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Abstract

We study the long-run aggregate and distributional effects of school tracking —the

allocation of students to different types of schools— by incorporating school track de-

cisions into a general-equilibrium heterogeneous-agent overlapping-generations model.

The key ingredient in the model is the child skill production technology, where a child’s

skill development depends on her classroom peers and the instruction pace in her school

track. We show analytically that this technology can rationalize reduced-form evidence

on the effects of school tracking on the distribution of child skills. We calibrate the

model using representative data from Germany, a country with a very early school

tracking policy. Our model suggests that an education reform that postpones the

tracking age from ten to fourteen generates sizable improvements in intergenerational

mobility. However, these come at the cost of modest efficiency losses in aggregate eco-

nomic output. The size of these losses depends on the design of the instruction levels

in each school track and on the presence of general equilibrium effects in the labor

market. We also find that when the school track choice is based more on merit and less

on parental background both social mobility and aggregate economic output improve,

yet so does inequality.
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1 Introduction

School tracking – the allocation of school children into different types of schools at some

point during their school career – is a common feature of education policy across OECD

countries.1 The argument behind tracking is typically one of efficiency: grouping children

according to their ability and aspirations creates more homogeneous peer groups and allows

for tailored instruction levels and curricula, which improve the educational outcomes of chil-

dren (Bonesrønning et al., 2022; Duflo et al., 2011). However, because the track decision is

often influenced by family background, it has been suggested that school tracking policies

hamper equality of opportunity in access to education and thus impair mobility in educa-

tional and labor market outcomes across generations (Falk et al., 2020; Dustmann, 2004;

Meghir and Palme, 2005; Pekkala Kerr et al., 2013). The parental influence on the track

decision seems particularly strong if tracking occurs at a relatively young age when measures

of child ability are especially noisy (Hanushek and Wössmann, 2006). For that reason, it is

not surprising that school tracking, and, in particular, its timing, is a frequently recurrent

issue in the public and academic debate about education reforms in countries with a strict

and early tracking regime, such as Germany.2

In this paper, we contribute to that debate by providing a quantitative assessment of the

long-run aggregate, distributional and inter-generational effects of school tracking policies.

In light of the arguments above, any such assessment needs to take into account the effects of

tracking on the educational outcomes of children, as well as how these outcomes translate into

labor market outcomes and outcomes across generations. This is hard, if not impossible, to

do in a purely reduced-form way, not only because of its demands on data, but also because a

change in the allocation of children across tracks and, consequently, a change in the allocation

of workers across skill levels, may entail general equilibrium effects.3 Macroeconomic models

of mobility provide a useful environment to consider such effects but have so far largely

neglected how the development of child skills during school is affected through peers and

teaching levels in different school tracks. We fill this gap by building a macroeconomic

1An overview about school tracking policies in OECD countries is given in Chapter 2 in OECD (2013).
We differentiate school tracking, which refers to the allocation of students into physically distinct types of
schools that differ in the curriculum taught, intensity, and length, from ability grouping within a school,
where the curriculum and educational goals remain the same.

2There is substantial variation in the timing of tracking across OECD countries. While in some countries,
such as Germany and Austria, tracking occurs already at the age of 10, in other countries, like the US and
UK, do not track at all during secondary school.

3For example, if the share of children who are allocated to an academic track school increases substan-
tially, in the long run, the price of academically skilled labor in the economy should decrease. This, in turn,
makes an academic track school less attractive, which affects the share again.
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model of overlapping generations that explicitly zooms in on the schooling years of children.

The model is built around a parsimonious theory of how a child’s skills are developed

during school years. Going to a school that belongs to a particular school track affects child

skills directly through interactions with peers at her school and the pace of instruction that

is taught in that school. Every child is assumed to have an ideal instruction pace at which

she learns best. However, there can only be one instruction pace per school track, which is

set endogenously by the policymaker. We show analytically that, under linear direct peer

effects and complementarity assumptions between own skill and instruction pace, this gives

rise to efficiency gains from tracking in terms of improving aggregate end-of-school skills.

Indeed, absent any unforeseeable shocks to child skills, an optimal tracking policy should

perfectly stratify children according to their skills as early as possible. In the presence of

skill shocks, however, it can be optimal to postpone tracking, even from an efficiency point

of view. Moreover, we show that tracking can increase overall inequality in educational

outcomes relative to a comprehensive school system. Finally, the theory implies that not all

children gain from tracking and that the losses are often concentrated in the track with the

lower average skill level. Thus, our child skill formation technology rationalizes some of the

most robust empirical findings regarding school tracking in the literature and produces the

main arguments about school tracking that are frequently made in the public discourse.4

We embed this child skill development theory into a full general equilibrium life-cycle

Aiyagari framework of overlapping generations, in which parents care about their offspring

in the tradition of Becker and Tomes (1986) and child skills during the school years evolve

according to our technology and are subject to uninsurable skill shocks. The model is

tailored to fit the German Education System, where children are tracked into two school

tracks at the age of 10 based on a decision by the parents. As in the data, the track decision

may be influenced by parental preferences for children to follow in their own education

steps. While only one track directly facilitates access to college education, we allow for

second-chance opportunities as children can decide to switch tracks after secondary school.

Going to college incurs psychic costs, which are a function of child skills as well as time

costs relative to non-college education. End-of-school child skills translate into adult human

capital, which evolves stochastically over the working life and determines, together with the

tertiary education decision, the labor earnings. The distribution of human capital across

college and non-college workers affects wages, which in turn affects the school track choice.

4For the case of Germany, see for instance Matthewes (2021) who shows that earlier tracking raises
inequality in educational outcomes and Piopiunik (2014), who shows that low-achievers may be negatively
affected by school tracking.
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Finally, households can save into a non-state-contingent asset subject to life-cycle borrowing

constraints. When children become independent, parents can also make a non-negative

inter-vivos transfer.

The model is solved numerically, and the parameters are calibrated in two steps. First,

we estimate the parameters of the child skill formation technology directly from German data

on school children using a latent variable framework as in Cunha et al. (2010). In particular,

we use information on achievement test scores as measures of child skills at different stages

of their school careers. We then calibrate the remaining parameters to match a set of salient

moments from representative German survey data. The model matches the data well, both

in terms of aggregate moments and in terms of the distribution of child skills across school

tracks and parental backgrounds, as well as the transitions through the education system.

To test the validity of the model, we investigate the effects of the initial school track on

later-in-life economic outcomes for a set of children who are, in equilibrium, just at the

margin between the two school tracks. Dustmann et al. (2017) argue that for such marginal

children in Germany, the initial track choice is inconsequential for labor earnings later in

life. Simulated data from our model confirms that children who go to different school tracks

solely based on small differences in skills at the time of the track decision experience very

similar lifetime economic outcomes. Notwithstanding this, a variance decomposition exercise

shows that skill formation during the school tracking years, and hence the school tracking

policy plays an important role for lifetime inequality across the population. In particular,

variation in the initial school track alone can account for 12% of the variation in lifetime

earnings and 13% of the variation in lifetime wealth.

We use our model to study the long-run and welfare effects of education policy reforms

that universally postpone the school tracking age by four years or abolish tracking altogether.

Such reforms are often suggested in countries with traditionally early tracking systems, such

as Germany, as a means to improve equality of opportunity in access to academic education

(OECD, 2020). We show that postponing the tracking age indeed improves social mobility

as it leads to a decrease in the intergenerational elasticity of income of around 2%. These

mobility gains arise primarily because college education after secondary school becomes

significantly less determined by the previous school track, so more children use the “second-

chance” opportunity to go to college even after graduating from a vocational track school.

This is aided by the fact that differences in end-of-school skills across tracks decrease when

children stay in comprehensive schools for longer. As a result, college education, but also

the school track choice, become less dependent on the parental background, improving social
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mobility.

On the other hand, our results indicate that postponing tracking comes at the cost of a

0.2% drop in GDP. The reason for this is that prolonged learning in a comprehensive school

track foregoes efficiency gains from tailored instruction levels in an early tracking system.

Quantitatively, these learning losses cannot be recuperated by efficiency gains coming from

the fact that the late tracking decision is based on more complete information about children’s

skills. Lower levels of child skills then translate into lower levels of human capital in the

economy causing aggregate output to decline. In this context, we highlight the importance

of considering general equilibrium effects on the labor market that influence school track

and college decisions. In particular, the aggregate output losses in partial equilibrium would

be significantly higher at around 0.8-1% of GDP. In sum, our results, therefore, suggest

the presence of an efficiency–mobility trade-off of reforms that postpone the tracking age.5

Abolishing tracking in favor of comprehensive schooling altogether further exacerbates this

trade-off.

Finally, as in the data, our model predicts that parental education is the second most

important independent determinant of a child’s school track, after child skills. This effect

arises on the one hand because parents know about the deterministic influence of their

education on child skill development, but also because parents have asymmetric preferences

for college education and school tracks. The latter may give rise to inefficiencies in the

allocation of children across tracks. For example, a college-educated parent may push her

child into an academic-track school even though her child’s skills would optimally suggest

a vocational-track school. This harms not only her own child’s learning outcomes but also

affects average learning in that track as the instruction pace endogenously adjusts to the

composition of skills in that track. We calibrate the extent of these asymmetric preferences

in our model to replicate the share of deviations of the chosen school track from what had

been recommended by the primary school teachers in our data.

We then show that a reduction of the influence of parental background on the school track,

by eliminating the parental own-track bias, or by introducing a strict skill threshold that

governs track allocation, leads to improvements in both social mobility and economic output

in the range of 0.3%-2.3% in case of mobility and 0.1%-0.3% for output. These improvements

obtain as the initial school track choice becomes significantly less driven by parental economic

5A similar trade-off has been highlighted in the literature about the effects of economic segregation
on growth and inequality (see Benabou (1996)) and more recently by Arenas and Hindriks (2021) where
efficiency gains from unequal school opportunities arise because of positive assortative matching between
parents who invest more in their children and better schools. In contrast, in our case, efficiency gains arise
from matching similar-ability peers to tailored instruction levels for a longer period of time.
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background while at the same teaching in each track becomes more efficient, raising the

average skill level. On the other hand, however, these policies tend to increase cross-sectional

earnings inequality. These effect sizes are informative in light of recent evidence on small-

scale mentoring programs in Germany, that managed to significantly reduce the impact of a

child’s socio-economic background on her school track choice (Falk et al., 2020).

Related Literature

This paper links several strands of the literature: the quantitative family-macroeconomics

literature, the children’s skill formation literature, and the school tracking literature.

First, we contribute to the quantitative family macroeconomics literature that studies

determinants of the intergenerational transmission of economic status (Abbott et al., 2019;

Caucutt and Lochner, 2020; Daruich, 2022; Jang and Yum, 2022; Fuchs-Schündeln et al.,

2022; Fujimoto et al., 2023; Lee and Seshadri, 2019; Yum, 2022; Arenas and Hindriks, 2021).

Some of these studies incorporate a part of the educational system into their analysis, such as

Abbott et al. (2019); Caucutt and Lochner (2020); Fuchs-Schündeln et al. (2022) who model

high-school graduation choice. However, all of these studies except Fujimoto et al. (2023)

focus on the United States, often concentrating on access to higher education and neglecting

the importance of designing the (secondary) school system for macroeconomic outcomes.

We explicitly focus on the secondary schooling system. Our paper is perhaps most closely

related to Arenas and Hindriks (2021), who define a notion of unequal school opportunity,

the unequal access to schools of different quality depending on parental income and highlight

its contribution to intergenerational persistence in the U.S. and to Fujimoto et al. (2023),

who study the importance of free secondary schooling for misallocation driven by borrowing

constraints in Ghana. Our contribution is to analyze a widespread education policy at the

secondary school stage that does not relate to differences in school quality or costs: tracking.

In particular, we investigate the consequences of the school track choice and the age at which

school tracking occurs for inequality and efficiency in a dynamic macroeconomic model. We

thereby complement related research that focuses on the early, pre-school phases in a child’s

skill development (Daruich, 2022; Yum, 2022) and research that focuses on higher, post-

secondary education (Abbott et al., 2019; Capelle, 2022).

Second, this paper builds on the literature on children’s skill formation, which has de-

scribed how children’s skills evolve as a function of endowments, parental and environmental

inputs, and schooling and teaching inputs (see, for instance, Cunha and Heckman (2007);

Cunha et al. (2010); Agostinelli et al. (2023, 2019); Duflo et al. (2011); Aucejo et al. (2022)).
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Our main innovation relative to this literature is considering two forms of peer effects, which

allows for rationalizing the empirical findings regarding school tracking. First, similar to

Agostinelli (2018), we incorporate direct peer effects, which capture the idea that children

benefit from high-quality peer groups. Second, following Duflo et al. (2011)’s evidence in

Kenyan primary schools and Aucejo et al. (2022)’s findings of complementarities between

classroom composition and teaching practice in the U.S., we consider how the instruction

levels adjust endogenously to the peer composition in schools of a particular track. More

specifically, we assume that a child’s optimal pace of instruction is unique and increases with

her current skill level. Then, learning decreases monotonically with the distance between a

child’s optimal instruction pace and the one she is currently taught at. This parsimonious

micro-funded model captures the main arguments about school tracking and allows us to

evaluate the effects of delaying the tracking decision.

Third, this paper contributes to and builds on the literature that estimates the impact

of early school tracking on efficiency and equity measures. An extensive empirical literature

investigates the effects of age at school tracking on students’ test scores and later outcomes.

It either exploits temporal within-country variation in tracking practices (Meghir and Palme

(2005), for Sweden; Aakvik et al. (2010), for Norway; Malamud and Pop-Eleches (2011),

for Romania; Pekkala Kerr et al. (2013), for Finland; and Matthewes (2021); Piopiunik

(2014) for Germany) or between-country variation with a difference-in-differences strategy

(Hanushek and Wössmann, 2006; Ruhose and Schwerdt, 2016). Most studies suggest that

earlier tracking raises inequality in educational outcomes and increases the effect of parental

education on student achievement. Guyon et al. (2012) investigate an educational reform in

Northern Ireland that led to a large increase in the share of students admitted to the elite

track at age eleven. They find a strong positive overall effect of this de-tracking reform on

the number of students passing national examinations at later stages and a negative effect

on student performance in non-elite schools that lost their most able students. A notable

exception is Dustmann et al. (2017), who use an individual-level instrumental variables

strategy (the date of birth) and find no effect of track choice on educational attainment or

earnings for German students at the margin between two tracks. While their result suggests

that the misallocation of hard-to-assign students has little impact on their future outcomes,

it does not rule out a potential adverse effect of early school tracking on the outcomes of

non-marginal sub-groups of students, such as those from low-socioeconomic backgrounds.

The remainder of the paper is organized as follows. Section 2 presents our life-cycle

model of overlapping generations and tracking during secondary school and introduces the
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child skill formation technology. In Section 3, we build intuition about the model mechanisms

underlying school tracking by deriving theoretical implications of that technology. Section

4 explains how we parameterize and calibrate the model. It also offers some validation

exercises. In Section 5, we use the calibrated model to perform a series of counterfactual

experiments to quantify the effects of different school tracking policy regimes. Finally, Section

6 concludes.

2 The Model

Time is discrete and infinite, and one model period, j ∈ {1, ..., 20}, corresponds to the 4

years in between ages [4j − 2, 4j + 2] in real life. Thus, agents enter the model as 2-year-old

children and exit at age 82.6 This frequency allows us to investigate meaningful variations

in school tracking ages. The dynastic structure implies that there are 20 generations alive

at every point in time. As in Lee and Seshadri (2019), we assume that there is a unit mass

of individuals in each period.

A life cycle can be structured into several stages, as illustrated in Figure 1: During the

first four periods, a child lives together with her parent, goes to school, and accumulates

child skills. School tracking happens in period j = 3. In j = 5, at age 18, the child becomes

an independent adult, her child skills are transformed into adult human capital, and she can

decide to go to college. Both college and non-college-educated types of labor are used, next

to capital, by a representative firm in the production of the final consumption good. Adult

agents decide how much labor to supply until they retire at the beginning of j = 17, at age

66. During the working periods, human capital grows stochastically. Finally, every adult

becomes a parent of a new child in j = 9, corresponding to age 34, and leaves inter-vivos

transfers once her child becomes independent in j = 13. We denote the period corresponding

to the child by j′. Since an adult becomes a parent at age 32, the child of a parent who is

in period j is in period j′ = j − 8.7

6We choose this perhaps unorthodox timing, such that children are 10 years old when parents make the
secondary school track decision, which resembles reality in Germany. An overview of the German Education
System is given in Appendix C.

7For the remainder of the text, we will denote all child variables with primes, whenever both parental
and child states are present.
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Figure 1: Timeline of Life-cycle Events
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2.1 Child Skill Formation

In period j = 1, a new child enters into a one-parent household, equipped with an initial

learning ability ϕ, which is imperfectly transmitted from her parent.8 The learning ability

translates into an initial level of (the logarithm of) child skills at the beginning of j = 2

when children enter primary school:9

θ2 = log ϕ. (2)

8Concretely, we assume that ability transmission follows the following standard AR(1) process in logs
(Yum, 2022):

log ϕ′ = ρϕ log ϕ + ϵ′ϕ, ϵ′ϕ ∼ N (0, σ2
ϕ), (1)

where ϵϕ is an intergenerational shock. Ability captures genetic components and investments made by parents
into their child’s skill development during early childhood, infancy, and even in-utero. The importance of
these early life stages as well as policy interventions targeted at investments during these years, has been
the focus of the child skill development literature (see, e.g., Heckman and Mosso (2014) for a review).

9As in Cunha and Heckman (2007), we do not differentiate between abilities and skills, as both are
partly endogenously produced and partly exogenously determined pre-birth. Moreover, we do not allow for
potentially different production technologies of cognitive and non-cognitive skills as in Cunha et al. (2010)
or Daruich (2022). Instead, in the tradition of Becker and Tomes (1986), we focus on one composite skill,
which can be translated into adult human capital that is rewarded on the labor market for both college and
non-college educated workers after school. We think of this skill as primarily cognitive. We do not explicitly
model child skill formation during the pre-school stage j = 1 as our data on children at this age is sparse.
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The schooling system during the remainder of the childhood years (j = 2, 3, 4) is charac-

terized by the number of distinct school tracks. During primary school (j = 2), the system

is comprehensive, meaning that there is only one track to which all schools belong, denoted

by S = C. During secondary school, there are two distinct school tracks, a vocational track

S = V and an academic track S = A.10 School tracks can differ in their pace of instruction,

denoted by P S, which reflects the differences in the intensity and depth with which school

subjects are taught across tracks.11 Importantly, the pace of instruction in each school track

is endogenous in the sense that it can be chosen by the education-policymaker in every pe-

riod in order to facilitate her goals. For our baseline analysis, we assume that the goal of the

policymaker derives purely from an efficiency point of view. That is, her goal is to maximize

aggregate end-of-school skills.12 We further assume that there exists a continuum of identical

classes (and hence schools) in each track. Thus, if a child is allocated to a particular school

track, we can think of her as attending a “representative” class for that track. This implies

10While in principle a larger number of school tracks is conceivable, we restrict our analysis of tracking to
two school tracks as this corresponds to a typical number across OECD countries. The two tracks typically
serve the purpose of preparing children for academic higher education at a college or similar institution or to
prepare children for a more vocational career. The first age of school tracking varies among OECD countries,
from age 10 in Austria and Germany to age 16 in Australia, Canada, Chile, Denmark, Finland, Iceland, New
Zealand, Norway, Poland, Spain, Sweden, the United Kingdom, and the United States (OECD, 2013).

