_{m}\right) \leq \hat{Q}_{Y}[\tau],
\end{array}\right.
$$

for $i=1, \ldots, n$.

- This is an inversion procedure (cf. Chernozhukov, Fernandez-Val, and Melly (2013)).

Estimation

- Finally, to estimate the $U Q P E_{X_{1}}(\tau)$, we use a Nadaraya-Watson type-estimator:

$$
\hat{E}\left[\hat{\beta}_{1}\left(\hat{\xi}_{\tau}(X)\right) \mid Y=\hat{Q}_{Y}[\tau]\right]=\frac{\sum_{i=1}^{n} K_{h}\left(y_{i}-\hat{Q}_{Y}[\tau]\right) \cdot \hat{\beta}_{1}\left(\hat{\xi}_{\tau}\left(x_{i}\right)\right)}{\sum_{i=1}^{n} K_{h}\left(y_{i}-\hat{Q}_{Y}[\tau]\right)}
$$

where K_{h} is the rescaled kernel $K_{h}(u):=\frac{1}{h} K\left(\frac{u}{h}\right)$.

- This estimator avoids the curse of dimensionality: Y is the only regressor.
- However, the dimension of X matters for CQR and the matching function.

Estimation

- An alternative approach is just a linear regression of $\hat{\beta}_{1}\left(\hat{\xi}_{\tau}(X)\right)$ on a constant and Y.
- The predicted fit at $Y=\hat{Q}_{Y}[\tau]$ is an easy-to-compute approximation to $U Q P E_{X_{1}}(\tau)$.
- Yet another option is to do a local linear regression. Less bias?
- The estimator is $\hat{a}_{\tau, 0}+\hat{a}_{\tau, 1} \hat{Q}_{Y}[\tau]$, where $\left(\hat{a}_{\tau, 0}, \hat{a}_{\tau, 1}\right)^{\prime}$ solve

$$
\left(\hat{a}_{\tau, 0}, \hat{a}_{\tau, 1}\right)^{\prime}=\arg \min _{a_{\tau, 0}, a_{\tau, 1}} \sum_{i=1}^{n} K_{h}\left(y_{i}-\hat{Q}_{Y}[\tau]\right)\left[\beta_{1}\left(\hat{\xi}_{\tau}\left(x_{i}\right)\right)-a_{\tau, 0}-a_{\tau, 1}\left(\frac{y_{i}-\hat{Q}_{Y}[\tau]}{h}\right)\right]^{2} .
$$

```
Introduction
```


CQPE and UQPE

Estimation

Asymptotic Theory

Empirical Application

Asymptotic Theory

- The following assumptions are needed to establish that

$$
\hat{\beta}_{1}\left(\hat{\xi}_{\tau}(x)\right)-\beta_{1}\left(\xi_{\tau}(x)\right)=O_{p}\left(n^{-1 / 2}\right)
$$

- We work with i.i.d. data.
- $\left\{y_{i}, x_{i}\right\}_{i=1}^{n}$ is a random sample of i.i.d. observations with y_{i} a scalar and $x_{i} \in \mathbb{R}^{d}$.

Asymptotic Theory

1. The conditional quantiles are linear: $Q_{Y}[\eta \mid X=x]=x^{\prime} \beta(\eta), \eta \in[\epsilon, 1-\epsilon], \epsilon \in\left(0, \frac{1}{2}\right)$, with $X \in \mathbb{R}^{d}$ and $E|X|<\infty$.
2. For every x in the support of $X, f_{Y \mid X}(y \mid x)$ is bounded away from zero.
3. The conditional quantile regression estimators satisfy

$$
\begin{aligned}
\hat{\beta}(\eta)-\beta(\eta) & =E\left[f_{Y \mid X}\left(X^{\prime} \beta(\eta) \mid X\right) X X^{\prime}\right]^{-1} \frac{1}{n} \sum_{i=1}^{n}\left(\eta-\mathbb{1}\left\{y_{i} \leq x_{i}^{\prime} \beta(\eta)\right\}\right) x_{i}+o_{p}\left(n^{-1 / 2}\right) \\
& =\frac{1}{n} \sum_{i=1}^{n} \Psi_{i}(\eta)+o_{p}\left(n^{-1 / 2}\right),
\end{aligned}
$$

uniformly in $\eta \in[\epsilon, 1-\epsilon], \epsilon \in\left(0, \frac{1}{2}\right)$, and $\eta \mapsto E\left[f_{Y \mid X}\left(X^{\prime} \beta(\eta) \mid X\right) X X^{\prime}\right]$ has uniformly bounded derivatives.

