#### Unsafe water and children's development

Steve Berggreen (Lund University)

Linn Mattisson (Lund University)

EEA-ESEM Barcelona 2023

31 August 2023

#### Disease burden in low-income countries (incidence rates)



(Institute for Health Metrics and Evaluation, 2022)

Berggreen & Mattisson (Lund)

#### Evidence does not reflect disease burden

• Existing studies on climate risk factors of diarrhoeal diseases (Levy et al., 2016)



Number of Studies



Map Composition: LeviBonnell

- Challenging to estimate the effects of exposure to unsafe water:
  - Lack of data on water quality, satellite data issues, endogenous spatial sorting

- Challenging to estimate the effects of exposure to unsafe water:
  - Lack of data on water quality, satellite data issues, endogenous spatial sorting
- We develop a novel measure of exposure to unsafe water: *waterborne disease potential (WBDP)* 
  - Construct a nation-wide hydrological model that simulates stagnant water pools across Tanzania
  - ▶ WBDP := share of local environment covered by stagnant water [0,1]

- Challenging to estimate the effects of exposure to unsafe water:
  - Lack of data on water quality, satellite data issues, endogenous spatial sorting
- We develop a novel measure of exposure to unsafe water: *waterborne disease potential (WBDP)* 
  - Construct a nation-wide hydrological model that simulates stagnant water pools across Tanzania
  - ▶ WBDP := share of local environment covered by stagnant water [0,1]
- Using a DiD approach we find that a 10pp increase in WBDP:
  - Increases diarrhea rates by 30%
  - Reduces test scores by 7% of a SD

- Challenging to estimate the effects of exposure to unsafe water:
  - Lack of data on water quality, satellite data issues, endogenous spatial sorting
- We develop a novel measure of exposure to unsafe water: *waterborne disease potential (WBDP)* 
  - Construct a nation-wide hydrological model that simulates stagnant water pools across Tanzania
  - ▶ WBDP := share of local environment covered by stagnant water [0,1]
- Using a DiD approach we find that a 10pp increase in WBDP:
  - Increases diarrhea rates by 30%
  - Reduces test scores by 7% of a SD
- Effects ↑ population density and ↑ temperature, but ↓ improved sanitation and ↓ improved water source
- Climate change projected to have a dramatic impact on magnitude and frequence: 200% increase with 2°C of warming

- Challenging to estimate the effects of exposure to unsafe water:
  - Lack of data on water quality, satellite data issues, endogenous spatial sorting
- We develop a novel measure of exposure to unsafe water: *waterborne disease potential (WBDP)* 
  - Construct a nation-wide hydrological model that simulates stagnant water pools across Tanzania
  - ▶ WBDP := share of local environment covered by stagnant water [0,1]
- Using a DiD approach we find that a 10pp increase in WBDP:
  - Increases diarrhea rates by 30%
  - Reduces test scores by 7% of a SD
- Effects ↑ population density and ↑ temperature, but ↓ improved sanitation and ↓ improved water source
- Climate change projected to have a dramatic impact on magnitude and frequence: 200% increase with 2°C of warming
- Households and policymakers largely unaware of this (dynamic) risk factor

- Geographic determinants of development (Alsan, 2015; Easterly and Levine, 2003; Gallup and Sachs, 2000; Nunn and Puga, 2012)
  - Stagnant water as one geographic risk factor affecting human capital accumulation at a subnational (micro) level

- Geographic determinants of development (Alsan, 2015; Easterly and Levine, 2003; Gallup and Sachs, 2000; Nunn and Puga, 2012)
  - Stagnant water as one geographic risk factor affecting human capital accumulation at a subnational (micro) level
- Effects of environmental shocks on children (Shah and Steinberg, 2017; Maccini and Yang, 2009; Rosales-Rueda 2018, Almond et al., 2009)
  - How stagnant water shocks affect children's health and learning through waterborne diseases