11In Germany, the curricula and core subjects are not materially different across school tracks any more
(contrary to the past). The main difference between academic and vocational schools is that the former result
in direct qualification to enter university, while latter do not. In academic track schools, topics are generally
taught more densely and more comprehensively than in vocational track schools, which serves the purpose
to prepare students for scientific studies later on. Moreover, students typically have more options for elective
subjects at later stages of secondary school. Vocational track schools, by contrast, are less demanding in
terms of the required learning effort and graduation occurs after fewer years. A detailed comparison between
the teaching intensity and learning goals across Germany is provided in Dustmann et al. (2017). Note that
heterogeneity in instruction paces across tracks does not entail systematic differences in teacher quality or
resources devoted to teaching across tracks that could also affect child skill development. The literature on
international differences in student achievement tends to find limited effects of resources spent per student
on learning outcomes (Woessmann, 2016). In Appendix C, we summarize information on expenditure per
student as well as teacher quality across different school tracks in Germany. While we do not necessarily
abstract from these factors in affecting child skill development, we conclude that they are not correlated
with school track.

12For example, in Germany, the curricula in the different tracks are set by each federal state under some
general federal education goals. They consist of learning and competence goals as well as methods and specific
topics that should be taught in each school track, subject, and school grade. The curricula are subject to
frequent review and renewal. For example, as of 2023, 14 out of 16 federal states in Germany updated the
curriculum in the last four years, and 7 out of 16 in the last two years. The concrete implementation of
the curricula, however, is in the hands of the teachers and individual schools, who have some discretionary
margin to adjust the instruction paces to the needs of their pupils. We therefore view the process of pace-
setting as a mix between overarching learning goals and individual adjustment across school tracks. To
the best of our knowledge, there is no clear teaching goal in relation to the distribution of end-of-school
skills formulated by the German education-policy makers. While in principle, different teaching goals other
than the maximization of aggregate learning are conceivable, we base our analysis on the assumption of an
efficiency goal.
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that all children in a given track are exposed to the same set of classroom and school peers.

The technology of (log) skill formation during the school years j = 2, 3, 4, of a child in

school track S, is then given by:

θj+1 = κθj + αθ̄Sj + g(θj, P
S
j ) + ζE + ηj+1

ηj+1 ∼ N (0, σ2
ηj+1

).
(3)

Next period’s child’s skills are thus directly affected by past skills and parental education,

which can be either college or non-college, E ∈ {0, 1}, and which we take as a proxy for the

home environment in which a child grows up including differences in parental investments

into child skills by parental background (Heckman and Mosso, 2014). By ηj+1, we denote

unobserved i.i.d. shocks to the skills. The existence of this type of uncertainty in the

formation of child skills is crucial for the analysis of school tracking policies. We interpret

these shocks as stemming, for example, from unexpected heterogeneity in child development

speeds (such as late-bloomers), but also health shocks or even migration shocks that can

permanently influence the skill formation trajectory of a child.13

The school track can affect next period’s skills in two ways: First, through direct interac-

tions with peers in a track, which affects future skills linearly through the average skill level

of other children in school track S, θ̄Sj , as is common in the peer effects literature (Sacerdote,

2011).14 Second, through the pace of instruction in her school track, P S, as governed by the

function g. We assume this function takes the following form for a general instruction pace

Pj in period j:

g(θj, Pj) = βPj + γθjPj −
δ

2
P 2
j . (4)

This functional form implies firstly that for each skill level θj, there exists a unique individually-

optimal pace P ∗(θj), which, keeping everything else fixed, maximizes future skills. Secondly,

13Our assumption of shocks as the source of child skill formation uncertainty is slightly different from the
idea that the ”true” academic potential of a child cannot be perfectly observed and must be learned over
time from signals, such as school grades.

14We concentrate on the case with a linear-only direct peer externality governed by α. As summarized in
Epple and Romano (2011), many studies find that such linear-in-means peer effects are sizable and robust
across settings. Evidence on non-linear peer effects in the classroom is more ambiguous. For that reason,
we do not incorporate non-linearities in peer effects directly. Instead, we consider the endogenous setting
of instruction levels across school tracks as a channel through which non-linear peer effects arise. We note,
however, that the existence of non-linear peer effects could have important implications for the assessment
of tracking policies. Moreover, we abstract from peer effects that operate through friends and the network
of a child outside of schools (see Agostinelli et al. (2023)), as our data does not contain information on
friendships.
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if γ > 0, there is a positive complementarity between the individually-optimal pace and the

current skill level, such that higher-skilled children also prefer a higher pace of instruction.

This is motivated by recent evidence on the heterogeneous effects of teaching or instructional

practices depending on prior student achievement and in particular by evidence on “match”

effects between teaching practices and classroom skill composition (see Aucejo et al. (2022)

and references therein). As we will demonstrate both theoretically in Section 3 and quantia-

tively in Section 5, this complementarity plays a central role in providing the rational behind

any efficiency argument in favor of school tracking policies.

Given (4), it is clear that aggregate learning is maximal if every child is taught at her

preferred instruction pace in every period. However, there can always only be one instruction

pace per school track. Given this constraint, a policymaker seeking to maximize expected

future skills would then set the pace in each track to the one that is optimal for a child with

exactly the average skill level in that track, as summarized in Lemma 1.

Lemma 1. The pace of instruction a policymaker would set in each school track in order to

maximize expected skills in the next period is given by

P S = P ∗
j (θ̄

S
j ) =

β + γθ̄Sj
δ

, (5)

where θ̄Sj is the average skill level of children in track S.

Proof. Follows from taking the first order condition of the conditional expected value E(θj+1|S)
in (3) with respect to P S

j using (4) and under the i.i.d. assumption of ηj+1 and the fact that

maximization of skills in each school track is a necessary condition for maximizing uncondi-

tional skills.

Instruction pace setting according to Lemma 1 implies that future child skills depend

non-linearly on her peers in a school track. In particular, skill gains decrease monotonically

with the distance between a child’s own skills and the average skill level in that track, or

equivalently with the distance between her optimal instruction pace and the one that she

is currently taught at.15 As a consequence, for a child with a low skill level, going to a

school track with a high instruction pace that is tailored to a higher average skill level can

be harmful to the point when she actually loses skills despite being surrounded by better

15See Appendix A for the derivation. Our formulation of learning hence implies that non-linear peer
effects are driven by how the instruction levels are adjusted (as found for example in see Duflo et al. (2011)
or Lavy et al. (2012)). Moreover, it provides a simple micro-foundation for efficiency gains in average learning
that stem from more homogeneous peer groups. We discuss the theoretical consequences of tracking under
these assumptions in detail in Section 3.
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peers. The average skill level in a track is not known ex-ante but depends on the distribution

of children across tracks and is therefore an equilibrium object.

After finishing school, at the beginning of j = 5, child skills are transformed one-to-one

into the first adult human capital level, h5.

h5 = exp(θ5). (6)

2.2 Preferences

We assume that the preferences over consumption and labor supply of adults in each period

take the following form:

u(cj, nj) =
(cj/q)

1−σ

1− σ
− b

n
1+ 1

γ

j

1 + 1
γ

, (7)

where cj denotes household consumption and q is an adult consumption-equivalent scale

that is larger than 1 whenever there is a child in the household and 1 otherwise (Yum, 2022).

Risk aversion is captured by σ. Individuals incur disutility from working hours nj, where

γ is the Frisch elasticity of labor supply. In each period, the maximum hours worked are

normalized to 1.

Parents are altruistic as they take into account the utility of their child when making

inter-vivos transfers. The strength of altruism is governed by a factor ∆. All future values

are discounted by β.

Educational Choices

There are two types of preference shifters related to the two educational choices. First, when

deciding on their child’s school track, parents’ utility is affected by the additively separable

constant χ(E, S), which may depend on their own college education E and their child’s

school track S. The inclusion of this preference shifter is motivated by salient empirical

evidence that the school track decision is significantly affected by parental socio-economic

status, even conditional on school performance or test scores prior to the track decision,

and that parents frequently deviate from the track recommended to them by primary school

teachers.16

16See Falk et al. (2020) for evidence in Germany. In our data, we find that children from high-SES
parents are 24 percentage points more likely to attend an academic track school, conditional on test scores.
Moreover, around 20% of parents who themselves have a college education overrule a recommendation of
primary school teachers recommending their child be sent to a vocational track school. Importantly, deviating
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There may be multiple reasons behind these school-track preferences of parents. For

example, there may be a cost associated with acquiring information about the school tracks,

which may be lower for school of that track a parent went to herself. Similarly, parents

may be able to better support their child in a track that they are more familiar with.

Parents may also systematically over- or underestimate the potential of their children or

simply have preferences for their child following in their own footsteps regardless of their

academic potential. Whatever their exact reason, deviations of parent’s track choice from

the recommended path may lead to the misallocation of children across tracks. For example,

a child with low underlying true potential could be sent to the academic track by parents

that have preferences for this track. This would lead to learning losses not only for the

individual child but also create an externality for all other children as the instruction pace

is endogenous to the peer composition.

The second education-specific preference shifter concerns the college choice when indi-

viduals reach adulthood (j = 5). In line with the literature (e.g. Daruich (2022); Fuchs-

Schündeln et al. (2022)), we assume that going to college entails a “psychic” utility cost

ψ(S, θ5, ν(E
p)) that may depend on the secondary school track S, the end-of-school skills θ5

and an idiosyncratic college taste shock, ν(Ep) ∼ N (µν,Ep , σ2
ν), which may be influenced by

the parent’s education level Ep. This formulation can accommodate two important features

of the transition between secondary and college education in the data. Firstly, the share

of children with an academic track secondary school degree who end up getting a college

degree is significantly higher than those with a vocational secondary school degree (so-called

“second-chance” opportunities).17 Secondly, independently of the school track, the likeli-

hood of college education in the data is increasing in the end-of-school skills.18 Finally, the

random taste shocks serve the purpose of reflecting heterogeneity in the higher education

decision coming from parental background or from channels that are outside of this model.

from the recommended track does not seem to benefit children in terms of their achievements, indicating
that it is not the case that parents simply “know” the true potential of their child better. See Appendix F
for some reduced-form evidence on the school track selection by parental background, deviations from track
recommendations, and the consequences of such deviations in terms of later learning outcomes.

17In Germany, every graduate from an academic track secondary school gets an official qualification that
allows for access to academic higher education institutions, while graduates from vocational tracks do not.
To go to college, these must either get a qualification through “evening schools” or may be allowed access
to certain university degrees after having obtained a higher vocational degree or after having worked for a
certain number of years.

18Net of the above-explained effect coming through the secondary school track graduation, this may
partly be due to the fact that for many university degrees, admission is competitive and often even requires
a specific end-of-school grade average (“numerus clausus”). Of course, it could also simply reflect the selection
of higher-skilled school graduates into an academic career, where these (mostly cognitive) skills are more
useful.
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2.3 Adult Human Capital, Labor Income and Borrowing

During the working career (j = 5 to j = 16), human capital grows according to (Yum, 2022):

hj+1 = γj,E hj εj+1, log εj ∼ N (0, σ2
ϵ ), (8)

where γj,E are age- and education-specific deterministic growth rates and εj+1 are market

luck shocks, which we assume follows an i.i.d. normal distribution in logs, with zero mean

and constant variance σ2
ε , as in Huggett et al. (2011). Human capital remains constant after

retirement. Gross labor income is then given by:

yj = wE hj nj, (9)

where wE denotes the effective wage per unit of human capital paid to workers with higher

education E. Note that all prices, including wE, implicitly depend on the distribution of

agents in the economy, which we suppress for notational convenience. After retiring, each

agent receives retirement benefits πj(h17), which depend on the last human capital level

before retirement.19 Finally, the value of death is normalized to zero.

Throughout their life, adult model agents can save into a risk-free asset a, which pays a

period interest rate r. As in Lee and Seshadri (2019), we assume that each agent’s borrowing

is constrained by the amount that can be 100% repaid in the next period using a government

transfer g. Moreover, agents cannot borrow against the future income of their children. The

per-period borrowing constraint can thus be written as

aj+1 ≥
−g
1 + r

. (10)

In the following, we provide a recursive formulation of the agent’s decisions in each stage

of the life cycle.

2.4 Recursive Formulation of Decisions

At the beginning of each adulthood period prior to retirement, individuals learn about their

market luck shock realization and, in case they have a child, about the child skill shock

realization. Based on this information, they decide on consumption (cj), savings (aj+1), and

hours worked (nj). In addition, a newly-independent adult decides on her college education

19As is common in the literature, we let benefits depend on human capital in this way to proxy for lifetime
earnings, which form the basis of pension benefits in reality.
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in period j = 5, and a parent decides on the school track of her child in period j = 11 and

on the inter-vivos transfer in period j = 13. All decisions are subject to the human capital

growth technology (8), the borrowing constraint (10), a time constraint nj ∈ [0, 1] and a

period budget constraint, which reads

cj + aj+1 = yj + (1 + r)aj − T (yj, aj), (11)

where labor income is defined as in (9) and T (yj, aj) gives taxes net of transfers, which consist

of labor income and capital taxes. We suppress the dependence of the decision problems on

these constraints in the following formulations, but write the dependence on the child skill

formation technology (3) explicitly.

2.4.1 Parenthood, j = 9, ..., 13

Parent with a young Child (j = 9, 10) The state space consists of the parent’s

education E, her human capital, hj, and her assets aj. Moreover, the child’s learning ability

ϕ′ is realized in j = 9, which corresponds to the first period in the child’s life (i.e., j′ = 1).

The initial child skill level at the beginning of primary school (j′ = 2) is given by (2). Future

child skills θj′+1 evolve according to the technology (3) under the assumption of optimal

pace setting as defined in Lemma 1. In particular, primary schools are comprehensive track

schools, such that the evolution of her skills depends on the average skill level of all children

in that cohort θ̄j′=2. The problem of the parent can then be written as:

Vj(E, hj, aj, ϕ
′, θj′) = max

cj ,aj+1,nj

{
u(
cj
q
, nj) + β Eεj+1,ηj′+1

Vj+1(E, hj+1, aj+1, ϕ, θj′+1)

}
s.t. θj′+1 = κθj′ + αθ̄Sj′ + g(θj′ , P

∗
j′(θ̄j′)) + ζE + ηj′+1

(12)

where expectations are taken over child skill shocks (ηj′+1) and market luck shocks (εj+1).

The School Track Decision (j = 11) At the beginning of the period, the parent

observes the realization of her child’s skills, θ3, and decides whether to send her child to the

vocational or academic track school, S ∈ {V,A}. This decision is generally unconstrained by

their child’s skill, such that even low-skilled children can go to an academic track school.20

20This has become common practice in Germany, where in the majority of federal states, parents are
completely free in making the secondary school track choice for their children. Only in three states, Bavaria,
Thuringia, and Brandenburg, academic school track access is conditional on a recommendation by the
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Once a child is tracked, she remains in that track until the end of secondary school (i.e.,

until j′ = 5).21 The track decision is made by comparing the value of sending her child to a

vocational track school (S = V ) with that of sending her child to an academic track school

(S = A). These values are given by

W11(E, h11, a11, ϕ
′, θ3, S) = max

c11,a12,n11

{
u(
c11
q
, n11) + β Eε12,η4 V12(E, h12, a12, ϕ

′, θ4, S)

}
s.t. θ4 = κθ3 + αθ̄S3 + g(θ3, P

∗
3 (θ̄

S
3 )) + ζE + η4,

(13)

for each track S. They encode several incentives that influence the track decision. On the

one hand, academic track attendance makes, ceteris paribus, college access more likely, which

results in higher human capital growth and productivity over the life cycle. Of course, the

returns to college education depend on the demand for college-type labor. On the other

hand, parents know that her child’s skill formation depends on the average skill level in

a school track θ̄S3 , both directly through peer interactions but also indirectly through the

endogenous instruction pace P S
3 , which parents know is set to the optimal pace for a child

of average skill in each track P S
3 = P ∗

3 (θ̄
S
3 ). As argued above, the latter effect entails a

complementarity between own skill and average skills in a school track, which means that

children learn better when they are around similar peers.22 Thus, parents need to anticipate

the distribution of children across tracks when making the track decision, which becomes an

aggregate state, which we keep implicit.

On top of that, the track decision is also affected by the, possibly parental-education

specific, academic track utility costs, χ. Taken together, we can define the value of a parent

at the beginning of period j = 11 as

primary school teachers. These recommendations are often tied to achieving a certain grade point average
in Math and German in primary school. However, even in these states, children without a recommendation
can take advantage of a trial period in an academic track school, after which the child will be assessed again.

21That is, we abstract from track switches during secondary school, as these are relatively rare in the
data. For example, in 2010/11, only around 2.5% of children in the first stage of secondary school in
Germany switched school tracks (Bellenberg and Forell, 2012). Moreover, this number includes switches
among different tracks that we group into the vocational track, so is likely an upper bound of the track
switches between the vocational and academic tracks. However, this does not preclude track switches between
the end of secondary school and the beginning of possible tertiary education, which we allow in our model.
In Dustmann et al. (2017), these “second-chance opportunities” are the main reason why the initial track
choice does not have an impact on the marginal child.

22We show in Section 3 that the track decision of parents who are only interested in maximizing child skills
is characterized by a skill threshold, where all children with skills below that threshold go to the vocational
track and all children with skills above the threshold go to the academic track.
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V11(E, h11, a11, ϕ
′, θ3) = max{W11(E, h11, a11, ϕ

′, θ3, S = V ),

W11(E, h11, a11, ϕ
′, θ3, S = A)− χ(E)}.

(14)

Remaining Parenthood (j = 12, 13) In period j = 12, the parent solves the follow-

ing problem:

W12(E, h12, a12, ϕ
′, θ4, S) = max

c12,a13,n12

{
u(
c12
q
, n12) + β Eε13,η5 V13(E, h13, a13, ϕ

′, θ5, S)

}
s.t. θ5 = κθ4 + αθ̄S4 + g(θ4, P

∗
4 (θ̄

S
4 )) + ζE + η5 ,

(15)

where the child’s school track S that has been decided in the previous period is now included

in the parent’s state space.

Just before her child reaches the age of 18 and becomes independent, the parent decides

on a financial inter-vivos transfer that her child receives, a′5, while taking into account the

child’s future value Vj′=5. As in Daruich (2022), we model this as an interim decision problem

and assume that the parent already knows the realization of her own market luck shock and

her child’s final skill shock but does not know the realization of the college taste shock ν ′(E).