Asymptotic Theory

4. The unconditional quantile estimator satisfies

$$
\begin{aligned}
\hat{Q}_{Y}[\tau]-Q_{Y}[\tau] & =f_{Y}\left(Q_{Y}[\tau]\right)^{-1} \frac{1}{n} \sum_{i=1}^{n}\left(\tau-\mathbb{1}\left\{y_{i} \leq Q_{Y}[\tau]\right\}\right) \\
& =\frac{1}{n} \sum_{i=1}^{n} \psi_{i}(\tau)+o_{p}\left(n^{-1 / 2}\right)
\end{aligned}
$$

5. The grid of quantiles $\left\{\epsilon<\eta_{1}<\ldots<\eta_{j}<\ldots<\eta_{m}<1-\epsilon\right\}, \epsilon \in\left(0, \frac{1}{2}\right)$, satisfies $\Delta \eta=o\left(n^{-1 / 2}\right)$ as $n \rightarrow \infty$ for $\Delta \eta:=\eta_{j}-\eta_{j-1}, j=2, \ldots, m$, and $\eta_{1}=\epsilon$ and $\eta_{m}=1-\epsilon$ for a small $\epsilon>0$.

Asymptotic Theory

- Under the above assumptions, the CQR coefficient of X_{1} evaluated at the random quantile $\hat{\xi}_{\tau}(x)$ satisfies $\hat{\beta}_{1}\left(\hat{\xi}_{\tau}(x)\right)-\beta_{1}\left(\xi_{\tau}(x)\right)=O_{p}\left(n^{-1 / 2}\right)$ and can be represented as

$$
\begin{aligned}
\hat{\beta}_{1}\left(\hat{\xi}_{\tau}(x)\right)-\beta_{1}\left(\xi_{\tau}(x)\right) & =\hat{\beta}_{1}\left(\xi_{\tau}(x)\right)-\beta_{1}\left(\xi_{\tau}(x)\right)+\dot{\beta}_{1}\left(\xi_{\tau}(x)\right)\left(\hat{\xi}_{\tau}(x)-\xi_{\tau}(x)\right) \\
& +o_{p}\left(n^{-1 / 2}\right)
\end{aligned}
$$

where
$\hat{\xi}_{\tau}(x)-\xi_{\tau}(x)=-\frac{1}{x^{\prime} \dot{\beta}\left(\xi_{\tau}(x)\right)} \frac{1}{n} \sum_{i=1}^{n} x^{\prime} \Psi_{i}\left(\xi_{\tau}(x)\right)+\frac{1}{x^{\prime} \dot{\beta}\left(\xi_{\tau}(x)\right)} \frac{1}{n} \sum_{i=1}^{n} \psi_{i}(\tau)+o_{p}\left(n^{-1 / 2}\right)$.

- Here, $\dot{\beta}_{1}\left(\xi_{\tau}(x)\right)$ is the β_{1} component of the Jacobian vector $\dot{\beta}\left(\xi_{\tau}(x)\right)$: the derivative of the map $\eta \mapsto \beta(\eta)$.

Asymptotic Theory

- Our parameter of interest given is

$$
U Q P E_{X_{1}}(\tau)=E\left[\beta_{1}\left(\xi_{\tau}(X)\right) \mid Y=Q_{Y}[\tau]\right]
$$

- We propose the following nonparametric estimator:

$$
\widehat{U Q P E}_{X_{1}}(\tau)=\hat{E}\left[\hat{\beta}_{1}\left(\hat{\xi}_{\tau}(X)\right) \mid Y=\hat{Q}_{Y}[\tau]\right]=\frac{\sum_{i=1}^{n} K_{h}\left(y_{i}-\hat{Q}_{Y}[\tau]\right) \cdot \hat{\beta}_{1}\left(\hat{\xi}_{\tau}\left(x_{i}\right)\right)}{\sum_{i=1}^{n} K_{h}\left(y_{i}-\hat{Q}_{Y}[\tau]\right)}
$$