- Geographic determinants of development (Alsan, 2015; Easterly and Levine, 2003; Gallup and Sachs, 2000; Nunn and Puga, 2012)
  - Stagnant water as one geographic risk factor affecting human capital accumulation at a subnational (micro) level
- Effects of environmental shocks on children (Shah and Steinberg, 2017; Maccini and Yang, 2009; Rosales-Rueda 2018, Almond et al., 2009)
  - How stagnant water shocks affect children's health and learning through waterborne diseases
- Effects of sanitation and water on health and mortality (Cameron et al., 2013; Duflo et al., 2015; Kremer et al., 2022; Alsan and Goldin, 2019)
  - How improved sanitation and water protects against these shocks

- Geographic determinants of development (Alsan, 2015; Easterly and Levine, 2003; Gallup and Sachs, 2000; Nunn and Puga, 2012)
  - Stagnant water as one geographic risk factor affecting human capital accumulation at a subnational (micro) level
- Effects of environmental shocks on children (Shah and Steinberg, 2017; Maccini and Yang, 2009; Rosales-Rueda 2018, Almond et al., 2009)
  - How stagnant water shocks affect children's health and learning through waterborne diseases
- Effects of sanitation and water on health and mortality (Cameron et al., 2013; Duflo et al., 2015; Kremer et al., 2022; Alsan and Goldin, 2019)

How improved sanitation and water protects against these shocks

 Public health literature on climate and waterborne diseases (Levy et al., 2016; Troeger et al., 2018)

Lack of evidence from low-income countries, mostly correlational

- Geographic determinants of development (Alsan, 2015; Easterly and Levine, 2003; Gallup and Sachs, 2000; Nunn and Puga, 2012)
  - Stagnant water as one geographic risk factor affecting human capital accumulation at a subnational (micro) level
- Effects of environmental shocks on children (Shah and Steinberg, 2017; Maccini and Yang, 2009; Rosales-Rueda 2018, Almond et al., 2009)
  - How stagnant water shocks affect children's health and learning through waterborne diseases
- Effects of sanitation and water on health and mortality (Cameron et al., 2013; Duflo et al., 2015; Kremer et al., 2022; Alsan and Goldin, 2019)
  - How improved sanitation and water protects against these shocks
- Public health literature on climate and waterborne diseases (Levy et al., 2016; Troeger et al., 2018)
  - Lack of evidence from low-income countries, mostly correlational
- Implications of climate change for public health (Li et al, 2021, Carleton et al.,
  - WBD are especially sensitive to climate change may increase by 200% or more

Berggreen & Mattisson (Lund)

Background Empirical strategy Results (Health) Results (Learning) Extensions Conclusion

#### Waterborne diseases and stagnant water

Doctors warn of possible outbreak of water-borne diseases

Health department rejects news of an epidemic, says all is well



- Common WBDs: Cholera, E. Coli, Typhoid fever...
  - Short-run: Diarrhea, stomach pain, vomiting
  - Long-run: Malnutrition, stunting, death

Background

Empirical strategy Results (Health) Results (Learning) Extensions

## Waterborne diseases and stagnant water

#### Doctors warn of possible outbreak of water-borne diseases

Health department rejects news of an epidemic, says all is well



- Common WBDs: Cholera, E. Coli, Typhoid fever
  - Short-run: Diarrhea, stomach pain, vomiting
  - Long-run: Malnutrition, stunting, death
- Stagnant water is a main transmission way of these pathogens
  - Enables exponential growth of bacteria and other pathogens (biofilms)

Background

Empirical strategy Results (Health) Results (Learning) Extensions

#### Waterborne diseases and stagnant water

#### Doctors warn of possible outbreak of water-borne diseases

Health department rejects news of an epidemic, says all is well



- Common WBDs: Cholera, E. Coli, Typhoid fever
  - Short-run: Diarrhea, stomach pain, vomiting
  - Long-run: Malnutrition, stunting, death
- Stagnant water is a main transmission way of these pathogens
  - Enables exponential growth of bacteria and other pathogens (biofilms)
- Eccal-oral channel
  - Contaminated water spread to other water sources through human waste
  - Strong link to water, sanitation and hygiene (WASH) practices

## Data: Outcomes and unit of observation

#### • Health: Demographic and Health Surveys 1999, 2010, 2015

- Children age 0-4
- Short-term health issues: Diarrhea, Fever
- Anthropometric: Height-for-age, Weight-for-age
- Child and household characteristics

