Macroeconomic Development, Rural Exodus, and Uneven Industrialization

Tomás Budí-Ors* Josep Pijoan-Mas[◊]

*CEMFI

[♦]CEMFI, CEPR

European Economic Association Meeting Barcelona, August 2023

Facts

Mode

Calibratio

Counterfactuals

Motivation

- Economic development shifts employment away from agriculture and generates a cycle of industrialization and de-industrialization
- This process is uneven across space
 - → Industrialization typically begins in a few regions within a country (Northeast in US; Basque Country, Catalonia in Spain; Guangdong, Jiangsu, Shangai in China)
- The initially agrarian regions may follow different paths
 - a) They may catch up and industrialize
 - Agrarian workers move to industry in the same region US (1880-1940), Indonesia (1971-2010), Costa Rica (1963-2011)
 - b) They may experience a rural exodus and fail to industrialize
 - Agrarian workers help industrialization elsewhere
 Spain (1940-2000), China (2000-2015), France (1872-1975)

Or anything in between: India (1987-2011), Brazil (1980-2010)

Budí-Ors, Pijoan-Mas

luction	

Facts

Mode

Calibratio

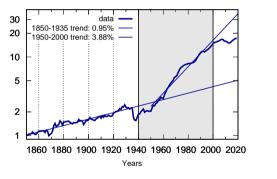
Counterfactuals

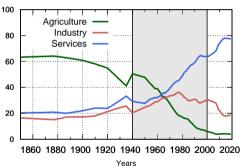
What we do

- Our goal:
 - a) Uncover the economic forces shaping these different patterns of development
 - b) Examine their aggregate implications
 - \Rightarrow Finding: internal migrations are key for local and aggregate sectoral allocations
- Main object of study: economic development in Spain (1940-2000)
 - Regional-level data for the <u>whole</u> development process
 - Interesting development episode (fast growth, structural change, internal migration, uneven regional industrialization)
- Model of structural change w/ internal migration and internal trade
 - Theory: internal migrations generate uneven industrialization across regions
 - Quantitative analysis: drivers of internal migrations and their effects on the macroeconomy

Budí-Ors, Pijoan-Mas

Facts


M


Calibra

Counterfactuals

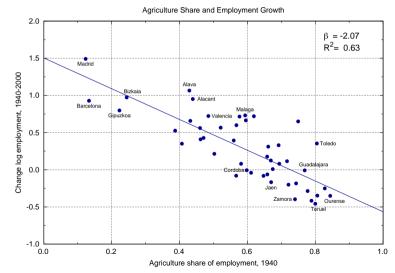
The Spanish development experience *Main facts*

(a) Real GDP per capita

(b) Sectoral employment shares

Budí-Ors, Pijoan-Mas

Facts


Mo

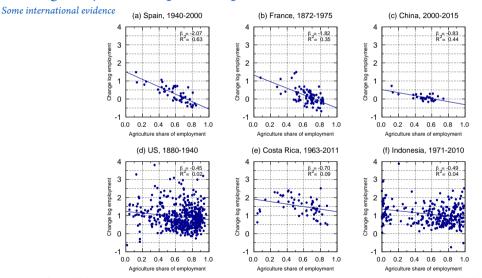
Calibratio

Counterfactuals

The Spanish development experience

Rural exodus (map)

Budí-Ors, Pijoan-Mas


Facts

Mode

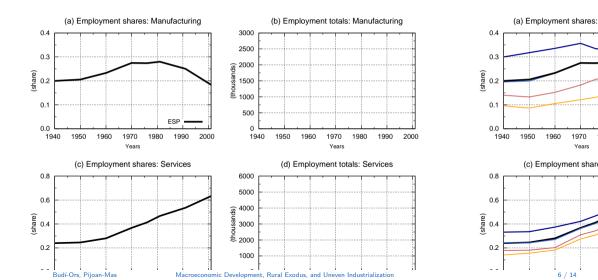
Calibratio

Counterfactuals

Heterogeneity in development experiences

Source. US from Eckert, Peters (2018), China from Hao et al (2020), Spain from Budí-Ors, Pijoan-Mas (2022), rest of countries from IPUMS International Census Database Budí-Ors, Pijoan-Mas (2022), rest of countries from IPUMS International Census

Facts


Mo

Calibratio

Counterfactual

The Spanish development experience

Uneven regional industrialization

Facts

Model

Calibratio

Counterfactuals

Model I

1 Growth and structural change a la Duarte, Restuccia (2010)

- Closed economy w/ many regions $r=1,2,\ldots,R$ and 3 sectors j=a,m,s
- Sector-region specific productivity
- Household preferences with non-unitary income and price elasticities
- \Rightarrow Usual two forces of structural change