The transfer cannot be negative, so parents cannot borrow against the future income of their

child. The value at the beginning of period 13 is then

V13(E, h13, a13, ϕ
′, θ5, S) = max

a′5≥0

{
Ṽ13(E, h13, a13 − a′5) + ∆Eν′ Vj′=5(θ5, a

′
5, ϕ

′, S, E)
}

ν ′(E) ∼ N (µν,E, σ
2
ν),

(16)

where Ṽ13 is the value for a parent with savings a13 after the inter-vivos transfer has been

made

Ṽ13(E, h13, a13) = max
c13,s14,n13

{u(c13, n13) + β Eε14 V14(E, h14, a14)}

s.t. c13 + a14 + a′5 = y13 + (1 + r)a13 − T (y13, a13),
(17)

so that the transfer a′5 enters the budget constraint.

2.4.2 Work Life Without a Dependent Child, j = 5, 6, 7, 8 and j = 14, 15, 16

Independence (j = 5) At the beginning of adulthood (j = 5), the state space of a newly

independent adult comprises the secondary school track she graduated from S, end-of-school
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skills θ5, initial assets a5, which she received from her parents, innate ability ϕ and her

parent’s education Ep, which affects the mean of the stochastic college taste shock ν(Ep).

Conditional on the realization of that shock, the young adult first decides whether to go to

college (E = 1) or not (E = 0) by solving the following problem:

V5(θ5, a5, ϕ, S, E
p) = max{W5(E = 0, h5, a5, ϕ),

W5(E = 1, h5, a5, ϕ)− ψ(S, θ5, ν(E
p))}

(18)

where W5 denotes the values of college and non-college education, given by

W5(E, h5, a5, ϕ) = max

c5,a6

n5∈[0,n̄(E)]

{u(c5, n5) + β Eε6 V6(E, h6, a6, ϕ)}
(19)

and end-of-school skills are transformed into adult human capital h5 according to (6). Recall

that the psychic utility cost of going to college ψ(S, θ5, ν(E
p)) also depends on the secondary

school track and end-of-school skills. While agents can work during college education, they

only receive the vocational wage rate w0. Moreover, obtaining a college education reduces

the time available for work, as individuals spend part of their total time endowment study-

ing, thus n̄(E = 1) < 1.

Remaining Work Life (6, 7, 8 and j = 14, 15, 16) For the two following periods

j = 6, 7, an adult without a child solves:

Vj(E, hj, aj, ϕ) = max
cj ,aj+1,nj

{
u(cj, nj) + β Eεj+1

Vj+1(E, hj+1, aj+1, ϕ)
}
. (20)

In period j = 8, the individuals know that they will become parents next period. For

that reason, they take expectations over the learning ability of their future child, ϕ′, on top

of the expectations over the market luck shocks, since ability is imperfectly transmitted from

parents to children, as defined in Section 2.1. Thus, the value in period 8 becomes

V8(E, h8, a8, ϕ) = max
c8,a9,n9

{
u(c8, n8) + β Eε9,ϕ′|ϕ V9(E, h9, a9, ϕ

′)
}

(21)

For the remainder of the periods j = 14, 15, 16, an adult whose child has left the household
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solves the standard life-cycle savings problem:

Vj(E, hj, aj) = max
cj ,aj+1,nj

{
u(cj, nj) + β Eεj+1

Vj+1(E, hj+1, aj+1)
}
, (22)

where the learning ability ϕ has already been transmitted to the child and does not enter

the state space anymore.

2.4.3 Retirement, j = 17, 18, 19, 20

Everybody retires at the beginning of model period 17, which corresponds to age 66 in real

life, and receives retirement benefits πj(h17). After period 20, that is, at age 82, agents die

with certainty and exit the model. The values in these periods are

Vj(E, h17, aj) = max
cj>0,aj+1≥

¯
a
{u(cj, 0) + βV (E, h17, aj+1)}

s.t. cj + aj+1 = πj(h17) + (1 + r)aj − T (0, aj).
(23)

2.5 Aggregate Production, and Government

We assume that a representative firm produces output according to the Cobb-Douglas pro-

duction function Y = AKαH1−α, where A denotes total factor productivity, K is the aggre-

gate physical capital stock, and H is a CES aggregate of total labor supply, which is defined

by:

H = [φHϵ
0 + (1− φ)Hϵ

1]
1
ϵ . (24)

Here, H0 is the aggregate labor supply in efficiency units of workers with vocational higher

education, and H1 is that of workers with a college education. The physical capital stock

depreciates at rate δf .

The government taxes labor income progressively, such that labor income net of taxes

amounts to ynet = λy1−τn (Heathcote et al., 2017). It also taxes capital income linearly

according to τaraj (Yum, 2022). All tax revenue is used to finance retirement benefits πj

as well as fixed lump-sum social welfare benefits g that are paid to every household. These

may include child allowances, unemployment benefits, or contributions to health insurance.

2.6 Equilibrium

We solve for the model’s stationary equilibrium and its associated distribution using the

numerical strategy in Lee and Seshadri (2019). Stationarity implies that the cross-sectional
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distribution over all states in every period j is constant across cohorts. Our model economy

consists of 20 overlapping generations or cohorts at each time. The equilibrium requires

that households and firms make optimal choices according to their value functions and firm

first-order conditions, respectively. Moreover, the aggregate prices for physical capital and

both types of human capital r, w0, and w1 are competitively determined and move to clear

all markets. Note that we do not require the government budget to clear as well. Instead, we

assume that all government revenues that exceed the financing of all social welfare programs

result in linearly independent spending.

A special feature of our model is that learning during the school years depends on the

distribution of children across school tracks. Importantly, an equilibrium therefore requires

that parents form expectations over average skill levels in each track, which in equilibrium,

coincide with the actual distributions. A detailed definition of the equilibrium is given in

Appendix B.

3 Developing Intuition: School Tracking and Child Skill

Formation

Our formulation of the child skill formation technology during the schooling years in (3)

and (4) constitutes the novel cornerstone of our model. In order to develop some intuition

about the main mechanisms surrounding school tracking and child skill formation at work

in our model, we use this section to derive a series of theoretical implications about the

effects of school tracking policies on the distribution of end-of-school skills, that follow from

this technology. Our focus in this section is therefore exclusively on the secondary schooling

years (periods 3 and 4) and we ignore transitions to higher education and the labor market.

Moreover, we simplify parents’ preferences, such that they only care about their child’s

expected end-of-school skills and have no other preferences regarding the school track choice.

Finally, we assume for simplicity that κ = 1 and that there are no direct parental in-

fluences, ζ = 0. All other assumptions are maintained. In particular, policymakers set the

instruction paces in each school track with the goal of maximizing expected end-of-school

skills, such that the pace-setting rule in Lemma 1 holds. Moreover, we assume that the dis-

tribution of child skills at the beginning of secondary school is normal and centered around

0.23

23This seems a good approximation as the achievement test scores that we use as measures for child skills
are indeed bell-shaped and centered around zero in our data.
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3.1 Comprehensive School versus Tracking

We start by comparing a comprehensive schooling system, in which all children attend the

same school track, with a tracking system in which all children are tracked into a vocational

or academic track. For simplicity, we consider only one period of schooling here. Thus, if

θ3 are the skills at the beginning of secondary school, θ4 can be thought of as the skills at

the end of school. We begin by describing how the allocation of children across tracks in the

tracking system happens optimally.

The Allocation of Children across Tracks

To that end, we consider two alternative allocation mechanisms. In the first one, a poli-

cymaker (or a teacher) allocates children across tracks directly. As before, the goal of the

policymaker is to maximize the expected end-of-school skills across all children (E(θ4)).
The second alternative consists of each parent making the track decision unilaterally for

her child i, which is characterized by a skill level θi,3. A parent’s only goal is to maximize

her child’s expected end-of-school skill level (E(θi,4)). Parents know the distribution of θ3.

We can thus think of this mechanism as a simultaneous move game played among parents,

where each parent’s strategy set consists of the two tracks she can send her child to, and the

payoffs are given by the next period’s skills.

Proposition 1 shows that, in both alternatives, the track decision that results in the opti-

mum or equilibrium is governed by a sharp cut-off skill level. A policymaker would optimally

split the distribution exactly at its mean.24 Intuitively, this generates the highest aggregate

end-of-school skills as it minimizes the variance of skills in each track, or in other words,

it creates peer groups that are as homogeneous as possible. In doing so, the policymaker

internalizes that any effects coming from the direct peer externality exactly offset each other

across tracks. Thus, all gains achieved from making average peer skills in one track higher

are lost as the average level in the other track becomes smaller.

In contrast, if parents are the decision-makers, they make their decision irrespective of

the aggregate outcomes. The equilibrium of this implied game still features a sharp skill

threshold, which is characterized by the skill level at which a child is exactly equally well

off in both tracks. The location of this threshold is smaller than the optimal threshold a

policymaker would pick whenever the direct peer effects are positive (α > 0). Intuitively,

parents do not internalize the negative effect that this deviation from the optimal threshold

24A similar argument has been made repeatedly in the theoretical literature. See for instance, Epple and
Romano (2011).
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has on aggregate end-of-school skills.

Proposition 1. The allocation of children across tracks is characterized by a skill threshold

θ̃3, such that all children with initial skills below θ̃3 go to one track and all children with

initials skills above θ̃3 go the other track.

• If the track allocation is done by the policymaker, the optimal skill threshold corresponds

to the average initial skill level θ̃∗3 = E[θ3] = 0.

• If the track allocation is done by parents, the endogenous skill threshold that emerges

from this game depends on the direct peer externality α. With α > 0, the threshold is

smaller than θ̃∗3.
25

Proof. In Appendix A.

Next, we compare the comprehensive and tracking system in terms of their effects on

end-of-school skills, assuming that tracking happens optimally, as described in Proposition

1.

The End-of-school Distribution

Provided that γ ̸= 0 and δ > 0, Proposition 2 shows that independently of the sorting

mechanism, expected end-of-school skills in a full optimal tracking system are always larger

than in a comprehensive system. Intuitively, this advantage comes from more homogeneous

peer groups in each track in terms of their initial skills. Since learning decreases in the

variance of skills among children in a track, more homogeneity on average increases end-of-

school skills.

The advantage of tracking in terms of increasing aggregate end-of-school skills increases

in the complementarity between own skills and instruction pace, γ. The stronger the com-

plementarity, the more it pays to stratify children by their skills. Moreover, the advantage

increases in the variance of initial child skills σ2
θ3

but decreases in δ, which ultimately gov-

erns the concavity of learning with respect to the instruction pace. A full tracking system

may lead to larger inequality in end-of-school skills. In particular, condition (25) states that

the variance of end-of-school skill might be larger in a tracking system with positive peer

externalities if tracking occurs at the optimal skill threshold. This is more likely to hold the

larger the direct peer externality and the larger the ratio βγ
δ
.

25We rule out an (uninteresting) equilibrium of the track choice game in which parents randomly allocate
their child into one of the two tracks, leading to the same distribution of skills in both tracks and, hence,
the same pace of instruction.
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Similarly, a full tracking system necessarily leaves a non-negative mass of children worse

off compared to a comprehensive system. These children have initial skills around the track-

ing threshold and would be closer to their optimal instruction pace in a comprehensive

system. In an optimal tracking system with θ̃3 = 0, these children thus occupy the center of

the distribution and would, given a choice, prefer a comprehensive system.26 If there are no

direct peer effects, an equal share of children in both tracks lose relative to the comprehen-

sive counterpart. However, with positive peer effects, the losses are concentrated among the

track with the lower average peer level. This reflects a robust finding of the empirical school

tracking literature that especially the children at the bottom of the skill distribution suffer

from a tracking system (see, e.g., Matthewes (2021)).

Proposition 2.

• Expected end-of-school skills in a full tracking system are larger than in a fully compre-

hensive system. This holds regardless of who makes the track decision, i.e., regardless

of the tracking skill threshold θ̃3.

• The end-of-school skill distribution in a full tracking system has a “fatter” right tail. In

case of tracking at the optimal skill threshold θ̃3 = E(θ3), the variance of end-of-school

skills in a full tracking system is larger than the variance in a fully comprehensive

system iff

α2 + 2α

(
1 +

βγ

δ

)
− (8− π)

γ4

πδ2
σ2
θ3
> 0. (25)

• Children with initial skills inside a non-empty interval lose from a full tracking system

in terms of their end-of-school skills relative to a fully comprehensive system. With

α = 0, the losses are symmetric in both tracks. With α > 0, the losses are concentrated

in the track with the lower average skill level.

Proof. In Appendix.

Note that these results are not affected by the presence of skill shocks in the one-period

model. This is because these shocks are assumed to be mean zero and realized at the end of

the period. The role of uncertainty changes once tracking remains for more than one period.

26This is interesting in a political economy context as the median voter in this model would prefer a
comprehensive system. This could partially explain why we see different tracking systems across different
countries.
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3.2 Early versus Late Tracking

Let us now consider a two-period secondary schooling system so that θ5 are the skills at the

end of school, exactly like in our full model. We are interested in a comparison between the

end-of-school skill distribution in an early tracking system, ET , and a late tracking system,

LT , in which the allocation is done optimally by the policymaker. The early tracking system

is characterized by an initial track allocation into two tracks, V and A, at the beginning of

secondary school, j = 3. In an early tracking system, a child therefore remains in her school

track for the two secondary school periods. The late tracking system is characterized by all

children going to a comprehensive school in the first period, followed by tracking into V - or

A-track schools at the beginning of the second secondary school period (j = 4). Importantly,

while this allocation occurs after the skill shock η4 is realized in the LT case, in the ET case,

the allocation occurs before.27

Proposition 3 shows that expected end-of-school skills in an optimal LT system can be

larger than in an optimal ET system if the variance of the skill shocks is large enough.

Intuitively, this represents the key disadvantage of early tracking. Since the first track

selection cannot be corrected for unexpected skill shocks, the peer groups in each track

become more heterogeneous. Consequently, the average skill levels and hence the instruction

paces across tracks are closer together than what would be optimal if re-tracking was possible.

Thus, while early tracking produces learning gains in the first stage, it takes away the

flexibility to react to unexpected changes in the composition of the tracks.

Proposition 3. Expected end-of-school skills in the two-period model are larger in an optimal

late tracking system than in an optimal early tracking system iff

σ2
η4

σ2
θ3

> 1 + α + α2 + β +
β2

2
+ 2α(1 + β) +

γ2

2π
σ2
θ3
. (26)

Proof. In Appendix A.

These results illustrate that the child skill technology alone entails non-trivial theoretical

implications for the effects of school tracking policies on end-of-school skills. In particular,

even when the track allocation is performed optimally, the timing of tracking balances a

trade-off between efficiency gains from learning in more homogeneous peer groups and those

from the ability to react to child skill shock realization.

27We do not consider a fully comprehensive system in which children remain in comprehensive track
schools for the whole duration of their school career. Proposition 2 implies that such a system cannot
achieve higher aggregate end-of-school skills compared to a late tracking system.
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However, this simplified version of the full model cannot help us quantify the aggregate

effect of a policy that would delay the tracking choice. Indeed, the quantitative importance

of these forces for economic outcomes within and across generations not only depends on the

estimates of the child skill technology parameters and the size of the skill shock variances,

but also on how they interact with other essential features of the model (and reality). For

example, second-chance opportunities at the time of the college decision may make the

effect of the (early) track choice less consequential for labor market outcomes. On the other

hand, asymmetric parental preferences about school tracks may reinforce inter-generational

persistence of education, while harming learning efficiency during the school years. Finally,

the track decision, in reality, is likely not just concerned with purely maximizing skills but

takes into account future labor market prospects, which in general equilibrium, also depend

on the share of children attending each track. To quantify these channels through the lens

of our model, we now describe the calibration procedure.

4 Model Calibration

We calibrate the model following a two-step approach. In the first step, we estimate the

parameters of the child skill formation technology during the school years, as well as other

selected model parameters directly from the data. In the second step, the remaining pa-

rameters are estimated using the simulated method of moments by matching the moments

from the stationary equilibrium distribution of the model to their empirical counterparts. A

summary of the externally calibrated parameters is given in Table 4 and of the internally

estimated ones in Table 5.

4.1 Data and Sample Selection

All externally estimated parameters in the first step and moments used in the second step

are based on two data sources. The first source is the German National Educational Panel

Study (NEPS), which comprises detailed longitudinal data on the educational process, ac-

quired competencies, as well as the learning environment and context persons of six cohorts

of participants in nationally representative samples in Germany, starting in 2010 (Blossfeld

et al., 2011). A key component of the information collected is regular standardized assess-

ment tests of school children’s competencies in areas such as mathematics, reading, sciences,

vocabulary, or grammar, combined with specific wave weights. In addition, there is informa-
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tion about school track recommendations and the final parental school track choices.28 We

restrict the sample to individual observations containing information on the school and class

in that school a child attended in a given year.

The second data source is the German Socio-Economic Panel (SOEP), an annual repre-

sentative survey from which we use the 2010-2018 waves. The data contains rich information

on labor supply, income, and education on the individual level. We use this data source pri-

marily to construct empirical moments for the working stage of the life cycle, as will be

detailed below. For this reason, the only sample selection that we do is dropping those

workers with hourly wages below the first and above the 99th percentile, while keeping both

workers and non-workers. We convert all income data to 2015 Euros using a CPI index for

inflation adjustment.

We begin by detailing how we measure, identify, and estimate the parameters of the

child skill formation technology, as these constitute the most important ingredient of our

model. Then, we describe the functional forms and estimation strategies for all remaining

parameters.

4.2 Estimation of the the Child Skill Formation Technology

We specify the empirical analog of the production technology of (the logarithm) of child i’s

skills that we take to the data as follows:29

θi,j+1 = ω0,j + ω1,jθi,j + ω2,j θ̄
S
−i,j + ω3,jθ

2
i,j + ω4,j(θi,j − θ̄Sj )

2
+ ω5,jEi + ηi,j+1, (27)

Note that (27) is just a rearranged version of the child skill technology (3) after substituting

in (4) and the optimal pace of instruction in each school track as given by Lemma 1 and

after adding and subtracting γ2

2δ
θ2i,j.

30 Moreover, we allow all child skill technology estimates

to be specific to the period j, in principle.31

28See also Appendix Section D for more details on the tests.
29Following the work in Cunha et al. (2010), much of the empirical and quantitative literature using

child skill formation technologies employed parametric specifications of the constant elasticity of substitution
(CES) form. As noted in Agostinelli and Wiswall (2016), this requires, under standard parameter restrictions,
that all input factors are static complements. An alternative is to use a nested CES structure as in Fuchs-
Schündeln et al. (2023); Daruich (2022). To retain tractability, we follow Agostinelli and Wiswall (2016) and
opt for the trans-log approach.