## Data Outcomes and unit of observation

#### Health: Demographic and Health Surveys 1999, 2010, 2015

- Children age 0-4
- Short-term health issues: Diarrhea, Fever
- Anthropometric: Height-for-age, Weight-for-age
- Child and household characteristics
- Learning: Uwezo Surveys 2011, 2013, 2014, 2015, 2017
  - Children age 6-16
  - Test scores in Mathematics, English, Kiswahili
  - Child and household characteristics

#### Constructing the treatment variable

• We build a hydrodynamic model for all of Tanzania (90 m)

Results (Health) Results (Learning) Extensions

## Constructing the treatment variable

#### • We build a hydrodynamic model for all of Tanzania (90 m)

#### Inputs:

- Elevation plus rainfall
- Account for Soil infiltration 2
- Account for evaporation
- Remove flowing water and permanent bodies of water

Digital Elevation Model (90 m)

Hourly rainfall (25 km)



Soil infiltration data (1 km)



Hourly evaporation (25 km)



### Unit of treatment



Figure: DHS clusters and gridcells (Left). Uwezo wards (Right)

### Output: WBD Potential



Figure: Treatment with DHS clusters (Left) or Uwezo wards (Right)

#### Model specification: TWFE

$$Y_{imwy} = \alpha_w^1 + \alpha_y^2 + \alpha_m^3 + \frac{\delta S_{wy}}{\delta S_{wy}} + \gamma R_{wy} + X'_{iwy}\beta + \varepsilon_{iwy}$$
(1)

- **Treatment**:  $\delta S_{wy}$  continuous measure of WBD potential in ward w year y in the last 8 weeks relative to the household's date of survey
- $\delta$  is our coefficient of interest
- $\alpha_w^1$ ,  $\alpha_u^2$  and  $\alpha_m^3$  capture ward, year and calendar month FE.
- R<sub>wu</sub> captures local rainfall.
- Covariates in  $X'_{iwy}$  include wealth index, child's age and gender, mother's age and education
- Cluster at ward level (Abadie et al., 2017)

## Validating the treatment variable

- We validate the measure using reported proximity to nearest surface water source (time-dependent)
  - WBDP predicts proximity to nearest surface water source Link

- Ongoing work: validatation with satellite data
  - Issues with missing data increase in cloud coverage during the wet season
  - For non-missing data, find positive correlation though relatively weak (0.15)

## Effects on child health

|               | (1)       | (2)     | (3)            | (4)                   | (5)           | (6)     |
|---------------|-----------|---------|----------------|-----------------------|---------------|---------|
|               |           |         | Panel A. Healt | h and physical outcor | nes           |         |
|               |           | WBD     |                | Oth                   | her disorders |         |
|               | Diarrhoea | W.Age   | Fever          | Cough                 | Anemia        | Height  |
| WBD Potential | 0.275**   | -8.192  | -0.0499        | -0.0587               | 0.0722        | 27.35   |
|               | (0.113)   | (6.244) | (0.140)        | (0.144)               | (0.0961)      | (23.33) |
| Mean DV       | 0.13      | 88.49   | 0.22           | 0.21                  | 0.40          | 92.12   |
| Obs.          | 15,956    | 15,021  | 16,016         | 16,021                | 16,085        | 15,550  |
| Clusters      | 242       | 242     | 242            | 242                   | 242           | 242     |