- The unfeasible (oracle) version is denoted by

$$
\widetilde{U Q P E}_{X_{1}}(\tau)=\hat{E}\left[\beta_{1}\left(\xi_{\tau}(X)\right) \mid Y=Q_{Y}[\tau]\right]=\frac{\sum_{i=1}^{n} K_{h}\left(y_{i}-Q_{Y}[\tau]\right) \cdot \beta_{1}\left(\xi_{\tau}\left(x_{i}\right)\right)}{\sum_{i=1}^{n} K_{h}\left(y_{i}-Q_{Y}[\tau]\right)}
$$

Asymptotic Theory

1. $K(u)$ is a symmetric function around 0 that satisfies: (i) $\int K(u) d u=1$; (ii) For $r \geq 2$, $\int u^{j} K(u) d u=0$ when $j=1, \ldots, r-1$, and $\int|u|^{r} K(u) d u<\infty$; (iii) $\int K^{\prime}(u) d u=0$; (iv) $u^{j} K(u) \rightarrow 0$ as $u \rightarrow \pm \infty$ for $\mathrm{j}=1, \ldots, \mathrm{r}+1$; (v) $\sup _{u \in \mathbb{R}}\left|K^{\prime}(u)\right|<\infty$ and $\sup _{u \in \mathbb{R}}\left|K^{\prime \prime}(u)\right|<\infty$; (vi) $\int K^{\prime}(u)^{2} d u<\infty$ and $\int u K^{\prime}(u)^{2} d u<\infty$.
2. (i) The density of Y is $r+1$ times continuously differentiable, with uniformly bounded derivatives; (ii) The joint density $f_{Y, X}(y, x)$ is $r+1$ times continuously differentiable, with uniformly bounded derivatives for every x in the support of X.
3. As $n \rightarrow \infty$, the bandwidth satisfies $h \propto n^{-a}$ with $1 /(1+2 r) \leq a<1 / 2$.
4. The following approximation rate holds for $\hat{\xi}_{\tau}$:
$\left.E\left[\left(n^{1 / 4}\left[\beta_{1}(e(X))-\beta_{1}\left(\xi_{\tau}(X)\right)\right]\right)^{2}\right]\right|_{e=\hat{\xi}_{\tau}}=o_{p}(1)$.

Asymptotic Theory

- Under the above assumptions, we obtain

$$
\widehat{U Q P E}_{X_{1}}(\tau)=\widehat{U Q P E}_{X_{1}}(\tau)+o_{p}\left(n^{-1 / 2} h^{-1 / 2}\right)
$$

- The preliminary estimators of the CQR slopes, the matched quantiles and the unconditional quantile of Y vanish asymptotically because they converge at a parametric rate.
- The asymptotic distribution of the unfeasible estimator $\widetilde{U Q P E_{X_{1}}}(\tau)$ is well-known and can be readily established.

Asymptotic Theory

- The following assumption is customary in order to apply the Lindeberg-Feller Central Limit Theorem: (i) For $U_{\tau}:=\beta_{1}\left(\xi_{\tau}(X)\right)-E\left[\beta_{1}\left(\xi_{\tau}(X)\right) \mid Y\right]$, and $\delta>0$, $E\left[\left|U_{\tau}\right|^{2+\delta} \mid Y\right]<C<\infty$ a.s. for some C; (ii) $\int|K(u)|^{2+\delta} d u<\infty$; (iii) The map $y \mapsto E\left[\beta_{1}\left(\xi_{\tau}(X)\right) \mid Y=y\right]$ is $r+1$ times continuously differentiable, with uniformly bounded derivatives; (iv) The map $y \mapsto \sigma_{\tau}^{2}(y):=E\left[U_{\tau}^{2} \mid Y=y\right]$ is continuous.
- Under the above assumptions

$$
\sqrt{n h}\left(\widehat{U Q P E}_{X_{1}}(\tau)-U Q P E_{X_{1}}(\tau)\right) \xrightarrow{d} N\left(0, \sigma_{\tau}^{2}\left(Q_{Y}[\tau]\right) f_{Y}\left(Q_{Y}[\tau]\right)^{-1} \int K(u)^{2} d u\right) .
$$

Introduction

CQPE and UQPE

Estimation

Asymptotic Theory

Empirical Application

Empirical Application

- We illustrate the UQPE estimator with an analysis of Engel's curves.
- The original concept corresponds to Ernst Engel who studied the European working class households consumption in the 19th century.
- Engel curves describe how household expenditures on particular goods and services depend on household income.
- An empirical result commonly referred to as "Engel's law" states that the poorer a family is, the larger the budget share it spends on food.