30The coefficients ωn,j , n = 0, ..., 5 relate to those in (3) and (4) as follows: ω0 = β2

2δ , ω1 = (κ+ β
γ δ), ω2 =

α, ω3 = −ω4, and ω5 = ζ for all j.
31Note that in the current version of the paper, we have used only one cohort of the NEPS data to

estimate the technology. We use the estimates from that cohort for all periods.
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We estimate this version of the technology because it depends solely on observable in-

formation in the data, and not on the “constructed” instruction paces across school tracks.

Moreover, since we consolidate schools into a maximum of two school tracks in the data,

which, as discussed in Appendix C resembles reality in Germany over the past decade, we

cannot identify a model that includes θ̄Sj , (θ̄
S
j )

2, and the interaction θθ̄Sj , as in (3). Instead,

we rewrite (3), such that it depends on the squared differences between own skills and aver-

age skills in a school track. This restricts the coefficients ω3 = −ω4, which we formally test

after the estimation.

In the estimation, we also distinguish between θ̄S−i,j, which denotes the average skill level

of child i’s classroom peers, and θ̄Sj , which refers to the average skill level of all children in

a school that belongs to track S. Note that in the model, θ̄−i,j,S = θ̄j,S, since we assume

a representative school and class per track (or alternatively, identical classes conditional

on school tracks). In the data, however, there is clearly heterogeneity across classes, even

within a school track. Since we are interested in capturing skill development effects that

arise from direct interactions with peers, which are likely occurring in a specific classroom,

we exploit that heterogeneity in the estimation. Finally, the intercept ω0,j can be a function

of age and gender in the empirical estimation, and the parental educational attainment E

is a time-constant dummy that equals 1 if child i comes from a household in which at least

one parent is college educated.

As is common in the child skill formation literature (Cunha et al., 2010; Agostinelli

and Wiswall, 2016), we think of child skills θ as latent variables that are only imperfectly

measured in the data. For that reason, we employ a log-linear measurement system for

latent skills, using a series of achievement test scores as noisy measures of child skills in each

period.32 The identification strategy of the scales and loadings of each measure using their

covariances follows Cunha et al. (2010). To account for measurement error, we aggregate

the individual measure into a composite unbiased index using Bartlett factor scores, as

in Agostinelli et al. (2023). Appendix E provides details on skills measurement and the

estimation procedure.

We present the estimates of the child skill production technology parameters in Table 1.

Note that the estimates are based on the data from NEPS Starting Cohort 3, which follows

children through secondary school. Since, prior to grade 5, children are in a unique school

32Regular independent tests of children’s achievements in domains such as mathematics or languages are a
key component of the NEPS data. We provide more information on the constructed test scores in Appendix
D. As argued in Borghans et al. (2008), achievement test scores measure both cognitive and non-cognitive
skills.
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track, we cannot estimate the age-specific coefficients for period 2. In addition, in grade

12, the tests are track specific, which makes the estimates unreliable for period 4. For those

reasons, we assume that the estimates of the child skill technology parameters ω2, ω3, and ω4

between school grades 5 and 9 are representative of the entire schooling career. That is, we

drop the j index on those technology parameters. Recall that θi,j is defined as the logarithm

of child skills. Hence, we can interpret the coefficients as elasticities. Thus, ω̂1 = 0.65

means that a 1% increase in latent skills at the beginning of primary school is associated

with an 0.65% increase with end-of-primary school skills. This own-skill productivity is

close to values commonly found in the literature (see estimates in Cunha et al. (2010);

Agostinelli et al. (2019)). During secondary school, the estimated coefficient ω̂2 is positive.

More importantly, we cannot reject the hypothesis that ω̂3 = −ω̂4 which is in line with our

assumptions in Section 3.

The estimated coefficient ω̂4 is negative and statistically significant at the 10% level. It

indicates that a 1% increase in the squared distance to the average skill level in a track is

associated with an up to 0.013% decrease in the next period’s skills. This lends empirical

support to the idea that the instruction pace in every track is tailored to the average skill

level, and deviations, in both directions, from this level can hurt individual skill development.

The estimated ω̂2 is rather small and statistically insignificant.

The final estimates we use to parameterize the child skill formation technology in our

model are then ωn for n = 2, 4, 5 as reported in Table 1. The intercept is calibrated internally,

such that average log skills are always zero in the baseline model, which is one of our

identifying assumptions. The parameter ω1,3 comes from Table 1, while ω1,2 and ω1,4 are

estimated internally.

4.3 Remaining Parameters

Preferences

We set the inverse elasticity of intertemporal substitution, σ = 2, a value that is common in

the literature. The Frisch elasticity of labor supply is set to 0.5. The disutility shifter b is

estimated internally in order to match the average time worked in the SOEP data, which is

0.38 when the total time available after sleep and self-care is assumed to be 13 hours on a

weekday and normalized to 1.

We set the time discount factor β, such that the equilibrium interest rate amounts to

4% annually. The altruism parameter ∆ is calibrated such that the ratio of average inter-
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Table 1: Child Skill Technology Parameters Estimates

Dependent Variable: θi,j+1

Grade 9 on Grade 5
Coefficient Variable

ω̂1,3 θi,j 0.647***
(0.025)

ω̂2 θ̄−i,j,S 0.028
(0.021)

ω̂3 θ2i,j 0.006
(0.005)

ω̂4 (θi,j − θ̄j,S)
2 -0.013**

(0.006)

ω̂5,3 E = 1 0.033***
(0.012)

Obs. 1,676

Notes: This table presents the coefficients
of regressions of skills in grade 9 on skills
in grade 5, skills squared, the average skill
level of peers, distance to the average skill
in the track squared, and parent’s education
dummy. All observations are weighted us-
ing longitudinal weights. Standard errors are
clustered at the school level. We control for
year of birth, gender, and school-fixed effects.
Source: NEPS.
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Table 2: Evolution of Child Skills

Grade θi,j+1 on Grade θi,j and E
Dependent Variable: Grade 4 Grade 9 Grade 12

(Cohort 2) (Cohort 3) (Cohort 4)

Panel A: All students
θi,j 0.641*** 0.808***

(0.013) (0.021)

E = 1 0.073*** 0.039***
(0.008) (0.011)

Obs. 4,023 1,875
Panel B: Academic students

θi,j 0.552*** 0.717*** 0.822***
(0.023) (0.030) (0.023)

E = 1 0.060*** 0.035*** 0.029***
(0.014) (0.013) (0.011)

Obs. 1,371 1,107 2,150

Notes: This table presents the coefficients of regressions of current skills on past
skills and parents’ education dummy. All observations are weighted using longitu-
dinal weights. Standard errors are clustered at the school level. Models control for
year of birth, and gender school-fixed effects. Source: NEPS.
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vivos transfers to average labor income in the model corresponds to that of average higher

education costs of children to average 4-year labor income in the data. According to a

survey by the German Student Association in 2016, the monthly costs of living during the

higher education stages for a student without children are, on average 830 Euros per month

(Dohmen et al., 2019). We expect the parents to bear the bulk of these costs and assume

that they support their child for an average of 4 years (the length of time it takes on average

to complete higher education studies). Then, the ratio of total costs to average 4-year labor

income is approximately 0.46, which we take as our target moment.

We parameterize the utility costs of going to an academic track school, χ(E), as follows:

χ(E) = χA ·

χ1 if E = 1

χ0 if E = 0,
(28)

so that χA represents a uniform utility cost from Academic-track attendance (for example

stemming from the academic track being more demanding and psychologically taxing), which

is affected by parental higher education through χ0 and χ1. We estimate these parameters

to match the share of deviations from secondary school track recommendations by parental

education in the data. These recommendations are typically given by primary school teach-

ers before the transition to secondary school. They are based on both a reflection of the

child’s achievement during primary school as well as the teachers’ assessment of the academic

potential and success probability of the child in an academic track school. Thus, we argue

that the recommendations are forward-looking and, since the primary school teachers typi-

cally observe the children over multiple years every day during the week, based on a similar

information set as the parents possess. For that reason, we think of the recommended school

track in the model as the one which a parent would have chosen with χ1 = χ0 = 1. Then,

deviations from that unbiased track choice by parental education map into deviations from

teacher recommendation.

Initial Child Skills and Child Skill Shocks

Initial child skills just before entering primary school are a function of the learning ability

of a child, which is imperfectly transmitted from the parent following an AR(1) process

with inter-generational correlation coefficient ρϕ, and variance σ2
ϕ. Since the learning ability

is correlated with the eventual higher education outcome of a parent, we pick as the target

moment for ρϕ the difference in average preschool child skills by parental education (measured
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in one standard deviation). The variance σ2
ϕ is then estimated to match the variance of initial

math test scores in the data, which we normalize to 0.1.

An integral part of the child skill development is the presence of unforeseeable, permanent

shocks to child skills. As discussed in Section 3, the size of such shocks has important

implications for the effects of school tracking policies as they can give rise to efficiency

losses from early tracking To quantify the importance of child skill shocks in our model, we

internally estimate the shock variance σ2
η,j+1, for j = 2, 3, 4. As target moments, we choose

the correlation of a child’s math test score percentile rank across periods. In this way, we

capture all changes in a child’s relative position in the skill distribution in a given period

that cannot be accounted for by the skill formation technology or track choices.33

4.3.1 College Costs

We paramterize the “psychic” college cost function as follows (Daruich, 2022):

ψ(S, θ5, ν(E
p)) = exp(ψ0 + ψS=V + ψθθ5 + ν(Ep))

ν(Ep) ∼ N (µν,Ep , σ2
ν).

(29)

We estimate the two parameters ψ0 and ψS=V of the college costs to match the share of

graduates from an academic secondary school who follow up with a college education and

the share of vocational secondary school graduates that obtain a college education. We

discipline the coefficient ψθ that multiplies end-of-school skills by matching the regression

coefficient on log math test scores from a regression of a college graduation dummy on

end-of-school test scores, controlling for the secondary school track.

We calibrate the two parental education-specific means of the college taste shock pa-

rameters, µν,Ep=0 and µν,Ep=1, to match the share of children from each parental education

background that receive a college degree in the data. Finally, we calibrate the variance of

these shocks, σ2
ν , to match the variance of the residuals from the above regression of college

education on end-of-school skills, as in Daruich (2022).

The final component of college costs is not a part of the “psychic” costs ψ but reflects

the time cost of obtaining a college education. We assume that studying for a college degree

takes away around 60% of the total time available for work for four years or one model

33In reality, such changes may also arise from factors that are outside the scope of this model but can
put children on a different skill formation path. These could be, for example, a change of schools within a
school track, a change of teachers within a class, or even tutoring sessions that are uncorrelated with parental
education.
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period.34 Thus, we set the maximum remaining time during the higher education stage to

n̄(E = 1) = 0.40.

4.3.2 Human Capital Growth

We estimate the deterministic human capital growth profiles for both types of education,

{γj,E}, j = 5, ..., 16 using wage regressions in the SOEP data, following the approach in

Lagakos et al. (2018).35 The resulting experience-wage profiles for 4-year experience bins

are shown in Table 3, expressed in growth relative to the previous bin. We set the {γj,E}16j=5

parameters to these values.

Finally, we calibrate the variance of the market luck shocks, σ2
ε , such that our model

replicates the standard deviation of labor income across all workers in the data.

4.3.3 Firms and Government

Following large parts of the literature, we set the capital share in the aggregate production

function to α = 1/3. Moreover, we set σf = 1/3 such that the elasticity of substitution

between vocational and academic human capital in the firm production is equal to 1.5 (Ci-

ccone and Peri, 2005). The weight on vocational human capital in the CES aggregator, φ

is estimated internally. Following the arguments in Lee and Seshadri (2019), we calibrate it

to match the share of college-educated workers in the SOEP data. The TFP parameter A

is calibrated such that the model produces average earnings of 1.

Regarding the tax-related parameters, we set the labor income tax scale to λ = 0.679 and

the labor tax progressivity parameter to τl = 0.128 following estimates in Kindermann et al.

34A common estimate is that full-time studying takes around 40 hours per week, which amounts to around
60% of the maximum weekly work hours, which we set to 65. Moreover, the average study length in Germany
is 8 semesters or 4 years.

35Concretely we create, separately for each education group, 4-year work experience bins. We then
estimate Mincer regressions of wages on years of schooling and potential work experience, controlling for
time and cohort effects of the form:

logwict = α+ βsict + δxict + γt + ζc + ϵict,

where wict is the wage of individual i, who belongs to birth cohort c and is observed at time t. Wages are
defined as total annual labor earnings divided by hours worked. We denote by sict the years of schooling
and by xict work experience, which is defined as

xict = ageict − 18 if sict < 12

xict = ageict − sict − 6 else.

To disentangle time from cohort effects, we assume that there is no experience effect on wage growth in the
last 8 years of work, following the HLT approach in Lagakos et al. (2018).

33



Table 3: Human Capital Growth Profiles

Experience Wage Growth
(Years) Non-College College

0 1.00 1.00
4 0.96 1.15
8 1.09 1.19

12 1.10 1.11
16 1.04 1.06
20 1.02 1.01
24 1.00 0.99
28 1.01 0.97
32 0.99 0.98
36 1.01 0.99
40 0.99 1.01

Notes: This table provides wage growth
estimates by year of experience and edu-
cational attainment. Source: SOEP

(2020). The linear capital tax is set to τa = 0.25, corresponding to the final withholding

tax rate on realized capital gains, interest and dividends in Germany. The size of the lump

sum government transfers is set to g = 0.06, which in equilibrium amounts to 6% of average

labor earnings in the economy. Finally, we set pension benefits to πj = ΩhjwE during

retirement and calibrate the scale parameter Ω internally, such that the average replacement

rate corresponds to 40%.

4.4 Method of Simulated Moments Estimation Results

In total, we estimate 20 parameters internally using the method of simulated moments to

match 20 target data moments. The parameters, their estimated values, model-implied

moments, and target data moments are presented in Table 5.

The model generally fits the data well, both in terms of aggregate moments and con-

cerning the distribution of child skills, school tracks, and higher education. For example,

the share of college graduates in the simulated economy is 34.7%, which is in line with the

German data in the 2010s. The model also matches well the transition rates from academic

and vocational secondary school into college higher education (at around 70% and 10%),

which implies that the share of children in an academic track school in the model, 42%, is

in accordance with the data.

Parental preferences towards their own track affect the school track decision significantly,

both in the model and in the data. In particular, around 20% of parents from each education
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Table 4: Parameters calibrated externally

Parameter Value Description Source

Household
σ 2.0 Inverse EIS Lee and Seshadri (2019)
γ 0.5 Frisch Elasticity Fuchs-Schündeln et al. (2022)
q 1.56 Equiv. Scale Jang and Yum (2022)
n̄(E = 1) 0.40 Time Cost of College

Firm
σf 1/3 E.o.S Vocational and Ciccone and Peri (2005)

Academic Human Capital
δf 6% Annual Depreciation Kindermann et al. (2020)

Government
τn 0.128 Labor Tax Progressivity Kindermann et al. (2020)
λ 0.679 Labor Tax Scale Kindermann et al. (2020)
τa 0.35 Capital Tax Rate
g 0.06 Lump-sum Transfers

Notes: This table presents the externally calibrated parameters and their correspond-
ing sources.

background overrule a different track recommendation by teachers in the NEPS data. In

the model simulated data, roughly the same shares of parents would send their child to a

different track if it was not for the preference shifter χ(E). Furthermore, the correlation

between parental and child college education in the model matches the data.

In order to match the correlation between child skill ranks across school periods, the

model requires rather large child skill shocks. This is in part because the estimated own-

skill productivity, ω1, in the child skill formation technology is also quite large. The model

resembles well the differences in initial child skills by parental education prior to entering

school. In particular, while children from college-educated parents have an average initial

skill level that is around 0.47 standard deviations larger than the average level of non-college-

educated parents in the data, this difference is 0.52 standard deviations in the model.

4.5 Validation Exercises

We assess the model’s validity using two approaches. First, as is standard in the literature,

we compare non-targeted moments from our model simulated data to their counterparts in

the NEPS data or using estimates from other research papers. Second, we investigate the

effects of school track choice on later-in-life economic outcomes for a set of marginal students

and compare the results to the null effects reported in Dustmann et al. (2017) for Germany.
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Table 5: Internally Calibrated Parameters

Parameter Value Description Target Data Model

Preferences
β 0.935 Discount Factor Annl. Interest Rate 0.04 0.04
b 6.8 Labor Disutility Avrg. Labor Supply 0.36-0.38 0.53
∆ 0475 Parental Altruism Transfer/Income 0.60 0.59
χA 0 A-Track Costs Share in A-Track 0.44 0.42
χ0 0.017 Own V-Track Bias Share of Deviations from A if E = 0 0.16 0.18
χ1 0.021 Own A-Track Bias Share of Deviations from V if E = 1 0.23 0.21

College Costs
ψ 0.88 Intercept Share in CL from academic 0.64 0.71
ψV 0.25 Add. Costs for V-Track Share in CL from vocational 0.12 0.08
ψθ 0.74 Coefficient on θ5 Regression Coefficient 0.84 0.94
µEp=0 0.1 Mean Taste Shock if Ep = 0 Share in CL from Non-CL HH 0.24 0.18
µν,Ep=1 -0.1 Mean Taste Shock if Ep = 1 Share in CL from CL HH 0.55 0.66
σν 0.001 Std. Taste Shock Variance of Residual 0.137 0.122

Idiosyncratic Shocks
σε 0.008 Std. Luck Shock Std(Log Labor Income) 0.73 0.82
σϕ 0.07 Std. Ability Shock Var(Test Scores Grade 1) 0.10 0.12
ρϕ 0.65 Persistence of Ability Test Score Diff. (Grade 1) by E 0.54 0.52
ση3

0.07 Std. Learning Shock j = 3 Rankj=2-Rankj=3 0.72 0.60
ση4

0.06 Std. Learning Shock j = 4 Rankj=3-Rankj=4 0.79 0.68
Rankj=3-Rankj=4 if S = 1 0.69

ση5 0.05 Std. Learning Shock j = 5 Rankj=4-Rankj=5 if S = 1 0.74

Miscellaneous
Ω 0.14 Pension Anchor Replacement Rate 0.40 0.39
A 2.5 TFP Avrg. Labor Earnings 1.0 1.0
φ 0.54 Weight V. Human Capital College Share 0.35 0.35

Notes: This table presents the internally calibrated parameters, targeted moments, and their model-generated
counterfactuals.
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Non-targeted Moments

We summarize selected non-targeted moments and their data or external counterparts in

Table 6. The first set of moments pertains to child skills. While we target the difference (in

terms of standard deviations) in average initial child skills prior to entering primary school

in the calibration, we do not track how this difference evolves over the school career. In

both data and model, the differences in parental education and school track increase slightly

during secondary school.36

Similarly, the differences in average child skills across school tracks (in terms of standard

deviations) increase slightly throughout secondary school in the data. In our model, however,

these differences, while remaining large, slightly decrease over time. In general, differences

across school tracks are generally larger than differences across parental education.