## Effects on child health - by rehydration source

|                             | (1)                   | (2)                    | (3)                   | (4)                   | (5)                   | (6)                    |
|-----------------------------|-----------------------|------------------------|-----------------------|-----------------------|-----------------------|------------------------|
|                             |                       |                        | Panel A. Health       | and physical outcom   | nes                   |                        |
|                             |                       | WBD                    |                       | Oth                   | er disorders          |                        |
|                             | Diarrhoea             | W.Age                  | Fever                 | Cough                 | Anemia                | Height                 |
| WBD Potential               | 0.275**<br>(0.113)    | -8.192<br>(6.244)      | -0.0499<br>(0.140)    | -0.0587<br>(0.144)    | 0.0722<br>(0.0961)    | 27.35<br>(23.33)       |
| Mean DV<br>Obs.<br>Clusters | 0.13<br>15,956<br>242 | 88.49<br>15,021<br>242 | 0.22<br>16,016<br>242 | 0.21<br>16,021<br>242 | 0.40<br>16,085<br>242 | 92.12<br>15,550<br>242 |
|                             |                       |                        | Panel B.              | Health and water      |                       |                        |
|                             |                       | D                      | iarrhoea              |                       |                       | Fever                  |
|                             | No Breastf            | Breastfeeds            | Not water             | Water                 | Not water             | Water                  |
| WBD Potential               | 0.506***<br>(0.152)   | 0.0844<br>(0.135)      | -0.0822<br>(0.202)    | 0.300**<br>(0.121)    | 0.130<br>(0.391)      | -0.0719<br>(0.235)     |
| Mean DV<br>Obs.<br>Clusters | 0.11<br>6,317<br>241  | 0.14<br>9,637<br>241   | 0.13<br>2,089<br>185  | 0.13<br>8,897<br>240  | 0.22<br>2,089<br>185  | 0.22<br>8,912<br>240   |

Heterogeneity by access to improved sanitation and drinking water

|                              | (1)       | (2)<br>Dependent: Diarr | (3)<br>Thoea |
|------------------------------|-----------|-------------------------|--------------|
| Sample:                      | All       | Urban                   | Rural        |
| WBDP                         | 0.268     | 1.133***                | 0.252        |
|                              | (0.205)   | (0.310)                 | (0.272)      |
| WBDP 	imes sanitation ladder | -0.227*** | -0.358**                | -0.157**     |
|                              | (0.072)   | (0.136)                 | (0.093)      |
| WBDP 	imes improved water    | -0.162    | -0.938***               | 0.060        |
| ·                            | (0.174)   | (0.282)                 | (0.272)      |
| Obs.                         | 11,939    | 2,880                   | 9,059        |
| Clusters                     | 237       | 97                      | 230          |

## Effects on children's learning

#### Effects on children's learning

|                            | (1)                 | (2)<br>Dependent: Test sco | (3)<br>ore (std)        |
|----------------------------|---------------------|----------------------------|-------------------------|
| WBD potential $\sim$ (0,1) | -0.632**<br>(0.320) | -0.687**<br>(0.315)        | -0.716**<br>(0.316)     |
| Local rain (cm)            | <b>`</b> ,          | · · · ·                    | 0.00318***<br>(0.00118) |
| Obs.                       | 368,493             | 368,493                    | 368,444                 |
| Clusters                   | 3,842               | 3,842                      | 3,842                   |
| Indv controls:             |                     | $\checkmark$               | $\checkmark$            |

- DV is a standardised test score average from English, Maths and Swahili
- Indv controls include child gender, age, mother's age, mother's education, household wealth index
- Interpretation: 10% shock of WBD Potential reduce test scores by 7% of a standard deviation
- Sensitivity to model specification Link

#### Non-linear treatment effects?



Heterogeneity

- Effects larger for younger children Link
- No gender differences
- Effects increase with population density, high temperatures and a dry climate Link
  - Consistent with public health literature (Levy et al., 2016)

#### Robustness checks

- Using a binary treatment indicator (below/above 5 %) Link
- Choice of cutoff value (2-20%) for binary treatment Link
- Timing of treatment Link
- Number of weeks in look-back period Link
- Heterogeneous and dynamic treatment effects Link
- Quadratic term to capture nonlinear effects Link
- Placebo-test 1: No effect of treatment post-test date Link
- Placebo-test 2: No effect of WBD Potential on test scores when randomising treatment within ward Link
- Robustness to spatial correlation and non-random exposure Link
- Sensitivity to model specification Link
- Pretrends Link

## Mechanisms and long-run effects

- The effect likely runs partly through school absence
- Even small absence can lead to large long-term effects (Cattan et al., 2023) ۰
- Our coefficient on absence roughly 50 % of diarrhea coefficient (DHS) (Link)
- Temperature has a big impact: in warm wards  $(> 24^{\circ}C)$  the effect size is 4x higher Link

