Negative Bubbles

Kosuke Aoki University of Tokyo Kalin Nikolov European Central Bank

August 2023

• Asset prices much more volatile than fundamentals

Image: A match a ma

- Asset prices much more volatile than fundamentals
- Theories of asset price bubbles explain this with possibly highly volatile deviations from fundamentals

Image: Image:

- Asset prices much more volatile than fundamentals
- Theories of asset price bubbles explain this with possibly highly volatile deviations from fundamentals
- $\bullet\,$ But: the literature features only models with positive bubbles (Price $>\,$ Fundamentals)

- Asset prices much more volatile than fundamentals
- Theories of asset price bubbles explain this with possibly highly volatile deviations from fundamentals
- $\bullet\,$ But: the literature features only models with positive bubbles (Price $>\,$ Fundamentals)
- In this paper
 - We show that ${\rm negative\ bubbles}$ (Firm price < Value of tangible assets) can also exist in a certain class of models
 - We characterize the macroeconomic and welfare effects of negative bubbles

• Under what conditions can negative bubbles exist?

- Under what conditions can negative bubbles exist?
- What are their real and welfare effects?

- Q: Under what conditions can negative bubbles exist?
 - A: Negative bubbles arise in economies with looser credit constraints

- Q: Under what conditions can negative bubbles exist?
 - A: Negative bubbles arise in economies with looser credit constraints
- Q: What are the real and welfare effects of negative bubbles?
 - A: Contractionary if credit constraints are not too loose
 - A: Expansionary if credit constraints are very loose
 - A: They always reduce welfare

- Simple neoclassical model with credit frictions on investment
 - Random investment opportunities financed with debt collateralized by firm value
 - Bubbles arise due to strong two-way feedbacks between firm profit/value and firm access to credit

- Simple neoclassical model with credit frictions on investment
 - Random investment opportunities financed with debt collateralized by firm value
 - Bubbles arise due to strong two-way feedbacks between firm profit/value and firm access to credit
- Negative bubbles due to self-fulfilling pessimism about firm value which reduces access to credit and hence profit

- Simple neoclassical model with credit frictions on investment
 - Random investment opportunities financed with debt collateralized by firm value
 - Bubbles arise due to strong two-way feedbacks between firm profit/value and firm access to credit
- Negative bubbles due to self-fulfilling pessimism about firm value which reduces access to credit and hence profit
- Firm value can fall below value of capital because investment is assumed to be irreversible

- Simple neoclassical model with credit frictions on investment
 - Random investment opportunities financed with debt collateralized by firm value
 - Bubbles arise due to strong two-way feedbacks between firm profit/value and firm access to credit
- Negative bubbles due to self-fulfilling pessimism about firm value which reduces access to credit and hence profit
- Firm value can fall below value of capital because investment is assumed to be irreversible
- Analytical results on existence and real impact of negative bubbles

- Rational bubbles models (Tirole (1985), Farhi and Tirole (2015), Martin and Ventura (2015))
 - Bubbles always positive (free disposal)
- Models of borrowing constraints that depend on firm market value (Gertler and Karadi (2011), Gertler and Kyotaki (2015))
- Bubbles due to borrowing constraints that depend on firm market value (Miao and Wang (2018) plus others)
 - Bubbles always positive (can sell tangible assets to other firms)
 - Bubbles always expansionary because they relax credit constraints

The Model

▲ □ ▶ < □ ▶ < □</p>

- Preferences

$$W_t = C_t + eta W_{t+1}$$
, $0 < eta < 1$,

- Households entirely passive (for simplicity)
 - Supply 1 unit of labour inelastically
 - Constant real interest rate

$$R_t = \beta^{-1}$$

- Own the capital stock
 - Can accumulate capital by buying new capital goods at price q_t
 - No possibility to accumulate financial assets (can be relaxed)
 - Capital is irreversible: resale value to other firms is zero
- Opportunity to produce new capital goods at unit cost (probability π)
 - Financed with rental income plus borrowing intraperiod from HHs
 - Borrowing collateralized by firm market value
- Residual paid out as dividend to the household

The Firm's Problem

Value of the firm

$$V(k_t) = \max_{m_t, i_t} r_t k_t - q_t m_t + \pi (q_t - 1) i_t + \beta V(k_{t+1})$$

subject to:

- Capital law of motion (at firm level)

$$m_t = k_{t+1} - (1 - \delta) k_t$$

- Irreversibility constraint (at firm level)

 $m_t \ge 0$

- Budget constraint for investing firms

$$i_t = r_t k_t + d_t.$$

- Borrowing constraint:

$$d_t \leqslant V(\lambda k_t)$$

- Limited liability:

 $V(k_t) \ge 0$

The Firm's Problem: No frictions

- Solution when credit and irreversibility constraints do not bind
- Value function (guess and verify)

$$V(k_t) = \phi_t k_t$$

- Capital price equal to replacement cost

$$q_t = 1$$

- FOC for capital

$$1 = \beta \left(r_{t+1} + 1 - \delta \right)$$

- Value of installed capital

$$\phi_t = r_t + 1 - \delta$$

• Value of the firm (with possible bubble component)

$$V(k_t) = \phi_t k_t + b_t > 0$$

• Value of the firm (with possible bubble component)

$$V(k_t) = \phi_t k_t + b_t > 0$$

• Investment of firms with investment opportunity

$$i_t = r_t k_t + (\lambda \phi_t k_t + b_t)$$

• Value of the firm (with possible bubble component)

$$V(k_t) = \phi_t k_t + b_t > 0$$

• Investment of firms with investment opportunity

$$i_t = r_t k_t + (\lambda \phi_t k_t + b_t)$$

• Value of installed capital:

$$\phi_{t} = r_{t} + q_{t}(1 - \delta) + \pi \left(q_{t} - 1\right) \left(r_{t} + \lambda \phi_{t}\right)$$

- Collateral premium: $\pi \left(q_t 1 \right) \left(r_t + \lambda \phi_t \right)$
- Creates a leverage multiplier that depends on λ

• Value of the firm (with possible bubble component)

$$V(k_t) = \phi_t k_t + b_t > 0$$

• Investment of firms with investment opportunity

$$i_t = r_t k_t + (\lambda \phi_t k_t + b_t)$$

• Value of installed capital:

$$\phi_t = r_t + q_t(1-\delta) + \pi \left(q_t - 1\right) \left(r_t + \lambda \phi_t\right)$$

- Collateral premium: $\pi \left(q_t 1
 ight) \left(r_t + \lambda \phi_t
 ight)$
- Creates a leverage multiplier that depends on λ
- Bubble value

$$b_t = \pi \left(q_t - 1
ight) b_t + eta b_{t+1}$$

- Bubble contains its own collateral premium: $\pi\left(q_t-1
ight)b_t$

Goods market clearing

$$K_t^{\alpha} = C_t + I_t$$

Capital rental rate

$$r_t = \alpha K_t^{\alpha - 1}$$

Investment under binding credit constraint

$$I_t = \pi \left(\left(r_t + \lambda eta^{-1} q_t
ight) K_t + B_t
ight).$$

Steady State Analysis

Negative and positive bubbles in the model

Aoki, Nikolov ()

Bubbles: real impact

э.

・ロト ・回ト ・ヨト

• Value of installed capital:

$$\phi_t = r_t + q_t(1-\delta) + \pi \left(q_t - 1\right) \left(r_t + \lambda \phi_t\right)$$

- Negative bubbles reduce collateral and increase its value (q_t, $\phi_t \uparrow$)
- Is this contractionary $(r_t \uparrow)$ or expansionary $(r_t \downarrow)$?
 - Contractionary: \downarrow overall collateral $\Longrightarrow \downarrow K$
 - Expansionary: $q_t > 1 \Longrightarrow$ collateral premium raises value of $K \Longrightarrow \uparrow K$
- Collateral premium depends on λ : dominates if $\lambda > \lambda^{**}$

Dynamic Analysis

▲□▶ ▲圖▶ ▲圖

- Positive bubbles region $(\lambda \leq \lambda^*)$
 - Unique saddle path to the bubbly equilibrium
 - Multiple bubbly paths converging to the bubbleless equilibrium
- Negative bubbles region ($\lambda > \lambda^*$)
 - Multiple paths to the bubbly equilibrium
 - No paths converging to the bubbleless equilibrium

Stability properties: intuition

Bubble arbitrage equation implies that

$$b_{t+1}-b_t=-rac{\pi}{eta}\left(q_t-q^{bss}
ight)b_t$$

- Positive bubbles region $(\lambda \leq \lambda^*)$
 - Bubble too small ==> collateral is scarce and $q_t q^{bss} > 0$
 - Dividend too large and capital gain must be negative $(b_{t+1} b_t < 0)$: bubble deflates towards bubbleless SS
- Negative bubbles region $(\lambda > \lambda^*)$ - Bubble too small (large negative) ==> collateral is scarce and $q_t - q^{bss} > 0$ - Negative dividend too large and capital gain must be positive
 - $(b_{t+1} b_t > 0)$: bubble rises towards bubbly SS

• Neoclassical model with credit frictions

Image: A math a math

- Neoclassical model with credit frictions
- Bubbly solutions due to two-way interaction between firm value and credit constraints
 - Tight credit constraints: positive expansionary bubbles
 - Loose credit constraints: negative contractionary bubbles
 - Very loose credit constraints: negative expansionary bubbles

- Neoclassical model with credit frictions
- Bubbly solutions due to two-way interaction between firm value and credit constraints
 - Tight credit constraints: positive expansionary bubbles
 - Loose credit constraints: negative contractionary bubbles
 - Very loose credit constraints: negative expansionary bubbles
- Dynamics around negative bubbly steady state very different
 - Multiplicity of paths leading to the bubbly steady state; no path leading to bubbleless steady state

- In positive bubble region: unique saddle path to bubbly steady state; multiple paths to bubbleless steady state

Calibrated Structural Parameters		
Parameter	Value	Description
α	0.3	Capital share in GDP
δ	0.03	Depreciation rate (quarterly)
π	0.1	Prob of investment opportunity
β	0.99	Discount factor

Transition to a negative contractionary bubble

Transition to a negative expansionary bubble

Aoki, Nikolov ()

Transition to a bubbly economy with debt tax