The second set of moments concerns the relationship between track choice and parental

education. In the data, the share of college-educated parents who send their child to an

academic track school is around 74%, which is similar to what our model produces. For non-

college-educated parents, this share is only 24%. Moreover, we regress a dummy variable

that equals one if a child attends an academic track school on the percentile rank of the

child’s skills prior to secondary school in order to assess the skill gradient in academic track

choice. The estimated coefficient is 0.87 in the data and 1.02 in the model, suggesting that

our model slightly overestimates the importance of child skills for the track choice.

The third set of moments relates to intergenerational mobility. To assess the model’s

validity here, we compare its implications vis-à-vis the estimates on social mobility in Ger-

many reported in Dodin et al. (2021). Using a different data set than we, they regress a

dummy of academic-track school graduation of a child on the percentile income rank of her

parents, finding that a 10 percentile increase in the parental rank is associated with a 5.2

percentage point increase in the probability of graduating from an academic track school. In

our model, a comparable estimate yields a 5.0 percentage point increase. Moreover, Dodin

et al. (2021) report absolute graduation rates for children from the first quintile of the income

rank distribution (Q1) of 34%, and a ratio of the fifth income rank quintile over the first

quintile of 2.13, which our model matches well. We also compare our model-implied estimate

of the intergenerational elasticity of income (IGE) to estimates on German data by Kyzyma

and Groh-Samberg (2018). Compared to their findings, the model produces IGEs that are

within the range of their data counterparts.

Finally, the model understates the degree of inequality in labor incomes as measured by

36See for instance Passaretta et al. (2022); Nennstiel (2022); Schneider and Linberg (2022) who investigate
the NEPS data and find stable or growing socioeconomic status gaps in children’s skills.
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the Gini coefficient slightly. The ratio of average earnings among college-educated to non-

college-educated workers is consistent with the data.

Table 6: Non-targeted moments

Moment Data Model

Child Skill Moments
Differences in Average Skills by Parental Education (in Standard Deviations)

Beginning Secondary School 0.65 0.65
Middle Secondary School 0.68 0.71

Differences in Average Skills by School Track (in Standard Deviations)
Beginning Secondary School 1.02 0.92
Middle Secondary School 1.04 0.77

School Track Choice
% in academic track if college parents 0.64 0.72
% in academic track if non-college parents 0.33 0.25
Coefficient academic track on skills 0.84 1.02

College Graduation
Coefficient college on skills 0.40
Coefficient college on school track 0.39

Intergenerational Mobility
Parental Income Gradient (Dodin et al., 2021) 0.52 0.50
Q5/Q1 A-track on income (Dodin et al., 2021) 2.13 2.50
Q1 A-track on income (Dodin et al., 2021) 0.34 0.26
IGE (Kyzyma and Groh-Samberg, 2018) 0.27-0.37 0.30-0.33

Inequality - Returns to College
Gini Coefficient of Labor Income 0.29 0.26
CL/Non-CL Earnings 1.69 1.76

Notes: This table presents the non-targeted moments and their model-generated
counterfactuals.

Long-term effects of Track Choice for Marginal Students

Dustmann et al. (2017) analyse the long-term labor market effects of early school track

choice in Germany using a quasi-experimental setting. Their identification strategy makes

use of the existence of a (fuzzy) cut-off age for school entry in the German system. Children

that are born just before the cut-off age are less likely to go to an academic track secondary

school, simply because they are younger at the time of the track decision relative to their class

peers. This induces a quasi-randomness in secondary school track choice based on the date

of birth. The authors then investigate the effect of that date of birth on later-in-life wages,

employment, and occupation. They find no evidence that the track attended in secondary

school affects these outcomes for the marginal children around the school entry cut-off.37

37Note that Dustmann et al. (2017) control for the effect that being born after the cut-off age directly
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We use our model-simulated data to perform a similar exercise. In particular, we are

interested in comparing the later-in-life outcomes of children that are very similar in terms

of their state variables at the point of school track choice but end up going to different school

tracks. Naturally, in our model, we cannot distinguish the date of birth for children of the

same cohort. For that reason, we distinguish children by their skills prior to the secondary

school track choice (θj=3). As detailed in Section 3, our child skill development technology

implies that, conditional on parental background, the school track choice is characterized by

a skill threshold, such that all children with skills above that threshold go to the academic

school track and all below go the vocational track school. Conditional on all other states

at the time of the track choice – parental human capital, assets, education, and learning

ability – differences in child skills and hence differences in school track choice in our model

arise from randomly drawn skill shocks. Analogously to Dustmann et al. (2017), we could

alternatively argue that these shocks are (at least partly) the result of within-cohort age

differences of children, which affect their skill development but are not explicitly modeled.

Thus, comparing the later-in-life outcomes of otherwise very similar children with skills

around the tracking threshold can be interpreted as estimating the effect of school track

choice induced by random (age or skill) shocks.

Concretely, we compare children with skills in a 10% interval around the tracking thresh-

old who go to different school tracks, conditional on all other states.38 We evaluate these

marginal children in terms of their labor income at age 30, the present value of their lifetime

labor income, and the present value of their lifetime wealth.39 We find that going to the

academic track instead of the vocational track is associated with a 10.4% higher labor income

at age 30, a 4.5% higher present value of lifetime labor income, and a 4.6% higher present

value of lifetime wealth.

While not zero, these differences seem rather small in relation to overall inequality in

these outcomes. For example, the 4.5% higher present value of lifetime labor income is

around 1/20th of a standard deviation of lifetime labor income. Moreover, in our model, the

track choice is only between one vocational and one academic track, whereas Dustmann et al.

harms a child’s later wages since it means that her labor market entry is later, so that at any given age, she
will have accumulated less work experience.

38This interval amounts to around 1/5 of a standard deviation of child skills prior to the school track
choice. We form quintiles of the continuous states of parental human capital and parental assets and allocate
children into discrete groups pertaining to these quintiles. Moreover, we partition the distribution of the
learning ability ϕ′ into three ability states. For these reasons, the skill threshold can become fuzzy in the
sense that even conditional on these groups, a child with slightly higher skills goes to the vocational track,
whereas a child with slightly lower skills goes to the academic track.

39Lifetime labor income is computed as the discounted sum of all labor income during the adult periods,
and lifetime wealth is that sum plus the initial monetary transfer from the parent to their independent child.
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(2017) consider three tracks, of which two can be classified as vocational. We would generally

expect that children at the margin of these two vocational tracks show fewer differences in

lifetime outcomes. In sum, we conclude that the implications our model entails with respect

to the effect of tracking on marginal children are not at odds with the reduced-form evidence

presented in Dustmann et al. (2017).

5 Quantitative Results

The benefit of our model is that we can use it to understand the effects of school tracking not

only for marginal children but for the whole distribution of children, their educational and

labor market outcomes, as well as their economic mobility relative to their parents. To that

end, we first quantify the sources of lifetime and inter-generational inequality in the spirit of

Huggett et al. (2011) and Lee and Seshadri (2019). Then, we investigate the determinants

and consequences of secondary school track choice, as this constitutes the main novelty of our

model. In this context, we perform counterfactual analysis of economies in which the school

track decision is not affected by parental preferences or in which a policymaker enforces a

strict tracking skill threshold. Finally, we study the effects of a counterfactual policy reform

that postpones the school tracking age to 14.

5.1 Sources of Inequality

Using our model, we can decompose how much of the variation in lifetime economic outcomes

of our model agents can be explained by various factors at various ages. Following the

literature, we focus on lifetime labor income and lifetime wealth as our economic outcomes

of interest. We begin by computing the contribution of each state variable of a freshly

independent child at age 18 to the variation in lifetime labor income and wealth.40 These

states are the school track in secondary school S, initial adult human capital h5, initial

transfers received from the parent a5, the child’s college choice E, parental college education

Ep, and innate learning ability ϕ.

Row 1 of Table 7 summarizes that 70% of the variation in lifetime labor income can

be accounted for by all states at the age of 18. In terms of lifetime wealth, this number is

40Concretely, we follow the approach in Lee and Seshadri (2019) and decompose the unconditional vari-
ances in lifetime labor income and lifetime wealth into conditional variances after conditioning on the state
variables. As before, we partition the continuous states into three equally sized groups.
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Table 7: Contributions to Lifetime Inequality

Share of Explained Variance
Life Stage States Lifetime Earnings Lifetime Wealth

Independence (age 18) (S, ϕ, h5, a5, E,E
p) 70% 65%

(S, ϕ, h5) 63% 60%
(S, ϕ, a5, E,E

p) 54% 45%

School Track Choice (age 10) (S, ϕ′, θ3, h11, a11, E) 23% 30%
(S, θ3, ϕ

′) 20% 21%
(S) 12% 13%

Pre-Birth (parent age 30) (E, ϕ, h8, a8) 10% 20%

Notes: This table shows how much of the variation in lifetime economic outcomes is explained by
different factors at different ages.

around 65%.41 Thus, our model suggests that the majority of lifetime outcomes is already

predetermined when agents become independent and can enter the labor market. Note that

at this stage, all uncertainty regarding initial human capital as well as the college decision

has been made. The remaining unresolved uncertainty over human capital (market luck)

shocks during the working years has, therefore, only limited effects on lifetime inequality.

As Row 2 of Table 7 shows, the explained share of variation in lifetime outcomes remains

relatively high if we only condition on the states before the college decision has been made and

the inter-vivos transfers have been realized: the child’s secondary school track S, her learning

ability ϕ and her end-of-school skills that are transformed into initial adult human capital,

h5. This suggests that the size of the parental transfer a5 and the college choice E, even

when affected by parental education Ep are not major sources of lifetime inequality. Instead,

if we only exclude initial adult human capital h5 (Row 3), the share of explained variance in

lifetime earnings drops by almost 16 percentage points, and the share of explained variance

in lifetime wealth by 20 percentage points. This highlights the importance of variation in

initial human capital, and therefore of end-of-school skills, as a driver of lifetime inequality.42

Interestingly, the correlation between initial adult human capital and transfers received from

parents is negative in the model. This suggests that parents partially offset the disadvantage

their children experience in the labor market from having lower skills by giving them higher

transfers.43

41These numbers are comparable with estimates for the U.S. (Lee and Seshadri, 2019; Huggett et al.,
2011; Keane and Wolpin, 1997)

42We cannot, however, attribute these drops exclusively to initial human capital differences, given the
possible correlation between states.

43This channel is also present, albeit to a smaller degree, in Lee and Seshadri (2019).
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Using the same methodology, we can also evaluate how much lifetime inequality is already

determined at the time of the school track choice. Conditioning on all states at that age,

around 23% of lifetime earnings and 30% of lifetime wealth variation is explained (Row 4).

Again, the majority of this variation seems attributable to differences in child states at that

age. Yet the explained share is clearly smaller than after school, suggesting that the learning

outcomes during secondary school play an important role in shaping later-in-life inequality.

Conditioning on the initial school track choice alone can account for 12% of lifetime earnings

variation and 13% of lifetime wealth variation. However, this should not be interpreted as

the marginal effect of school track choice on lifetime outcomes, as the initial school track

choice is, for example, highly correlated with child skills at that age. In fact, as we argued

in Section 4.5, for children with similar skills, the track choice has only small independent

effects on lifetime outcomes. We investigate the determinants and consequences of the school

track choice in more detail below.

The last row of Table 7 shows the contribution of parental states prior to the birth of

their children to their children’s lifetime outcomes. At this stage, none of the uncertainty

regarding child skill and human capital shocks nor regarding the child’s learning ability has

been realized. Still, around 10% of the variance in lifetime earnings of the yet-to-be-born

child is predetermined by parental education, ability, human capital, and wealth. For lifetime

wealth, this share is even higher at 20%, pointing to the important role of wealth transfers.

For example, using the same decomposition of the unconditional variance of transfers into

parental states pre-birth, we find that almost 31% of variation in transfers is predetermined

prior to the birth of the child. In contrast, only 16% of the variation in human capital at age

18 is predetermined prior to birth, which highlights the role of shocks to child skills during

their childhood and school years.

5.2 School Tracking Age Counterfactual Experiments

An important feature of school tracking policies is the age at which children are allocated

across the tracks. Generally, OECD countries differ remarkably in the school tracking age

(see Figure IV.2.2 in OECD (2013) for an overview). In countries with an early tracking

system in place, such as Germany, it is often argued that postponing the tracking age will

improve equality of opportunity in terms of access to academic education without incurring

efficiency losses in terms of learning outcomes (Woessmann, 2013). While some reduced-form

estimates, exploiting cross-country, federal-state level, or time differences in tracking policies

exist, little is known about the aggregate, distributional, and inter-generational consequences
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or welfare effects of a large-scale reform that postpones the tracking age.

To evaluate such a reform in the context of Germany, we conduct a series of counterfactual

experiments using our calibrated model, in which we postpone the tracking age from age

10 to age 14, or abolish tracking during secondary school altogether. In each experiment,

we assume that in the periods preceding tracking (j = 3), all children attend a school

that belongs to a comprehensive school track, just like during primary school in j = 2. In

each counterfactual experiment, all parameters, in particular those governing school track

preferences and college costs, remain the same as in the baseline economy.

We present the relative changes of selected aggregate and social mobility outcomes of

the counterfactual experiments relative to the baseline economy in Table 8. In addition, we

calculate the effects on the policies on average welfare. As our welfare measure, we use the

percent change in consumption that a newborn in the baseline economy would require to be

equally well off as in the policy counterfactual. As is common in the literature, we calculate

this consumption equivalence welfare measure under the veil of ignorance, that is keeping all

policy function unchanged (see Daruich (2022)).

The experiments differ in the way we assume that prices and instruction paces are allowed

to adjust. In Column (2), all prices (wages per efficiency unit for college and non-college

human capital w0, w1 and the interest rate r) are assumed to remain at the same values as

in the baseline case. That is, we compare the partial equilibrium outcomes of the policy

counterfactual. Moreover, we assume that the instruction pace during the second stage of

secondary school does not adjust. That is, the policymaker sets the same pace as in the

baseline case in both academic and vocational track schools during j = 4. As a result,

parents do not need to form expectations over the average skill levels in each track when

they make the postponed track choice.

In this economy, aggregate output Y is around 0.8% lower than in the baseline case. The

share of college-educated agents decreases by almost 7%, and the share of children in the

academic track in j = 4 similarly decreases by 7.4%. Average human capital is significantly

less than in the baseline economy, which is ultimately a result of less efficient learning during

secondary school. In particular, average end-of-school skills in period j = 5 are around 17%

lower in the late tracking case than in the baseline economy.

As we derived in Section 3, it is theoretically not clear whether later tracking results

in such learning efficiency losses. In particular, later tracking could even increase average

learning outcomes if the variance of the child skill shocks is sufficiently large. The reason for

that is that with large skills shocks, the gain from more homogeneous peer groups in each
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track during the last stage of secondary school can outweigh the losses incurred due to one

more period of learning in a comprehensive track during the first stage of secondary school.

However, despite sizable estimates of the child skill shocks variances, our model predicts that

the learning losses from postponing four years of tracking in Germany cannot be recuperated

by more-efficient learning during the remainder of secondary school.

At the same time, academic track attendance becomes less dependent on the income

and education of the parent after the late tracking policy reform. For example, while in

the early tracking case, 72% of children of college-educated parents go to an academic track

school, this number drops to 68% in the late tracking counterfactuals. The share of children

from non-college households, who attend an academic track school, however, does not drop

relative to the early tracking case, resulting in effectively more children from non-academic

households in academic track schools. In a similar vein, the regression coefficient of academic

track attendance on parental income decreases by around 13%.

On top of that, the college decision becomes significantly less dependent on the secondary

school track in the late tracking counterfactual. Concretely, while the share of academic-

track graduates that go to college drops slightly, the share of vocational-track graduates

going to college triples. This signals that, in the late tracking counterfactual, the benefits

from academic track attendance arising from better chances to go to college are smaller than

in the early tracking case. One reason for this result is that late tracking results in a less

polarized distribution of end-of-school skills compared to early tracking. For example, the

overall variance of end-of-school skills decreases by around 2.5%. Moreover, the difference

in average skills between academic and vocational track children decreases by almost 10%

in the late tracking counterfactual. Since college utility costs are decreasing in end-of-school

skills, this makes the attractiveness of college education become more equal across vocational

and academic school track graduates.

As a consequence, both cross-sectional inequality, as measured by the Gini coefficient of

labor income, and the intergenerational elasticity of earnings decrease in the late tracking

counterfactual. Thus, our quantitative exercise suggests that postponing tracking results

in efficiency losses in terms of learning and aggregate output but comes with the benefit of

reduced inequality and improved social mobility. This result can be viewed in a similar spirit

to the efficiency-mobility trade-off in Benabou (1996), who has shown that desegregation

policies may entail penalties in terms of growth.

If we allow the instruction pace in each track to adjust endogenously while still keeping

prices at their baseline values (in Column (3)), these two opposing effects become slightly
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Table 8: Timing of Tracking Counterfactual Experiments - Results

(1) (2) (3) (4) (5)

Tracking Age 10 14 14 14 Never
Instruction Pace Baseline Baseline Adjusts Adjusts Adjusts

Wages Baseline (GE) PE PE GE GE

Outcome Panel A.

Y 2.05 -0.8% -0.95% -0.2% -0.5%
College Share 0.35 -6.9% -8.1% 0.0% -4.3%
A-Track Share 0.42 -7.4% -9.3% -5.5% -
CL/Non-CL Earnings 1.773 0.0% 0.0% -0.2% 5.0%
Gini Earnings 0.26 -0.4% -0.8% 0.0% 0.0%
Pr(S = 1|Ep = 1) 0.72 -5.6% -6.9% -6.9% -
Pr(S = 1|Ep = 0) 0.25 -0.4% -2.8% -0.8% -
Pr(E = 1|S = 1) 0.71 -2.8% -4.2% -1.4% -
Pr(E = 1|S = 0) 0.08 200% 187% 225% -
Pr(E = 1|Ep = 1) 0.66 -3.9% -4.6% -1.7% -13.2%
Pr(E = 1|Ep = 0) 0.18 -4.3% -4.3% 1.6% 15.2%
Pr(S = A) on Income 0.50 -13.4% -15.4% -14% -
IGE 0.31 -1.9% -2.0% -1.9% -2.1%
Welfare (Cons. Equiv.) - -0.5% -0.6% -0.1% -0.5%

Panel B. (Differences in Log Skills)

θ̄5 0.04 -17.1% -20.0% -5.7% -0.7%
V ar(θ5) 0.12 -0.3% -0.3% -0.1% 0.04%
Std(θ5|S=V ) 0.39 1.0% 0.8% -0.8% -

Std(θ5|S=A) 0.40 -6.9% -6.9% -2.0% -

Notes: This table presents changes in outcomes due to delaying the school tracking choice
by four years (from the age of ten to the age of fourteen). Column (1) shows aggregate
outcomes in the baseline economy, and Columns (2) to (4) display percentage changes due
to the policy change in different scenarios. Column (2): if the pace of instruction and prices
are unchanged. Column (3): if the pace of instruction adjusts but prices are unchanged.
Column (4): if the pace of instruction and prices adjust. Column (5):
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more pronounced. For example, the share of children ending up in the academic track school

drops by over 9%, and the share of college workers drops by around 8% relative to the

baseline, early tracking economy. Aggregate learning also decreases more, resulting in an

output loss of almost 1% in this economy. We can interpret this result again through the lens

of the theoretical illustrations derived in Section 3. In particular, we have argued before that

the equilibrium allocation of children across school tracks that results from a game played

among parents need not be equal to the optimal one that a policymaker seeking to maximize

learning would implement if there are positive direct peer effects. Against this backdrop,

the results in Columns 2 and 3 of Table 8 then suggest that the unadjusted instruction pace

carried over from the early tracking economy is actually closer to the one a policymaker would

optimally choose than the adjusted one resulting from parents making the track decision

while correctly anticipating the distribution of child skills across tracks in equilibrium. Thus

aggregate learning drops. At the same time, the effects on intergenerational mobility and

cross-sectional earnings inequality remain approximately the same as before.