## Mechanisms and long-run effects

- The effect likely runs partly through school absence
- Even small absence can lead to large long-term effects (Cattan et al., 2023) ۰
- Our coefficient on absence roughly 50 % of diarrhea coefficient (DHS) (Link)
- Temperature has a big impact: in warm wards  $(> 24^{\circ}C)$  the effect size is 4x higher Link
- What about the long run?
- Suggestive evidence that short-term shocks in the past 1-6 years "add up" Link
- Preliminary findings show similar effects for *current grade* ۰

#### Alternative explanations

- Floods
  - Only look at stagnant water
  - No effects in low-temperature wards
  - Effects still at small magnitudes they quickly saturate
- Malaria
  - Use malaria incidence rate in 2010 (% children with Malaria parasite)
  - Larger effect in *low*-incidence areas
- Child labor(-) / Income(+)
  - Similar effects for farmers vs non-farmers and urban vs rural
  - Crops typically planted in November-January after the first rains similar effects in other months
- Migration and anticipation
  - Anticipation unlikely for short-term effects (no warning system)
  - Find only small and *negative* effects of exposure on migration (TZA 2012 census)

#### Impacts of climate change

- Increased frequency of intense rainfall  $\rightarrow$  increased frequency of stagnant water
- ullet Increased temperature ightarrow greater effect size
- We compound the effects: *frequency* × *magnitude* using latest climate projections for East Africa (Ayugi et al., 2021) and find very large multiplicative effects:

#### Impacts of climate change

- Increased frequency of intense rainfall  $\rightarrow$  increased frequency of stagnant water
- $\bullet~$  Increased temperature  $\rightarrow~$  greater effect size
- We compound the effects: *frequency* × *magnitude* using latest climate projections for East Africa (Ayugi et al., 2021) and find very large multiplicative effects:



Climate change multiplier on the baseline effect

#### Conclusion

- We develop a novel measure of exposure to unsafe water: *waterborne disease potential (WBDP)* and study its effect on children's health and learning
- Main take-away:
  - **Findings**: Increased diarrhea incidence and reduced test scores
  - Policy implications:
    - Targeted high-quality sanitation and water investments > Large-scale low-quality investments
    - Targeted oral rehydration treatments, hand soap, chlorine tablets, information provision...
    - Short-range forecasts and climate change adaptation

## Conclusion

- We develop a novel measure of exposure to unsafe water: *waterborne disease potential (WBDP)* and study its effect on children's health and learning
- Main take-away:
  - Findings: Increased diarrhea incidence and reduced test scores
  - Policy implications:
    - $\bullet\,$  Targeted high-quality sanitation and water investments > Large-scale low-quality investments
    - Targeted oral rehydration treatments, hand soap, chlorine tablets, information provision...
    - Short-range forecasts and climate change adaptation
- Future work:
  - Long-term effects and early-life shocks
  - Further validation of the model with reported historical floods and outbreaks
  - Combine with NGO data on past sanitation investments

## Bonus slide

• Preliminary results from an early-life shocks analysis (Household FE specification)



#### That's all.

Thank you!

Steve Berggreen steve.berggreen@gmail.com **Twitter:** @SteveBerggreen

### Pretrends

- Few pre-treatment years
- General problem of pre-trend testing Roth, 2022
- We follow Bilinksi and Hatfield, 2019 who propose an alternative:
  - Estimate model under parallel trends assumption
  - Include difference in linear trends (allow for different trends)
  - Report difference in coefficient is the difference "large"?
  - Our setup: ward-specific linear time trends