Empirical Application

- We apply this framework to food household expenditures in Argentina using the national survey of expenditures (Encuesta Nacional de Gasto de los Hogares, known as ENGHO 2017-2018).
- The ENGHO 2017-2018 surveys the households' living conditions in terms of their access to goods and services, as well as their income.
- The data contains information about household expenditures.
- About 21,547 households were randomly selected and participated on the survey.

Table: Engel's curve for food expenditures.

	Quantile Partial Effect				
	10	25	50	75	90
Conditional distribution					
CQR	$0.383^{* * *}$	$0.407^{* * *}$	$0.408^{* * *}$	$0.408^{* * *}$	$0.425^{* * *}$
Unconditional distribution	(0.000571)	(0.000422)	(0.000246)	(0.000278)	(0.000336)
RIF (linear model)					
RIF (quadratic model)	$0.367^{* * *}$	$0.388^{* * *}$	$0.427^{* * *}$	$0.396^{* * *}$	$0.393^{* * *}$
RIF (cubic model)	(0.0285)	(0.0170)	(0.0139)	(0.0130)	(0.0181)
	(0.0275)	$0.383^{* * *}$	$0.427^{* * *}$	$0.403^{* * *}$	$0.406^{* * *}$
	$0.370^{* * *}$	$0.0166)$	(0.0140)	(0.0129)	(0.0182)
RIF (Logit)	(0.0279)	(0.0169)	$0.440^{* * *}$	$0.415^{* * *}$	$0.412^{* * *}$
	$0.327^{* * *}$	$0.395^{* * *}$	$0.434^{* * *}$	$0.403^{* * *}$	$0.427^{* * *}$
NW	(0.0373)	(0.0260)	(0.0234)	(0.0242)	(0.0316)
	$0.395^{* * *}$	$0.405^{* * *}$	$0.408^{* * *}$	$0.409^{* * *}$	$0.410^{* * *}$
Observations	(0.0166)	(0.0111)	(0.00851)	(0.00809)	(0.00870)
	21,017	21,017	21,017	21,012	21,017

Notes: The CQR analysis corresponds to a regression of log food expenditures on log income. UQPE estimates the effect of a marginal change in log income on the unconditional distribution of log food expenditures. Standard errors in parentheses (analytical for CQR, bootstrap with 200 replications for RIF and NW). * indicates significance at $10 \%,{ }^{* *}$ at 5% and ${ }^{* * *}$ at 1%.

Empirical Application

Figure: Engel's curves for food expenditures

Notes: UQPE NW (black), RIF-OLS (cubic polynomial, blue) and RIF-Logit (red) estimates together with 95\% confidence intervals estimated using bootstrap with 200 replications.

Empirical Application

- The results for food expenditures show evidence that CQR coefficients are roughly constant across η, although mildly increasing.
- The proposed UQPE NW estimator is then also roughly constant across τ.
- The RIF estimates also have this pattern although they are estimated in a less precise manner.
- In all cases, the estimated effects can be interpreted as elasticities, implying that a 1% increase in income increase food consumption in less than 1\%, about a 0.4.

Empirical Application

- Since the CQR coefficients are mildly increasing, the variation in the UQPE has to be coming from the variation in the density of X given $Y=Q_{\tau}[Y]$.
- As τ increases, for the UQPE to increase, higher CQR coefficients must be getting higher weight. This happens if the density of "income given food $=Q_{\tau}[\mathrm{food}]$ " is moving to the right.
- Observing this pattern in the results indicates that this shift happens relatively quickly: given food expenditure is getting higher, we expect income to become higher, but at a faster rate than the increase in food expenditure, so the share of food spending on income is falling.

Conclusion

- This paper considers the use of conditional quantile regression analysis to estimate unconditional quantile partial effects.
- The proposed methodology is based on an interesting byproduct of quantile analysis, that is, the unconditional effects can be recovered from conditional analysis.
- The current methodology can be extended to evaluate unconditional effects, starting from any initial consistent conditional estimation procedure.

Thank you!