Naturally, some of the loss in efficiency when postponing tracking could be due to the fact

that, in the partial equilibrium late tracking counterfactuals, the share of college-educated

workers overall declines markedly, which impacts aggregate human capital during the working

years as this is assumed to grow at a college-specific rate γj,E. Once we allow for general

equilibrium effects in Columns (4), the college share returns to be approximately the same

as in the baseline economy, as wages adjust to clear the labor markets for college and non-

college type labor. As college education becomes more attractive again, also the share of

children in the academic track rises. Nonetheless, it is (at around 40%) still slightly lower

than in the early tracking baseline economy. Moreover, postponing tracking still decreases

the average end-of-school skills relative to early tracking (by 5.7%), yet markedly less so

than in the partial equilibrium cases.

Thus, despite the fact that the variances of end-of-school skills in each school track

in the late tracking counterfactual are smaller than in the baseline economy, this gain in

homogeneity in peer groups cannot overcome the disadvantage in terms of average skills

stemming from one more period of comprehensive track schooling. As a result, total output

still decreases by 0.2% relative to the early tracking economy.

On the other hand, the resulting general equilibrium continues to feature more mobility

between generations, as the intergenerational earnings elasticity drops by almost 2%. This

is again a consequence of significantly more children going to college after a vocational

track secondary school and a declining share of children from academic parents going to
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academic track schools. Perhaps surprisingly, cross-sectional inequality as measured by the

Gini coefficient on labor income, does not change relative to the early tracking case.

The main takeaways of the policy reform that postpones school tracking to age 14 in

our model can be summarized as follows. First, postponing school tracking incurs efficiency

losses from worse learning outcomes in the additional period of comprehensive school. The

losses cannot be compensated by gains in later years that arise from more homogeneous

peer groups across tracks as the track decision is based on more complete information about

children’s skill evolution. Second, later tracking incentivizes fewer parents to send their child

to an academic track secondary school as the likelihood of college education depends less on

the secondary school track. Third, this results in more equal access to academic secondary

education by parental background, which leads to more equal access to higher education and

more equal labor market outcomes. The quantitative size of this effect depends on whether

the school tracking age reform is evaluated in the short run, when wages and possibly the

instruction paces in schools have not reacted, or in the long run, when general equilibrium

effects are taken into account. Finally, in all cases, later tracking reduces the persistence of

economic status across generations, inducing an efficiency-mobility trade-off.

5.3 School Track Allocation Counterfactuals

According to the theoretical predictions laid out in Section 3, the initial school track should,

to a large degree, be based on child skills. A regression of an academic school track dummy

on all states at the time of the tracking decision using model-generated data confirms that

this is true in our model. Column 1 of Table 9 reports the standardized coefficient estimates

of this regression, indicating that child skills at the time of the track choice, θ3 have the

strongest impact on the track decision. In particular, increasing log child skills by one

standard deviation increases the probability of going to the academic track by 53 percentage

points.

Notwithstanding this, Column 1 in Table 9 also indicates that parental education is the

second most important independent driver of the school track choice, while state variables

like parental human capital or wealth have negligible effects, net of child skills.44 In the

model, parental education can influence the track choice, net of the effects coming through

child skills, human capital, or wealth, in three ways. First, college-educated parents know

that their children learn faster than their non-college-educated counterparts. This comes

44Though not directly comparable, the size of the coefficient on parental education is close to the condi-
tional SES gap in academic school track choice found in Falk et al. (2020) or in our own data.
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from the estimated direct parental education effect in the child skill production technology,

ω5. This knowledge may prompt college parents to send their child to the academic track

even if their child’s skills are lower than those of a child from a vocational parent. Second,

parents know that their child will receive a college taste shock that depends on their parent’s

education, governed by µν,Ep . In anticipation of this, college parents, for instance, may have

a stronger incentive to send their child to an academic track school as this, everything else

equal, increases the likelihood of college admission. However, (non-pecuniary) college costs

also decrease in end-of-school skills. As derived in Section 3, for a set of children with low

preschool skills, end-of-school skills are maximized if they attend the vocational school track.

This force counteracts the incentive of college parents to send their child to the academic

track described before. Third, even net of college tastes, parents have preferences regarding

the school track choice directly. In particular, our calibrated parameters χ(E, S) suggest

that parents bias the school track choice towards their own (college) education level.

Table 9: School Track Choice Determinants
Dependent Variable: S = A

Stand. Coefficient Estimates
(1) (2) (3) (4)

Baseline ω5,j=3,4 = 0 µν,1 = µν,0 = 0 χ0 = χ1 = 0

ϕ′ 0.09 0.10 0.10 0.10
θ3 0.53 0.54 0.58 0.56
E = 1 0.34 0.24 0.23 0.21
h11 0.00 -0.01 0.00 0.00
a11 0.02 0.01 0.02 0.02

Notes: This table reports the standardized coefficient estimates of re-
gressions of an academic school track dummy on all states at the time
of the tracking decision. Column (1) corresponds to the baseline econ-
omy. In Column (2), we shut down the channel of differential parental
inputs in periods 3 and 4. Column (3) considers the case of identical
college taste shock by parental education. In Column (4), we remove
the parental preference bias for education.

To understand how important each of these channels for the school track choice is, we

perform a series of three counterfactual experiments using the calibrated model, in which

we isolate each effect, respectively.45 In particular, we isolate the effects of the first channel

by solving the model with ω5,j=3,4 = 0 yet leaving ω5,j=3,4 > 0 in the simulation of the

distribution. That is, we assume that parents do not take into account the direct effect

of their own education on child skill development during secondary school when making

45In doing so, we again solve for the stationary general equilibrium allowing prices to clear the markets
and average child skills across tracks to be consistent with the parents’ track decision.
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the track decision. The skills, however, still evolve as in the baseline model. Column (2)

in Table 9 reports the (standardized) results of the regression of academic track choice on

all state variables in this counterfactual scenario. The coefficient on parental education

drops as expected, while the coefficient on child skills prior to the track decision increases.

This confirms that the knowledge of direct parental effects on future child skill development

prompts parents to send their child to the same track as their own, net of effects of parental

education through child skills that are already formed.

Column (3) reports the resulting coefficient estimates when isolating the second channel,

working through college tastes. If we equalize the means in college taste shocks across

parental education (to zero), once again, the coefficient on direct parental influence on school

track choice decreases, and the one on child skill increases. Quantitatively, these effects are

comparable to the first channel. Similarly, as reported in Column (4) of Table 9, the direct

influence of parental education on the school track of a child drops by almost 40% if we

shut down parental preferences in school track choice directly by setting χE = 0 for both

education levels. At the same time, a child’s own skills become more important for the track

decision.

As discussed in Section 3, any such forces that impact the school track allocation net of

child skills can, in theory, be detrimental to the efficiency of skill development in secondary

school if they dilute the homogeneity of peer groups in each track.46 An important question

is whether the consequences of such “misallocation” effects are visible not only in terms of

child skill outcomes but also in the aggregate and distributional outcomes in the economy.

Our model provides a suitable environment to investigate such effects. Table 10 provides

an overview of selected outcomes in the baseline model (Column (1)) and compares the

resulting percentage change of these outcomes in two counterfactual scenarios: In Column

(2), we shut down direct parental preferences shifting the school track choice (χ0 = χ1 = 0)

as before.47 Moreover, in Column (3), we report the relative changes in the outcomes from

another counterfactual experiment, in which we enforce that the school track allocation

is governed exclusively by a sharp skill threshold, such that all children with skills below

46Suppose for example, college-educated parents send their children to an academic track school, despite
the fact that their skill level would optimally suggest the vocational track. In that case, this will not
only harm their child’s development but also cause the instruction pace in that track to adjust. This, in
turn, harms the average learning gains of everyone in that track. The same effect occurs in the vocational
track school if parents from non-college backgrounds send their overqualified children there purely based on
preferences.

47We focus on this experiment as we view this as being the easiest to address by policies. In particular,
if preferences for school tracks are coming from information frictions, as argued before, mentoring programs
have proven very effective and almost cost-free in alleviating some of these frictions as argued by Falk et al.
(2020) and Resnjanskij et al. (2021).
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the threshold are allocated to the vocational track, while all children with skills above the

threshold go to the academic track, regardless of the parental background. This threshold is

chosen, such that the overall share of children in the academic track is constant relative to

the baseline economy.48

In both counterfactual scenarios, aggregate output in the economy increases slightly rela-

tive to the baseline economy. Note that the share of college-educated agents in the economy

remains constant relative to the baseline case, which is due to the general equilibrium ef-

fects on the labor market as wages adjust to keep demand for college and non-college labor

approximately constant. In contrast, the share of children that attend an academic track

school increases. In the case without preference-based school track choice, the share increases

by 2.4%. By construction, this share increases even further in the case of the sharp track

threshold, as this threshold implies that roughly 50% of the children go to either track. The

reason for the positive effects on output becomes clear when we study the distribution of

skills in counterfactual experiments.

In particular, the first row in Panel B. of Table 10 suggests that both counterfactual

scenarios lead to an increase in average child skills at the end of secondary school. This

increase arises from the fact that the variance in child skills within the school tracks changes

relative to the baseline case, which impacts learning efficiency. In the first counterfactual

experiment, skills in the academic track become more homogeneous, while the variance

of skills in the vocational track increases only marginally. In the second counterfactual,

the variance of skills in the vocational track decreases while the variance of skills in the

academic track increases. The latter is likely due to the fact that the share of children in the

academic track also increases. Overall, however, the effect on average end-of-school skills is

positive, which then translates into higher output. This is consistent with the explanation

of the efficiency-reducing misallocation effects that arise when parental background drives

the school track choice, independently from skills.

Row 4 of Panel A. reports that without direct parental preferences in school track choice

and even more so with a sharp, purely skill-based allocation rule, the dependence of school

track choice on parental income decreases. Unsurprisingly, skills themselves become more

48As derived in Section 3, the optimal tracking policy from the point of view of a policymaker who is only
interested in maximizing aggregate end-of-school skills and cannot condition on the parental background,
would be to track children at a threshold that is exactly equal to the average child skill level prior to the track
decision. Given that the distribution of child skills is quite symmetric, this would result in a roughly equal
split of children between tracks, which ensures that the variance of child skills in each track is minimized.
However, to be comparable to the baseline economy, we select a threshold that will result in the top 42% of
children in terms of their skills are allocated to the academic track and the rest to the vocational track.
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important in explaining the track choice and the college choice, as shown in Row 5. However,

while the intergenerational elasticity between parent’s and child’s income drops in the first

counterfactual experiment, it slightly increases when introducing a strict skill threshold.

Again, this is likely due to the fact that the share of academic track children also increases

in that case.

Table 10: Effects of School Track Choice Counterfactuals
(1) (2) (3)

Baseline χ0 = 0 Skill
Outcome Economy χ1 = 0 Threshold

Panel A.

Y 2.05 0.1% 0.3%
College Share 0.35 0% -1.4%
A-Track Share 0.42 2.4% 0%
Pr(S = A) on Income 0.50 -25.2% -37.2%
Pr(S = A) on Skills 1.02 1.4% 42.4%
Pr(E = 1) on Skills 0.94 0.4% 2.2%
Pr(E = 1|S = V ) 0.08 13.4% -3.7%
Pr(E = 1|Ep = 0) 0.18 6.0% 10.9%
IGE 0.31 -2.3% -0.3%
Gini Earnings 0.26 0.4% 0.8%
Welfare - -0.2% -0.1%

Panel B.

θ̄5 0.04 0.1% 8.6%
Std(θ3|S=V ) 0.25 -1.2% -34.0%

Std(θ3|S=A) 0.38 -0.9% -18.8%

Notes: Column (1) shows aggregate outcomes in the baseline econ-
omy, Column (2) displays percentage changes entailed by the absence
of parental preference for education, and Column (3) displays per-
centage changes entailed by skill treshold-rule for school tracking. All
results are coming from the new general equilibrium distribution.

Overall, Table 10 paints the following picture. Both counterfactual scenarios achieve

an improvement in child learning during the secondary school years. This improvement

yields a positive effect on aggregate output in the macroeconomy, which is larger when

the track allocation is based on a pure skill threshold, though still relatively modest at

0.2%. At the same time, while decreasing parental track choice preferences improves social

mobility relative to the baseline economy, this cannot be said about the case with an optimal,

threshold-based track allocation.
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6 Conclusion

How important is the design of education policies for the macroeconomic analysis of in-

equality and social mobility? This paper argues that school tracking, a common policy

across many advanced countries, influences not only equality of educational opportunities

for children from different parental backgrounds, but also shapes aggregate learning and,

consequently, aggregate economic efficiency. We add a macroeconomic perspective to the

predominantly reduced-form literature by building a macroeconomic GE model of overlap-

ping generations that specifically zooms in on the children’s schooling years. To that end,

we formulate a simple theory of child skill formation, where child skills depend linearly on

her classroom peers and non-linearly on the instruction pace that is specific to each school

track.

We show that this child skill formation technology alone entails theoretical implications

for the effect of school tracking policies on the distribution of child skills that are in line with

the most robust findings of a vast empirical literature as well as the most popular arguments

in the public debate about tracking. In particular, not every child gains from tracking;

the losses are often concentrated among lower-skilled children. Additionally, tracking can

lead to increased inequality in end-of-school skills. Finally, the effects of tracking on learning

efficiency, while typically positive on average, depend on the age at which children are tracked

and the size of uncertainty regarding the evolution of child skills, highlighting the importance

of the timing of tracking.

We embed this theory into a standard Aiyagari-style life-cycle framework in which parents

make a school track decision for their children. We tailor the model to fit the German

Education System, where the track decision occurs at the age of 10 of the child, and calibrate

it on German data. Our quantitative results suggest that the skills accumulated during

secondary schooling are a major contributor to lifetime inequality and that variation coming

from the initial school track alone can account for around 12% of the variation in eventual

lifetime earnings. Conditional on prior child skills, the track choice is strongly influenced by

parental preferences that cannot be explained by parental inputs into child skills or tastes

for higher education. This gives rise to efficiency-reducing misallocation of children across

tracks. Our results indicate that policies that reduce the parental influence on the school

track choice, such as mentoring policies (Falk et al., 2020), can, therefore, not only improve

social mobility but also lead to modest efficiency gains in terms of aggregate output in the

macroeconomy.

Our paper also shows that the timing of the school tracking age entails a macroeconomic
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trade-off between efficiency and social mobility. Concretely, a policy reform that delays the

school tracking decision by four years (to age 14) in Germany leads to aggregate output

losses, in the long run, that amount to around 0.2% of GDP while decreasing the inter-

generational income elasticity by around 2%, thereby improving social mobility. Key in the

evaluation of this trade-off is the consideration of general equilibrium effects in the labor

market that affect the incentives governing the school track choice. The output losses from

this reform fundamentally stem from learning efficiency losses due to the prolonged time of

comprehensive schooling. At the same time, the social mobility gains result from the track

decision depending less on the parental background and the college decision depending less

on the secondary school track.
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germany. Discussion Paper DP16355, CEPR.

Dohmen, D., Thomsen, M., Yelubayeva, G., and Ramirez, R. (2019). Ermittlung der

lebenshaltungskosten von studierenden: Aktualisierte berechnung anhand der 21. sozialer-

hebung des deutschen studentenwerks. FiBS - Forschungsinstitut für Bildungs- und

Sozialökonomie.

Duflo, E., Dupas, P., and Kremer, M. (2011). Peer effects, teacher incentives, and the impact

of tracking: Evidence from a randomized evaluation in kenya. American Economic Review,

101(5):1739–74.

55



Dustmann, C. (2004). Parental background, secondary school track choice, and wages. Oxford

Economic Papers, 56(2):209–230.

Dustmann, C., Puhani, P. A., and Schönberg, U. (2017). The long-term effects of early track

choice. The Economic Journal, 127(603):1348–1380.

Epple, D. and Romano, R. (2011). Peer effects in education: A survey of the theory and

evidence. In Handbook of social economics, volume 1, pages 1053–1163. Elsevier.

Falk, A., Kosse, F., and Pinger, P. (2020). Mentoring and schooling decisions: Causal

evidence. Journal of Political Economy (forthcoming).

Fuchs-Schündeln, N., Krueger, D., Kurmann, A., Lale, E., Ludwig, A., and Popova, I.

(2023). The fiscal and welfare effects of policy responses to the covid-19 school closures.

IMF Economic Review, pages 1–64.

Fuchs-Schündeln, N., Krueger, D., Ludwig, A., and Popova, I. (2022). The long-term

distributional and welfare effects of covid-19 school closures. The Economic Journal,

132(645):1647–1683.

Fujimoto, J., Lagakos, D., and Vanvuren, M. (2023). Aggregate and distributional effects

of ‘free’ secondary schooling in the developing world. Working Paper w31029, National

Bureau of Economic Research.

Guyon, N., Maurin, E., and McNally, S. (2012). The effect of tracking students by ability

into different schools a natural experiment. Journal of Human resources, 47(3):684–721.
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A Proof of Propositions

Proposition 1

For the proof of this proposition, we denote by θ1 the child skills at the beginning of secondary

school and by θ2 the skills at the end of secondary school. First, we show that maximizing

the aggregate end-of-school skills in a tracking system implies a threshold skill level θ̃1, such

that all θ1 < θ̃1 go to one track, call it S = V and all θ1 > θ̃1 go to the other track, S = A

(and those with θ1 = θ̃1 are indifferent). That is, the existence of a skill threshold is a

necessary condition for optimal end-of-school skills. We restrict ourselves to the case with

different instruction paces across school tracks.

To that end, it is useful to rewrite θ2 in (3) of a child in a given school track S with

instruction pace P ∗
S using Lemma 1 as:

θ2 = θ + αθ̄S +
β2

2δ
+
βγθ1
δ

+
γ2θ1θ̄S
δ

− γ2θ̄2S
2δ

+ η2. (A.1)

After adding and subtracting γ2

2δ
θ21, this can be expressed as

θ2 = θ1 + αθ̄S +
β2

2δ
+
βγθ1
δ

+
γ2θ21
2δ

+ η2 −
γ2

2δ

(
θ21 − 2θ1θ̄S + θ̄2S

)
= θ2(P

∗
θ1
)− γ2

2δ
(θ1 − θ̄S)

2,

(A.2)

where θ2(P
∗
θ1
) denotes end-of-school skills if the child with skills θ1 is taught at her individ-

ually optimal teaching pace P ∗
θ1
. Thus, in a given track, end-of-school skills are a strictly

decreasing function of the distance to the average skill level θ̄S in that track. This is intuitive

given Lemma 1, as it is solely the average skill level to which the instruction pace is optimally

targeted.