## Pretrends

|                                                                                                                 | (1)                  | (2)<br>De             | (3)<br>pendent: Tes   | (4)<br>t score (std   | (5)<br>)                   | (6)                             | (7)                                  | (8)                             |
|-----------------------------------------------------------------------------------------------------------------|----------------------|-----------------------|-----------------------|-----------------------|----------------------------|---------------------------------|--------------------------------------|---------------------------------|
| WBD potential                                                                                                   | -1.390***<br>(0.280) | -1.254***<br>(0.221)  | -0.934***<br>(0.334)  | -0.660**<br>(0.324)   | -0.647**<br>(0.319)        | -0.742**<br>(0.315)             | -0.791**<br>(0.345)                  | -1.040***<br>(0.351)            |
| Obs.<br>Clusters<br>Covs<br>Ward FE<br>Ward FE<br>Month FE<br>District × Wave FE<br>Ward-specific linear trends | 368,446<br>3,844     | 368,446<br>3,844<br>✓ | 368,444<br>3,842<br>✓ | 368,444<br>3,842<br>✓ | 368,444<br>3,842<br>✓<br>✓ | 368,444<br>3,842<br>✓<br>✓<br>✓ | 368,444<br>3,842<br>✓<br>✓<br>✓<br>✓ | 368,444<br>3,842<br>✓<br>✓<br>✓ |

## Robustness to heterogenous and dynamic treatment effects

- Heterogenous treatment effects (de Chaisemartin and D'Haultfoeuille, 2020)
- Robustness to dynamic effects (de Chaisemartin and D'Haultfoeuille, 2021)
- Binary treatment (cutoff: 5 %)

## Robustness to heterogenous and dynamic treatment effects

- Heterogenous treatment effects (de Chaisemartin and D'Haultfoeuille, 2020)
- Robustness to dynamic effects (de Chaisemartin and D'Haultfoeuille, 2021)
- Binary treatment (cutoff: 5 %)



## Robustness to spatial correlation and non-random exposure

- Weather instruments suffer from spatial correlation, do not follow admin boundaries (Cooperman, 2017)
- Non-random exposure to exogenous shocks (Borusyak and Hull, 2022)
- Randomization inference: data-driven method to obtain distribution of point-estimates

## Robustness to spatial correlation and non-random exposure

- Weather instruments suffer from spatial correlation, do not follow admin boundaries (Cooperman, 2017)
- Non-random exposure to exogenous shocks (Borusyak and Hull, 2022)
- Randomization inference: data-driven method to obtain distribution of point-estimates
- P-value:  $0.02 \rightarrow 0.03$



Berggreen & Mattisson (Lund)

Waterborne diseases

## Age heterogeneity



## Heterogeneity by climate

#### • Split the sample by:

- Median temperature in the past two weeks  $(24.7^{\circ}C)$
- Median rainfall in the prior two months (8 mm)

|               | (1)       | (2)<br>Dependent: | (3)<br>Mean test score | (4)          |
|---------------|-----------|-------------------|------------------------|--------------|
| Sample:       | Low temp. | High temp.        | Dry before             | Rainy before |
| WBD Potential | 0.131     | -1.128***         | -1.064**               | -0.375       |
|               | (0.442)   | (0.403)           | (0.429)                | (0.692)      |
| Obs.          | 182,614   | 185,830           | 182,766                | 184,812      |
| Clusters      | 2,166     | 2,649             | 3,141                  | 2,422        |

# Sensitivity to model specification and $\mathsf{FE}$

|                             | (1)       | (2)          | (3)         | (4)           | (5)          | (6)      | (7)      | (8)          |
|-----------------------------|-----------|--------------|-------------|---------------|--------------|----------|----------|--------------|
|                             |           | De           | pendent: Te | st score (std | 9            |          |          |              |
| WBD potential               | -1.390*** | -1.254***    | -0.934***   | -0.660**      | -0.647**     | -0.742** | -0.791** | -1.040***    |
|                             | (0.280)   | (0.221)      | (0.334)     | (0.324)       | (0.319)      | (0.315)  | (0.345)  | (0.351)      |
| Obs.                        | 368,446   | 368,446      | 368,444     | 368,444       | 368,444      | 368,444  | 368,444  | 368,444      |
| Clusters                    | 3,844     | 3,844        | 3,842       | 3,842         | 3,842        | 3,842    | 3,842    | 3,842        |
| Covs                        |           | $\checkmark$ |             |               |              | √        | √        | $\checkmark$ |
| Ward FE                     |           |              | √           | ~             | ~            | ~        | ~        | $\checkmark$ |
| Wave FE                     |           |              |             | ~             | ~            | ~        | ~        | $\checkmark$ |
| Month FE                    |           |              |             |               | $\checkmark$ | ~        | ~        | $\checkmark$ |
| District $\times$ Wave FE   |           |              |             |               |              |          | ~        |              |
| Ward-specific linear trends |           |              |             |               |              |          |          | $\checkmark$ |