2 Migration a la Artuç, Chaudhuri, McLaren (2010)

- Workers move to locations with highest value
- Idiosyncratic taste shocks for locations
- Route-specific migration costs
- \Rightarrow Smooth upward-sloping labor supply in each region

Facts

Model

Calibratio

Counterfactuals

Model II

- **3** Trade *a la* Eaton and Kortum (2002)
 - Continuum of tradable varieties within each sector
 - Variety-specific productivity in each region
 - Route-specific iceberg trade costs
 - \Rightarrow Regional trade driven by comparative advantage
 - a) Intra-sectoral trade (share of imported sectoral value added)
 - b) Inter-sectoral trade (difference between sectoral expenditure and employment shares)
 - $\Rightarrow\,$ Smooth downward-sloping labor demand in each region
- Equilibrium: regional wages w_r clearing the labor markets each period
 - <u>*L* supply</u>: affected by <u>migration costs</u> and real wage differences across regions
 - $\underline{L \text{ demand}}$: affected by $\underline{\text{trade costs}}$ and wage and productivity differences across regions

Budí-Ors, Pijoan-Mas

Facts

Model

Calibrat

Counterfactuals

Migrations and (uneven) structural change

Outmigration from location r (say a decrease in migration costs $\mu_{r\ell} \; \forall \ell)$ generates

- 1/ A decrease in <u>labor supply</u> L_r
- 2/ A decrease in <u>labor demand</u> L_{rj} that is
 - Asymmetric across sectors

$$\frac{\partial L_{rj}}{\partial L_r} = \left(\frac{\pi_{rrj} P_{rj} C_{rj}}{P_{rj} Y_{rj}}\right) \left(\frac{L_{rj}}{L_r}\right)$$

- Smaller than the fall in labor supply
- 3/ <u>In equilibrium</u>: an increase in w_r
 - a) Partly offsets decline in labor supply L_r
 - b) Decreases labour demand L_{rj} due to $\downarrow \pi_{r\ell j}$ (more so in more tradable sectors)
 - c) Changes in $P_{rj}C_{rj}/P_rY_r$ due to income effects: changes in labor demand

\Rightarrow <u>Uneven structural change</u> induced by migration

Budí-Ors, Pijoan-Mas

Facts

Mode

Calibration

Counterfactuals

Calibration

- We want the model to account for the Spanish development episode
 - \rightarrow Match data every ten years in the period 1940-2000 Productivity, employment, and gross migration flows
- Large parameter space for R = 47 (provinces within mainland Spain)
 - Common across time and space:
 - preferences and elasticities
 - Time changing:
 - Productivity: sector-region specific
 - Trade costs: sector-route specific
 - Migration costs: route specific
- Challenge: identify trade costs w/o trade data
 - Correlation between sectoral employment and expenditure shares Gervais and Jensen (2019)

Budí-Ors, Pijoan-Mas

ntroduction Facts Model

Counterfactuals

Drivers of the heterogeneity in development patterns

- What were the drivers of the rural exodus and uneven industrialization?
 - 1) Decline in migration costs
 - 2) Early divergence in productivities across regions
 - Both together: account for difference between the US (1880-1940) and Spain
 - One by one: Spain similar to India (1987-2011) or Brazil (1980-2010)
- Why?
 - Both forces \uparrow migration from laggard to leading regions
 - \uparrow migration \Rightarrow Prevents industrialization in laggard areas
 - \rightarrow Smaller demand for local manufactures in laggard areas (PE)
 - $\rightarrow~$ Limits wage growth in industrial provinces, allowing them to serve all country (GE)

(Strength of both mechanisms depends on level of trade frictions)

Budí-Ors, Pijoan-Mas

Facts

Mode

Calibratio

Counterfactuals

Role of rural exodus

Without any population movement since 1940:

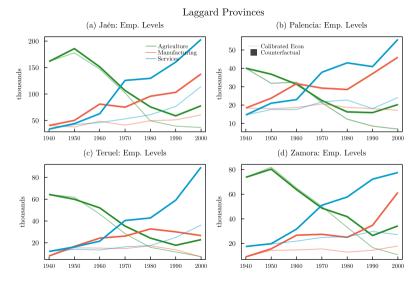
1 Initially agrarian provinces would have also industrialized

 $\rightarrow\,$ Changes over time in productivity and trade costs were conductive of industrialization