Next, assume for contradiction that the expected value of end-of-school skills across

tracks E[θ2] is maximized under a track allocation mechanism that does not feature a skill

threshold. Suppose that P ∗
V < P ∗

A without loss of generality. By Lemma 1, these are

the optimal instruction paces for the average skill level in track V and A, respectively.

Therefore, E(θ1|S = V ) < E(θ1|S = A). Then, because there is no strict threshold, this

means that for any initial skill level θ1, there must be at least two children with initial

skill levels smaller or equal to θ1 that go to different tracks or at least two children with

initial skill levels larger or equal than θ1 that go to different tracks. This implies that

there exists a child with θ′1 ≤ E(θ1|S = V ) that goes to track S = A, and/or a child with
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θ′1 ≥ E(θ1|S = A) that goes to track S = V , and/or two children with skills θ′1 < θ′′1 , with

θ′1, θ
′′
1 ∈ [E(θ1|S = V ),E(θ1|S = A)], where the child with the smaller skill level goes to track

A and the child with the larger skill level to track V .

However, given the condition in (A.2), this child with θ′1 would always benefit from being

in the other track as the distance between her skill level and the average skill level in that

track is smaller than in the track she is in. Note that moving just one child to another

track does not change the average skills in both tracks. Thus, the policymaker can improve

aggregate end-of-school skills by moving this child.

The same line of argument holds in the implied game that parents play when they en-

dogenously sort their children into two tracks. If no skill threshold level exists, there is

always a child that would unilaterally gain if sent to a different track.

Thus, we have established that the existence of a skill threshold is necessary for optimal

end-of-school skills both if a policymaker makes the track allocation directly and when par-

ents play a sorting game. Next, we characterize the thresholds for both cases. Let θ̃1 be the

skill threshold and let S again indicate to which track a child is allocated, now with S = V

for all θ1 ≤ θ̃1 and S = A for all θ1 > θ̃1.

A policymaker solves

max
θ̃1

E(θ2)

⇐⇒ max
θ̃1

E(E(θ2|S))

subject to

PS chosen optimally given Lemma 1.

(A.3)

Using (A.1) and the law of iterated expectations, this maximization problem boils down

to

max
θ̃1

β2

2δ
+
γ2

2δ
E
(
E(θ1|S)2

)
⇐⇒ max

θ̃1

β2

2δ
+
γ2

2δ

(
F (θ̃1)E(θ1|θ1 ≤ θ̃1)

2 + (1− F (θ̃1))E(θ1|θ1 > θ̃1)
2
)
,

(A.4)

where F (.) denotes the cumulative distribution function of the normal distribution. Note

that the right term is just the expected value (across tracks) of the conditional expected

values of initial skills squared, conditional on the school track. This corresponds to the

variance of the conditional expected values, which depend on the skill threshold θ̃1. Using
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the law of total variance, the maximization problem can thus be rewritten as (dropping the

constant term)

max
θ̃1

E(θ2)

⇐⇒ max
θ̃1

γ2

2δ

(
σ2
θ1
− E(V ar[θ1|S])

)
.

(A.5)

Thus, the policymaker chooses optimally a threshold such that the expected variance of skills

in each track is minimized. The unique solution is then to set θ̃∗1 = E θ1 = 0, that is, to split

the distribution exactly in half. This makes the peer groups in each track as homogeneous

as possible, which maximizes average and aggregate learning.

Next, we characterize the threshold that arises endogenously from the sorting game played

by the parents. The equilibrium condition maintains that at this threshold, a parent is just

indifferent between tracks as her child’s skills would be equivalent in both tracks. A parent

of a child with skill θ̂1 is indifferent between tracks V and A iff

(
α + θ̂1

γ2

δ

)
E(θ1|θ1 ≤ θ̂1)−

γ2

2δ
E(θ1|θ1 ≤ θ̂1)

2

=

(
α + θ̂1

γ2

δ

)
E(θ1|θ1 > θ̂1)−

γ2

2δ
E(θ1|θ1 > θ̂1)

2

⇐⇒
(
−α− θ̂1

γ2

δ

)
σθ1

f(θ̂1/σ)

F (θ̂1/σ)
− γ2

2δ
σ2
θ1

f(θ̂1/σ)
2

F (θ̂1/σ)2

=

(
α + θ̂1

γ2

δ

)
σθ1

f(θ̂1/σ)

1− F (θ̂1/σ)
− γ2

2δ
σ2
θ1

f(θ̂1/σ)
2

(1− F (θ̂1/σ))2

(A.6)

where F (·) denotes the CDF of a standard normally distributed random variable, and f(·) is
its density function. We solve for the root θ̂1 that solves (A.6) numerically. In all cases with

reasonable parameter values, (A.6) is a monotone function, such that the root is unique if it

exists. In the special case without direct peer externality, i.e., α = 0, the solution is θ̂1 = 0,

as can be directly seen from (A.6). When α > 0, the root is smaller than 0, i.e. θ̂1 < 0.

Proposition 2

The proof of this Proposition follows directly from (A.5). In a comprehensive system, the

variance of initial skills across tracks is just equal to the overall variance since there is only
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one track. In a tracking system, the expected value of the conditional variances of skills

across tracks is smaller than the overall variance, by the law of total variance and provided

that the instruction paces are different across tracks. This holds for every skill threshold,

not just for the optimal one. Thus average learning is higher.

Next, we show that a full tracking system leads to a “fatter” right tail of the end-of-school

skill distribution compared to a comprehensive system. To see this, consider the child who,

in expectation, has the highest end-of-school skill in a comprehensive system. Since θ2 is

monotonically increasing in θ1 in a given track (see (A.1)), this is the child with the highest

initial skill, say θ1,max. Moreover, from the properties of a truncated normal distribution,

we know that, for any skill threshold θ̃1, average skills in the A track, θ̄1,A are larger than

the unconditional average, θ̄1,C = 0. Thus, the squared distance between θ1,max and θ̄1,A in

a tracking system is smaller. Taken together, (A.2) implies that the child with initial skill

θ1,max ends up with larger end-of-school skills compared to a comprehensive system, which

skews the distribution positively.

Finally we derive the range of winners and loser from a tracking system relative to a

comprehensive system. Given that θ2 are monotonically increasing in θ1 in every track, the

range is characterized by the intersection of the linear function θ2,C(θ1, θ̄1,C) with θ2,V (θ1, θ̄1,V )

and θ2,A(θ1, θ̄1,A). For any skill threshold, the lower intersection θ1,L hence solves

θ1,L + αθ̄1,C +
β2

2δ
+
βγ

δ
θ1,L +

γ2

δ
θ̄1,Cθ1,L − γ2

2δ
θ̄21,C + η2

= θ1,L + αθ̄1,V +
β2

2δ
+
βγ

δ
θ1,V +

γ2

δ
θ̄1,V θ1,L − γ2

2δ
θ̄21,V + η2

⇐⇒ θ1,L =
1

2
θ̄1,V − αδ

γ2
.

(A.7)

Similarly, the upper intersection is given at

θ1,U =
1

2
θ̄1,A − αδ

γ2
. (A.8)

For any skill threshold θ̃1, the interval [θ1,L, θ̄1,U ] is non-empty. Hence, there are always

children with initial skill levels inside this interval who lose in terms of end-of-school skills

in a full tracking system relative to a comprehensive system. Every child outside of this

interval gains relative to the comprehensive system.

With α = 0, the tracking skill threshold is at θ̃1 = 0 even if parents endogenously

sort their children. Hence, children with initial skills inside a symmetric interval around

0, [1
2
θ̄1,V ,

1
2
θ̄1,A], lose relative to a comprehensive track, since θ̄1,V = −θ̄1,A if θ̃1 = 0. The
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average loss of a child in this interval is equal to γ2

2δ
θ̄21,V = γ2

2δ
θ̄21,A.

If α > 0, and the policymaker enforces the tracking skill threshold θ̃1 = 0, the losses from

tracking are concentrated among children in the V track. To see this, note that every child

with initial skill in the interval [θ1,L, 0] is allocated into the V track but loses relative to a

comprehensive system. Similarly, every child with an initial skill inside [0, θ1,U ] is allocated

to track A but loses relative to a comprehensive system. With α > 0, |θ1,U | < |θ1,L| and
hence, the range of children in the A track that lose is smaller. The interval [0, θ1,U ] may

even be empty in which case only children in the V track lose from tracking.

Proposition 3

For the proof of this proposition, we denote by θ1 the child skills at the beginning of secondary

school, by θ2 the skills at the intermediary stage of secondary school and by θ3 the skills at

the end of secondary school. First, we characterize the variance of θ2. We start by collecting

expressions for conditional and unconditional first and second moments.

The unconditional expected value of θ2 in track V , if everyone went to V is

E(θ2,V ) =
β2

2δ
+ αθ̄1,V − γ2

2δ
θ̄21,V

=
β2

2δ
− ασθ1

f(θ̃1/σθ1)

F (θ̃1/σθ1)
− γ2

2δ
σ2
θ1

f(θ̃1/σθ1)
2

F (θ̃1/σθ1)
2
.

(A.9)

The unconditional expected value of θ2 in track A, if everyone went to A is

E(θ2,A) =
β2

2δ
+ αθ̄1,A − γ2

2δ
θ̄21,A

=
β2

2δ
+ ασθ1

f(θ̃1/σθ1)

1− F (θ̃1/σθ1)
− γ2

2δ
σ2
θ1

f(θ̃1/σθ1)
2

(1− F (θ̃1/σθ1))
2
.

(A.10)

The variance of θ2 in a comprehensive system is

V ar(θ2,C) = E(
(
θ2 − E(θ2))2

)
= (1 + β)2σ2

θ1
+ σ2

η2

σ2
θ2,C

+ σ2
η2
,

(A.11)

where we define σ2
θ2,C

to be the variance of θ2 net of the additive skill shock variance.

Second, we can derive the expected value of end-of-school skills in the 2-period model in

a late tracking system as
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E(θ3,LT ) = E(E(θ3,LT |S2
LT ))

= E(θ2,LT ) +
β2

2γ
+ (α + β)E(E(θ2,LT |SLT )) +

γ

2
E(E(θ2,LT |SLT )

2)

= (2 + α + β)
β2

2γ
+
γ

2
[σθ2,LT − E(V ar(θ2,LT |SLT ))],

(A.12)

where E(θ2,LT ) and σ2
θ2,LT

are just equal to the mean and variance of the comprehensive

system in the one-period model (see equation (A.11)). The variable SLT indicates the track

selection in period 2, which follows the cut-off rule SLT = V if θ2,LT ≤ θ̃2,LT and SLT = A

otherwise. The cut-off that maximizes (A.12) is θ̃∗2,LT = E(θ2,LT ) = β2

2γ
. This follows as (A.12)

mirrors that of average end-of-school skills in the full tracking system of the one-period model

in that average and aggregate θ3,LT decrease in the expected variance of skills in period 2

across tracks.

Similarly, we find the expected value of end-of-school skills in the 2-period model in an

early tracking system as

E(θ3,ET ) = E(E(θ3,ET |S2
ET ))

=
β2

2γ
+ (1 + α + β)E(E(θ2,ET |SET )) + β

γ

2
E(E(θ2,ET |SET )

2)

=
β2

2γ
+ (1 + α + β)

(
β2

2γ
+ β

γ

2
[σ2

θ1
− E(V ar(θ1,ET |SET ))]

)
+ β

γ

2
E(E(θ2,ET |SET )

2

=
β2

2γ
+ (1 + α + β)

(
β2

2γ
+ β

γ

2
[σ2

θ1
− E(V ar(θ1,ET |SET ))]

)
+ β

γ

2
[σ2

θ2,ET − E(V ar(θ2,ET |SET ))].

(A.13)

Comparing (A.12) and (A.13), the condition that governs if average end-of-school skills

in a late tracking system are larger than in an early tracking system reads

E(θ3,LT )− E(θ3,ET )

= β
γ

2

(
E(E(θ2,LT |SLT )

2)− E(E(θ2,ET |SET )
2)
)

− (1 + α + β)β
γ

2
E(E(θ1|SET )

2) > 0.

(A.14)

The last term of (A.14) represents the advantage of early tracking in the first stage of the
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schooling years. It stems from the smaller expected conditional variances of initial skills

among children that are tracked relative to the overall variance. The conditional expected

value of θ2 in a late tracking system is given by

E(θ2,LT |SLT = V ) =
β2

2γ
− σθ2,LT

f(θ̃2,LT/σθ2,LT )

F (θ̃2,LT/σθ2,LT )
(A.15)

and

E(θ2,LT |SLT = A) =
β2

2γ
+ σθ2,LT

f(θ̃2,LT/σθ2,LT )

1− F (θ̃2,LT/σθ2,LT )
, (A.16)

where the unconditional variance of θ2 in a late tracking system is given by σ2
θ2,LT

= σ2
θ2,C

+

σ2
η2
, i.e. by the one computed in equation (A.11). Since late tracking occurs after the

realization of skill shocks in period 2, this variance additively includes the variance of these

shocks.

Condition (A.14) is generally ambiguous and hard to interpret for arbitrary skill thresh-

olds. We focus again on the optimal tracking case, that is, the case with skill threshold

θ̃1 = E(θ1) = 0 and θ̃2 = E(θ2,LT ) = β2

2γ
. In that case, we can write the expressions for the

various expected square conditional expected values as follows:

E(E(θ1|SET )
2) = 2χσ2

θ1

E(E(θ2,LT |SLT )
2) =

β4

4γ2
+ 2χ(σ2

θ2,LT
+ σ2

η2
)

E(E(θ2,ET |SET )
2) =

β4

4γ2
+ 2χσ2

θ1

(
α2 + γ2f(0)2σ2

θ1
− β2

2

)
+2f(0)σ2

θ1

(
β2 + 2α(1 + β)− (2γf(0)σθ1)

2
)
+ 2χ(σ2

θ2,LT
+ 2χγ2σ2

θ1
).

Condition (A.14) then becomes

E(θ3,LT )− E(θ3,ET )

= β
γ

2

(
2χσ2

η2
− 2χσ2

θ1

(
α2 + γ2f(0)2σ2

θ1
− β2

2

+ β2 + 2α(1 + β)− 4γ2f(0)2σ2
θ1
+ 2χγ2σ2

θ1
+ 1 + α + β

))

=
γ

π

(
σ2
η2
− σ2

θ1

(
1 + α + α2 + β +

β2

2
+ 2α(1 + β) +

γ2

2π
σ2
θ1

))
> 0.

(A.17)
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From this, Proposition 3 follows.

B Equilibrium Definition

We introduce some notation to define the equilibrium more easily. Let xj ∈ Xj be the age-

specific state vector of an individual of age j, as defined by the recursive representation of

the individual’s problems in Section 2. Let its stationary distribution be Θ(X) . Then, a

stationary recursive competitive equilibrium for this economy is a collection of: (i) decision

rules for college graduation {dE(x5)}, for school track {dS′
(x11)}, consumption, labor supply,

and assets holdings {cj(xj), nj(xj), aj(xj)}, and parental transfers {a′5 (xj)}; value functions

{Vj (xj)} ; (iii) aggregate capital and labor inputs {K,H0, H1}; (iv) prices {r, w0, w1} ; and

(v) average skill levels among children in school track S ′ {θ̄′j′,S′} such that:

1. Given prices and average skill levels among children in each school track, decision

rules solve the respective household problems and {Vj (xj)} are the associated value

functions.

2. Given prices, aggregate capital and labor inputs solve the representative firm’s problem,

i.e. it equates marginal products to prices.

3. Given average skill levels among children in each school track, allocation of children in

school track solves the parent’s problem, i.e. actual average skill levels are consistent

with parents’ prior.

4. Labor market for each education level clears.

For high-school level:

H0 =
16∑
j=5

∫
Xj

nj(xj) hj (xj) dΘ(X | E = 0) +
5∑

j=5

∫
Xj

nj(xj) hj (xj) dΘ(X | E = 1)

where the first summation is the supply of high-school graduates while the second is

the labor supply of college students.

For college level:

H1 =
16∑
j=6

∫
Xj

nj(xj) hj (xj) dΘ(X | E = 1).

5. Asset market clears

K =
20∑
j=5

∫
Xj

aj(xj)dΘ(X),
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which implies that the goods market clears;

6. The distribution of X is stationary: Θ(X) =
∫
Γ(X)dΘ(X).

C German Education System

In this section, we provide an overview of the most important features of the German Ed-

ucation and School System. A more extensive description can be found, for example, in

Henninges et al. (2019). Figure C.1 illustrates a simplified structure of the system, starting

in Grade 4 and ending with tertiary education.

Generally, schooling is mandatory in Germany for every child starting at age six and

lasting for nine or ten years. At age six, all children visit a comprehensive primary school

that lasts the first four grades.49 After that, children are allocated into traditionally three

different secondary school tracks: A lower vocational track, a medium vocational track, and

an academic track. However, triggered by the so-called PISA shock in the early 2000s, federal

states in Germany have started reforming their secondary school system. In particular, the

two vocational tracks have often been combined into one, resulting in a two-track system in

the majority of federal states (Bellenberg and Forell, 2012). For that reason, and because

even if still two vocational tracks exist, they are much more similar in comparison to the

academic track schools, we opt to restrict our analysis in this paper to two school tracks.

Generally, the school tracks differ in the curricula taught, the length of study, and the

end-of-school qualifications that come with graduation. In particular, only the academic

track schools end with a university entrance qualification that directly allows children to go

to college. This requires the completion of the second stage of secondary school, typically

grades 10/11 to 12/13. Graduating from a vocational track occurs after Grades 9 and 10 and

allows children to take up vocational training in blue-collar jobs or proceed to a professional

school that prepares for entry into white-collar, business, or skilled trade occupations. At

this stage, there is considerable scope for mobility between tracks. Firstly, professional

degrees often allow access to university studies in selected fields. Secondly, children can

directly switch to an academic track school if their school marks and achievements admit

that. Finally, after having worked for a number of years in vocational jobs, access to some

college degrees can be possible. At the same time, it is, of course, possible to switch from

an academic track school to a vocational training or job after the mandatory education has

been completed.

49In two federal states, Berlin and Brandenburg, comprehensive primary school lasts the first 6 grades.
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Figure C.1: Simplified Structure of the German Education System

The public expenditure per student does not differ significantly across school tracks.