Back

## Robustness to including local rain

|                          | (1)        | (2)               | (3)         |
|--------------------------|------------|-------------------|-------------|
|                          | All        | Dry               | Rainy       |
|                          | Panel A    | . Dependent: WBD  | Potential   |
| Local precipitation (cm) | 0.00102**  | 0.00355**         | -0.0004 99* |
|                          | (0.000413) | (0.00172)         | (0.000261)  |
| Mean precip (cm/2 weeks) | 0.44       | 0.34              | 0.53        |
| Obs.                     | 7,240      | 3,648             | 3,588       |
| Clusters                 | 2,558      | 1,319             | 1,238       |
|                          | Panel      | B. Dependent: Tes | t scores    |
| WBD potential            | -0.716**   | - 0.831 **        | -0.0209     |
|                          | (0.314)    | (0.348)           | (0.734)     |
| Obs                      | 368 4 4 4  | 178 44 9          | 189 995     |
| Clusters                 | 3,842      | 1,669             | 2,173       |
|                          | Panel      | C. Dependent: Tes | t scores    |
| Local precipitation (cm) | 0.0310***  | - 0.0357          | 0.0401***   |
| F F X 7                  | (0.0118)   | (0.0234)          | (0.0135)    |
| Oh                       | 260 4 4 4  | 179.440           | 190.005     |
| Obs.<br>Clusters         | 3 842      | 1 669             | 2 1 7 3     |
|                          | Panel      | D. Dependent: Tes | t scores    |
| WDD astratial            | 0.74.988   | 0.01088           | 0.0054.0    |
| WBD potential            | -0.742**   | -0.012**          | -0.00542    |
| Local precipitation (cm) | 0.00318*** | -0.00334          | 0.00401***  |
|                          | (0.00117)  | (0.00235)         | (0.00135)   |
|                          |            |                   |             |
| Obs.                     | 368,444    | 178,449           | 189,995     |
| Clusters                 | 3,842      | 1,669             | 2,173       |



## Robustness to heterogenous treatment effects

• From de Chaisemartin and D'Haultfoeuille (2018)



Berggreen & Mattisson (Lund)

Waterborne diseases

## Robustness to quadratic specification

|                  |                     | Dependent: Test sco | re (std)           |  |
|------------------|---------------------|---------------------|--------------------|--|
|                  | All                 | Dry wards           | Rainy wards        |  |
| WBD potential    | -1.133**<br>(0.557) | -1.423** (0.645)    | -0.346<br>(1.785)  |  |
| WBDP Squared     | 1.152<br>(0.974)    | 1.560 ´<br>(1.072)  | 3.272 ´<br>(8.976) |  |
| Obs.<br>Clusters | 368,444<br>3,842    | 178,449<br>1,669    | 189,995<br>2,173   |  |

#### Table: Exploring non-linearities: Including squared WBDP

Note: Standard errors in parentheses clustered on ward. WBD Potential is two-week average share of area of ward covered in stagnant water,  $\sim(0,1)$ . Dry ward if mean precipitation < 1000 mm precipitation. Rainy ward if  $\geq$  1000 mm precipitation. Wave, Calendar month, Ward fixed effects, and ward-level 2-week sum of precipitation. Household covariates included are child's gender and age, and mother's age and whether secondary education or above.

#### Back

## Absence



# Absence in warm wards (>24 deg C)



# Long-term effects: all



## Validating WBDP: measured stagnant water exposure

|               | (1)                             | (2)                       |
|---------------|---------------------------------|---------------------------|
|               | Dependent: Time to              | water source (minutes)    |
|               | Non-natural (tap, well, spring) | Natural (dam, lake, pond) |
| WBD Potential | -4.967                          | -68.38**                  |
|               | (23.80)                         | (28.98)                   |
| Mean DV       | 40                              | 49                        |
| Obs.          | 13,546                          | 2,514                     |
| Clusters      | 241                             | 176                       |

Back