3 No de-industrialization at country level

- Leading provinces cannot lever up industrial comparative advantage
- Lower increase in industrial productivity at the aggregate (misallocation)
- \rightarrow Slower industrialization (\triangle Man: 5.4 pp less)

Facts


Mod

Calibratio

Counterfactuals

Role of rural exodus

Lagging provinces

Budí-Ors, Pijoan-Mas

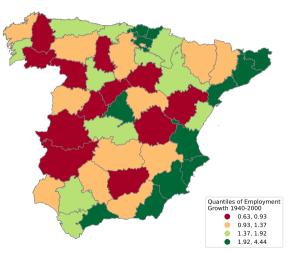
Facts

Mode

Calibratio

Counterfactuals

Concluding remarks


- Macroeconomic development shifts demand away from agriculture
- In Spain
 - Industrialization was concentrated in a few regions
 - More agrarian (and poorer) regions failed to industrialize
 - Farmers in those regions migrated and helped industrialization elsewhere
- We find
 - 1) Large role of productivity divergence and decline in migration costs for rural exodus
 - 2) The <u>rural exodus</u> is key for *industrial failure in laggard regions*
 - 3) The <u>rural exodus</u> accelerated *aggregate growth and structural change*
- Further work: understand differences in development patterns across countries
 - Factors affecting migration costs and technology diffusion seem first-order

Budí-Ors, Pijoan-Mas

The Spanish development experience

2. Rural exodus

Employment in 2000 relative to 1940

Consumption and Migration

Static problem w/ two sequential choices:

1) Location: individual i in location ℓ chooses r offering highest value

 $V_{\ell r}^{i} = \mathcal{V}(w_{r}, P_{ra}, P_{rm}, P_{rs}) - mc_{\ell r} + \kappa \epsilon_{r}^{i}$

 $\rightarrow~$ This delivers bilateral migration flows and labor supply

$$\underbrace{\rho_{\ell r} = \frac{\exp\left\{\frac{1}{\kappa} \left(\mathcal{V}(w_r, P_{ra}, P_{rm}, P_{rs}) - mc_{\ell r}\right)\right\}}{\sum_k^R \exp\left\{\frac{1}{\kappa} \left(\mathcal{V}(w_k, P_{ka}, P_{km}, P_{ks}) - mc_{\ell k}\right)\right\}}, \qquad \underbrace{L_r = (1+n) \sum_{\ell}^R \rho_{\ell r} L_{\ell}^0}_{\text{Labor Supply in } r}$$

2) <u>Consumption</u>: agents maximize CRRA utility over non-homothetic c basket $\max u(c_r) \quad \text{s.t.} \quad P_{ra}c_{ra} + P_{rm}c_{rm} + P_{rs}c_{rs} = w_r$ $c_r = \left[\omega_a^{1/\nu}(c_{ra} + \bar{c}_a)^{\frac{\nu-1}{\nu}} + \omega_m^{1/\nu}(c_{rm} + \bar{c}_m)^{\frac{\nu-1}{\nu}} + \omega_s^{1/\nu}(c_{rs} + \bar{c}_s)^{\frac{\nu-1}{\nu}}\right]^{\frac{\nu}{\nu-1}}$

 \rightarrow Indirect utility of living in location $r: \mathcal{V}(w_r, P_{ra}, P_{rm}, P_{rs})$

 \rightarrow Sectoral *expenditure shares* in location r

Production and Trade

Eaton and Kortum (2002)

• In each sector j and region r, production function for variety $x \in [0,1]$

$$y_{rj}(x) = A_{rj}(x)L_{rj}(x)$$


- Regional trade of varieties subject to iceberg transport costs $\tau_{r\ell j} \geq 1$
- Firm optimization: $p_{r\ell j}(x) = rac{w_r}{A_{rj}(x)} au_{r\ell j}$
- Local assembly of varieties into non-tradable sector j composite goods
 - Consumers in location ℓ buy variety x of sector j from cheapest supplier:

$$p_{\ell j}(x) = \min_{r \in \{1, \dots, R\}} p_{r \ell j}(x)$$

• If productivity $A_{rj}(x)$ drawn from a Frechet dbon $F_{rj}(A) = \exp\{-T_{rj}A^{-\theta_j}\}$

$$\Rightarrow P_{rj} = \gamma_j \left[\sum_{\ell}^R \left(w_{\ell} \tau_{\ell rj} \right)^{-\theta_j} T_{\ell j} \right]^{-1/\theta_j},$$

 ${\rm Price \ of \ region} \ r \ {\rm sector} \ j \ {\rm composite} \ {\rm good} \\$

Share of ℓ 's sector j expenditure spent in r varieties