Table C.1 lists average per-student expenditures across the various school types in the years

2010 to 2020. Across these years, public expenditures by student were highest in pure

lower vocational track schools. Expenditures in academic track schools were roughly equal

compared to expenditures in joint vocational track schools. The bulk of these expenditures

is attributable to teacher pay (around 80%) and the rest for investments into buildings,

equipment etc. This suggests that resource differences across school tracks should not be a

main driver behind achievement differences, on average.

A remaining driver behind achievement differences across school tracks could be the teach-

ing quality. In particular, higher-quality teachers could select for academic track schools.

However, regardless of the secondary school track, becoming a teacher requires university

studies in the range of 7 to 10 semesters and a similar university degree. On top of that, the

differences in wages across school tracks are no longer significant in many federal states. For

example, both tenured teachers at vocational track schools and teachers at academic track

schools are eligible for the same public pay grade in most northern and eastern federal states

already.
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Table C.1: Per-Student Public Expenditures across School Types and Years

Year Primary Lower Voc. Upper Voc. Joint Voc. Acad. Compr.

2010 5,200 € 7,100 € 5,300 € 8,000 € 6,600 € 6,600 €
2011 5,500 € 7,300 € 5,600 € 8,000 € 7,100 € 7,100 €
2012 5,400 € 7,900 € 5,700 € 7,700 € 7,200 € 7,200 €
2013 5,600 € 8,200 € 5,900 € 7,700 € 7,500 € 7,500 €
2014 5,900 € 8,700 € 6,200 € 8,000 € 7,800 € 7,800 €
2015 6,000 € 8,900 € 6,400 € 8,000 € 7,900 € 8,000 €
2016 6,200 € 9,300 € 6,700 € 8,100 € 8,100 € 8,200 €
2017 6,400 € 9,800 € 7,000 € 8,300 € 8,500 € 8,600 €
2018 6,700 € 10,400 € 7,400 € 8,700 € 8,800 € 9,100 €
2019 7,100 € 11,200 € 7,900 € 9,200 € 9,300 € 9,500 €
2020 7,400 € 12,200 € 8,200 € 9,500 € 9,600 € 10,000 €
Source: Statistisches Bundesamt (Bildungsfinanzbericht, Bildungsausgaben - Ausgaben je Schüler, Sonderauswertung)

D Measuring Child Skills in the NEPS

In this section, we provide an overview of our measures of child skills. One of the main goals

of the NEPS project is to document the development of competencies of individuals over their

lifespan (Neumann et al., 2013). To that end, the NEPS carefully designs and implements

regular tests of the respondents’ competencies along several domains. Given its central

role not only in educational contexts but also as a predictor for later labor market success,

we focus on mathematical competencies. Following the guidelines set by the Program for

International Student Assessment (PISA), the mathematical competence domain is not just

designed to assess the extent to which children have learned the content of school curricula

but also to judge a child’s ability to use mathematics to constructively engage with real-life

problems (Neumann et al., 2013). The test, therefore, includes items related to “overarching”

mathematical content areas that are consistent across all ages, such as quantity, change &

relationships, space & shape, as well as several cognitive components, such as mathematical

communication, argumentation, or modeling. The age-specific test items include primarily

simple and complex multiple-choice questions, as well as short-constructed responses.50

In order to use these questions for the analysis of latent competencies, they need to be

scaled. The NEPS (similar to the PISA) uses a scaling procedure that follows item response

theory (IRT). IRT is a popular instrument in psychometrics to extract latent ability or other

factors from test data. To quote the NEPS: “IRT was chosen as scaling framework for the

newly developed tests because it allows for an estimation of item parameters independent of

50A simple multiple choice question consists of one correct out of four answer categories, and complex
multiple choice questions consist of a number of subtasks with one correct answer out of two options. Short-
constructed responses typically ask for a number (Pohl and Carstensen, 2012). The mathematical competence
test primarily consists of simple multiple-choice questions.
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the sample of persons and for an estimation of ability independent of the sample of items.

With IRT it is possible to scale the ability of persons in different waves on the same scale,

even when different tests were used at each measurement occasion” (Pohl and Carstensen,

2013).

The most important scaling model used by the NEPS is the Rasch model. This model

assumes that the right answers given to a set of questions by a number of respondents contain

all information needed to measure a person’s latent ability as well as the question’s difficulty.

It does so by positing that the probability that person v gives the right answer to question

i is given by:

p(Xvi = 1) = 1− p(Xvi = 0) =
exp(θv − σi)

1 + exp(θv − σi)
, (D.1)

where θv denotes the latent ability of person v and σi is a measure of the question’s difficulty.

Thus, this model maps the total sum score of an individual into an ability parameter estimate.

The scale is arbitrary. However, the ability estimate is cardinal.51 This model is estimated via

(weighted) conditional maximum likelihood under a normality assumption on latent ability.

Table D.1 describes NEPS samples of mathematics assessments by cohort and Grade

level.

E Details on Child Skill Technology Estimation

We employ a linear measurement system for the logarithm of latent skills in each period that

is given by

Mi,k,j = µk,j + λk,jθi,j + ϵi,k,j, (E.1)

where Mi,k,j denotes the kth measure for latent log skills of child i in period j. In each

period, we have at least 3 different measures in our data, which typically constitute the

achievement (item response theory) test scores of each child and are discussed in detail

below. The parameters µk,j, and λk,j denote the location and factor loading of latent log

skills, respectively. By ϵi,k,j, we denote the measurement error. The parameters and measures

are defined conditional on child’s age and gender, which we keep implicit.

Following Cunha et al. (2010), we normalize E(θj) = 0 and λ1,j = 1 for all j. That is, the

first-factor loading is normalized to 1 in all periods.52 We further normalize the measurement

51It is interval-scaled asBallou (2009) puts it. That means an increase of 5 points from 15 to 20 represents
the same gain in achievement as from 25 to 30.

52We are aware of the potential bias that can arise from this assumption (see Agostinelli and Wiswall
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Table D.1: NEPS Mathematic Assessment Samples

Information on Par-
ents’ Education

Information on
School Track

Obs. Obs. % College
Parents

Obs. % Ac.
Track

Cohort 1 K1 2,014 1,709 51%
Cohort 2 G1 6,352 5,784 46% 2,731 63%

G2 5,888 5,425 47% 2,651 62%
G4 6,610 6,068 46% 3,229 63%
G7 2,479 2,410 51% 2,208 58%

Cohort 3 G5 5,193 3,856 38% 4,369 52%
G7 6,191 4,214 38% 5,525 49%
G9 4,888 3,387 38% 4,356 47%
G12* 3,785 2,830 41% 3,331 58%

Cohort 4 G9 14,523 8,474 35% 14,215 40%
G12* 5,733 3,767 24% 5,530 23%

Notes: This table describes NEPS mathematics assessments by cohort. Note that in Grade
12, the assessments are different by school track, which makes the comparison of test scores by
parental education or school track impossible. Source: NEPS.

errors, such that E(ϵk,j) = 0 for all j. Given that, the location parameters µk,j are identified

from the means of the measures. In order to identify the factor loadings, we further assume

that the measurement errors are independent of each other across measures and independent

from latent skills. Under these assumptions and given that we have at least three measures

of latent skills available in each period, we can identify the loadings on each measure in each

period by ratios of covariances of the measures (as in Agostinelli et al. (2019)):

λk,j =
Cov(Mk,j,Mk′,j)

Cov(M1,j,Mk′,j)
(E.2)

for all k, k′ > 1 and k ̸= k′. Rescaling the measures by their identified location and scale

parameters then gives us error-contaminated measures of latent skills for each period as

θi,j =
Mi,k,j − µk,j

λk,j
− ϵi,k,j
λk,j

= M̃i,k,j −
ϵi,k,j
λk,j

. (E.3)

Equipped with identified latent variables up to measurement error for all periods, we can

(2016)). However, contrary to their case, we measure three different stages of child development, where
each stage comes with a new cohort of children (see below). Thus we cannot follow children over multiple
periods. Moreover, even if we could, the data we use does not contain age-invariant measures according to
their definition.

A-13



plug these into the child skill technology (27), which yields

M̃i,k,j+1 = κ0,j + κ1,jM̃i,k,j + κ2,jM̃
2
i,k,j + κ3,jM̃−i,j,S

+ κ4,j(M̃i,k,j − M̃ j,S)
2 + κ5,jEi + ζi,k,j+1,

(E.4)

where M̃−i,j,S refers to the expected value of the kth transformed measure across all children

other than i in a classroom in track S and M̃ j,S to that of the expected value of the measures

across all children in a school that belongs to track S.

Importantly, the residual ζi,k,j+1 now contains not only structural skill shocks, ηi,j+1, but

also the measurement errors, ϵi,k,j as well as interactions of the measurement error with the

rescaled measures and even the variance of the measurement errors. For that reason, even

if a standard assumption of mean independence of the structural shocks η conditional on all

independent variables holds, an OLS estimator of (E.4) will be biased. To account for that,

we follow the literature and use Bartlett factors scores to aggregate the different measures

into an unbiased score (Agostinelli et al., 2023).

F Empirical Evidence on School Track Selection

In this section, we present reduced-form evidence on the effect of parental background on

the school track choice for their children.

Table F.1 shows that parents frequently deviate from teacher recommendations toward

their own education. Research on school tracking has found that parents with higher socioe-

conomic status are more likely to send their child to an academic track school than parents

with a lower socioeconomic status, even conditional on school performance or achievement

test scores before the track decision (Falk et al., 2020). Consistently, we find that 54% of

children from college-graduated parents receive a teacher recommendation for the academic

track versus 39% of children from non-college-graduated parents.53 In addition, Table F.1

shows that while around 23% of parents who themselves have a college education overrule

a vocational recommendation, only 5% of them overrule an academic recommendation. At

the same time, while 16% of non-college graduated parents overrule an academic recommen-

dation, only 14% of them overrule a vocational recommendation. There may be multiple

reasons behind these deviations. For example, parents may have more information about

53We define children from college parents if they have at least one of the parents with a college education.
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Table F.1: School Track Choice

% in the top 25% in G9

Recommendation Shares % deviate if followed if deviated

College Parents
Academic 54% 5% 37% 81%
Vocational 46% 23% 45% 9%

Non-college Parents
Academic 39% 16% 24% 54%
Vocational 61% 14% 32% 10%

Notes: This table provides information on school track choice by parental education
and teacher recommendation. All observations are weighted with cross-sectional weights.
Source: NEPS, Cohort 3.

their child’s skills than teachers. However, the deviations are not symmetric across tracks,

and parents are more likely to deviate from teachers’ recommendations for their own educa-

tion.

Parents may have several reasons for frequently overruling teachers’ recommendations

when they differ from their own education. For instance, they may be better equipped to

support their child in a track with which they are more familiar. However, the last columns

of Table F.1 show that children of college-educated parents who deviate from the recom-

mended vocational track do relatively poorly compared to those who received the academic

recommendation. In fact, only 9% of children of college-educated parents who deviated from

the vocational track recommendation belong to the top quartile of skills four years later

in Grade 9. In contrast, the same number reaches 37% among those who received an aca-

demic track recommendation. This suggests that the support provided by college-educated

parents does not fully compensate for relatively low skill levels. Conversely, children from

non-college-educated parents who deviate toward the vocational track do remarkably well

in Grade 9, with over half of them belonging to the top quartile of skills. As a comparison,

32% of those with a vocational recommendation reached the top quartile in Grade 9. Those

numbers indicate that these students might have succeeded in the academic track as well.

Thus, we argue that the relatively high number of deviations towards parents’ education is

partly driven by a parental bias towards their own education, which is not only motivated

by parents’ ability to support the child or their intrinsic knowledge of their skills.
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G Details on Moments Estimation

Table G.1 describes the evolution of child skills over time using the identified latent variables.

Table G.1: Evolution of Skills

Skills Math grades

Statistics (1) (2) (3) (4) Source

Group Differences
Differences in average skills by parental education (in standard deviations)
Grade 1 0.541 0.530 0.462 0.459 NEPS Cohort 2
Grade 5 0.647 0.658 0.579 0.605 NEPS Cohort 3
Grade 9 0.774 0.672 0.697 0.598 NEPS Cohort 3
Grade 9 0.677 0.710 0.623 0.659 NEPS Cohort 4
Differences in average skills by school track (in standard deviations)
Grade 1 0.847 0.840 0.769 0.767 NEPS Cohort 2
Grade 5 1.022 1.104 0.986 1.067 NEPS Cohort 3
Grade 9 1.089 1.058 1.113 1.040 NEPS Cohort 3
Grade 9 1.036 1.110 0.998 1.062 NEPS Cohort 4
Rank-Rank correlations
Panel A: All students
Grades 1 to 4 0.72 0.72 0.58 0.59 NEPS Cohort 2
Grades 5 to 9 0.79 0.79 0.71 0.71 NEPS Cohort 3
Panel B: Academic students
Grades 1 to 4 0.61 0.62 0.45 0.46 NEPS Cohort 2
Grades 5 to 9 0.69 0.68 0.59 0.57 NEPS Cohort 3
Grades 9 to 12 0.72 0.74 0.66 0.65 NEPS Cohort 3
Grades 9 to 12 0.74 0.74 0.59 0.66 NEPS Cohort 4
Panel A: All students
Grades 1 to 4 0.64 0.64 0.50 0.53 NEPS Cohort 2
Grades 5 to 9 0.75 0.74 0.64 0.63 NEPS Cohort 3

Weights Yes No Yes No

Notes: This table provides information on average differences in skills in one standard deviation
unit by parental background and school track over time as well as skill rank-rank correlations.
In columns (1) and (3), all observations are weighted with longitudinal weights, while in columns
(2) and (4), they are not. Columns (1) and (2) present the results for latent skills corrected for
measurement errors, while columns (3) and (4) present the results for uncorrected latent skills
of maths grades. Sources are mentioned in the last column.
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Table G.2: Distribution of Students, School Tracks and Parental Education

Statistics Value Source Comment

% of college parents 35% NEPS Cohort 4
Track choice

% in ac. track 44% Educational report p.110 42% in NEPS Cohort 4
Ratio % ac. track if college
parents to % if non-college
parents

1.95 NEPS Cohort 4

% in ac. track if E = 1 64% Implied
% in ac. track if E = 0 33% Implied

Track recommendation
Deviation if recom. S = 0 and
E = 1

23% NEPS Cohort 4

Deviation if recom. S = 1 and
E = 0

16% NEPS Cohort 4

% ac. recom. 44% Implied
% ac. recom. if E = 1 54% Implied
% ac. recom. if E = 0 39% Implied

College graduation
% who graduate from college 35% Model assumption
Ratio % college if academics
to % if vocational

5.23 NEPS Cohort 4

% college if academics 64% Implied
% college if vocational 12% Implied
Ratio % college if college par-
ents to % if non-college par-
ents

2.27 Educational report p 172 We use the fact that 45% of
college graduated are from
non-college parents and the
other numbers to calculate
the ratio. It is 2.13 in NEPS
Cohort 4.

% college if college parents 55% Implied
% college if non-college par-
ents

24% Implied

Notes: This table provides information on the distribution of students by school track, college education, and parental
education with corresponding sources. Observations from the NEPS are weighted using cross-sectional weights.
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Table G.3: Robustness Checks: Child Skill Technology Parameters Estimates

Grade 9 on Grade 5 Skills Math grades

Dependent Variable: θi,j+1 (1) (2) (3) (4)

ω̂1,3 θi,j 0.647*** 0.664*** 0.517*** 0.519***
(0.025) (0.022) (0.030) (0.025)

ω̂2 θ̄−i,j,S 0.028 0.003 0.025 0.022
(0.021) (0.020) (0.031) (0.024)

ω̂3 θ2i,j 0.006 0.008* 0.015** 0.010**
(0.005) (0.004) (0.006) (0.005)

ω̂4 (θi,j − θ̄j,S)
2 -0.013** -0.011* -0.020** -0.012*

(0.006) (0.006) (0.008) (0.007)
ω̂5,3 E = 1 0.033*** 0.034*** 0.045*** 0.033***

(0.012) (0.010) (0.014) (0.012)

Obs. 1,676 1,847 1,708 2,084
Weights Yes No Yes No

Notes: This table presents the coefficients of regressions of skills in grade 9 on skills in
grade 5, skills squared, the average skill level of peers, distance to the average skill in the
track squared, and parent’s education dummy. In Columns (1) and (3), all observations
are weighted using longitudinal weights, while in Columns (2) and (4), they are not.
Standard errors are clustered at the school level. Columns (1) and (2) present the results
for latent skills corrected for measurement errors, while columns (3) and (4) present the
results for uncorrected latent skills of maths grades. Models control for year of birth,
gender, and school-fixed effects. Source: NEPS.
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Table G.4: Robustness Checks: Alternative Child Skill Technology Parameters Estimates

Grade 9 on Grade 5 Skills Math grades

Dependent Variable: θi,j+1 (1) (2) (3) (4)

ω̂1,3 θi,j 0.626*** 0.657*** 0.505*** 0.515***
(0.024) (0.021) (0.028) (0.023)

ω̂2 θ̄−i,j,S 0.024 0.001 0.018 0.020
(0.021) (0.020) (0.030) (0.024)

−2 ∗ ω̂4 θi,j ∗ θ̄j,S 0.014 0.018** 0.029** 0.022**
(0.010) (0.009) (0.012) (0.010)

ω̂5,3 E = 1 0.034*** 0.034*** 0.048*** 0.033***
(0.012) (0.010) (0.014) (0.012)

Obs. 1,676 1,847 1,708 2,084
Control for θ̄2j,S Yes Yes Yes Yes
Weights Yes No Yes No

Notes: This table presents the coefficients of regressions of skills in grade 9 on skills
in grade 5, the average skill level of peers, the interaction between child skills and the
average skill in the track, the average skill in the track squared, and parent’s education
dummy. In Columns (1) and (3), all observations are weighted using longitudinal weights,
while in Columns (2) and (4), they are not. Standard errors are clustered at the school
level. Columns (1) and (2) present the results for latent skills corrected for measurement
errors, while columns (3) and (4) present the results for uncorrected latent skills of maths
grades. Models control for year of birth, gender, and school-fixed effects. Source: NEPS.

Table G.5: School Track on Past Skills

Dependent Variable: Academic School Track

Panel A: Cohort 3 - Grade 5
θi,j−1 0.844***

(0.023)
Obs 3,781

Panel B: Cohort 2 - Grade 4
θi,j−1 0.778***

(0.038)
Obs 2,299

Notes: This table presents the coefficients of regressions
of the academic school track on past skills in grade 4
(Panel A) or in grade 5 (Panel B). All observations are
weighted using cross-sectional weights. Models control
for year of birth and gender fixed effects. Source: NEPS.
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Table G.6: College Graduation on Past Skills and School Track

Dependent Variable: College Attendance

Panel: Cohort 4 - Grade 9
θi,j 0.403***

(0.017)
S 0.393***

(0.012)
Obs 10,074
Variance of residuals 0.137

Notes: This table presents the coefficients of re-
gressions of college attendance on past skills (grade
9) and school track. All observations are weighted
using cross-sectional weights. We control for year
of birth and gender fixed effects. Source: NEPS.
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