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1 Introduction

When economists write models, they typically endow agents with utility functions that

are increasing functions of the agents’ wealths. This is justified by appealing to free dis-

posal: more wealth should always be weakly preferred to less, as an agent could always

burn any perceived excess. The notion of “more-is-better” also seems reasonable with re-

spect to information in a decision problem. For a Bayesian decision-maker this is, indeed,

the case; and, as with wealth, a free-disposal argument provides the justification.

Just as a utility function can be written that is not an increasing function of the agent’s

wealth; however, so too an updating rule–a rule for how to react to new information–need

not satisfy the condition that more information is preferred to less. With the conserva-

tive Bayesianism of Edwards (1968), agents may strictly prefer less information. Another

example is updating rules that exhibit confirmatory bias (Rabin and Schrag (1999)). Di-

visible updating (Cripps (2022)) also may yield a negative value for information; likewise

the α − β model of Grether (1980).

What we discover in this paper is that Bayes’ law is the unique (nontrivial, continu-

ously distorting) updating rule that satisfies the desideratum of more information being

preferred to less. To an expected-utility maximizer faced with a decision problem, infor-

mation is valuable. It is known that to such an agent, Bayes’ law is the optimal way to

react to new information, that is, the updating rule that maximizes the decision-maker’s

ex ante expected payoff. We show here that the rationale for Bayes’ law is even stronger.

This paper, thus, provides additional justification for imposing Bayesianism in models.

To go into specifics, the exceptional updating rules noted above are examples of up-

dating rules that (following de Clippel and Zhang (2022)) systematically distort beliefs,

for which there exists a distortion function from the correct Bayesian posterior to that

produced by the updating rule. Restricting attention to such rules, we show that if an up-

dating rule is such that any experiment is more valuable to a decision maker than any gar-

bling (i.e., respects the Blackwell order) when there are three or more states, corresponds

to a continuous distortion function, and is non-trivial (does not map every Bayesian be-

lief to the same belief), the updating rule is Bayes’ law. That is, for three or more states,
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Bayes’ law is the unique non-trivial updating rule obtained by a continuous distortion

that respects the Blackwell order.

On the other hand, a continuous, nontrivial updating rule that respects the Black-

well order has more freedom when there are only two states. Such updating rules must

divide the interior of the belief space into at most three regions. In the central region,

the updating rule is Bayes’ law, whereas on the outer two regions, the updating rule is

a coarse rule that maps all beliefs in the region to the same belief. However, if we fur-

ther impose that the distortion function is differentiable, Bayes’ law is the lone survivor.

All in all, Bayes’ law is the unique non-trivial updating rule obtained by a continuously

differentiable distortion that respects the Blackwell order.

1.1 Sketch of Approach

In establishing these results, it is helpful to introduce two categories of error: expan-

sive, where the updating rule produces beliefs outside of the convex hull of the cor-

rect (Bayesian) posterior distribution’s convex; and contractive, where the updating rule

produces beliefs within the convex hull Bayesian posterior distribution’s support. From

there, we start with an arbitrary posterior for which the updating rule produces an ex-

pansive (contractive) error. For any distribution with such a belief in its (convexly-

independent) support, we show that any belief that is a strict convex combination of the

initial error posterior and some collection of the other support points that is interpreted

correctly by the updating rule must yield a violation of the Blackwell order.

Next, we show how the remainder of the specified face of the simplex can be “filled

in.” We show that any point in the relative interior of a face containing an error must be

in the relative interior of the convex hull of the support of some distribution for which

the updating rule has an error. We proceed by contraposition; assuming not, then illus-

trating how we can then find a decision problem for which the value of information is

negative. Beyond this, we need merely take care of a few loose ends, as well as show

that the updating rules our approach failed to eliminate do, in fact, respect the Blackwell

order, closing the gap between necessity and sufficiency.
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1.2 Related Work

By now there are many papers that explore non-Bayesian updating. One vein of the

literature formulates axioms that produce updating rules other than Bayes’ law. Epstein

(2006) studies an agent whose behavior is in the spirit of the prone-to-temptation agent

of Gul and Pesendorfer (2001). Ortoleva (2012) axiomatizes a model in which an agent

does not behave as a perfect Bayesian when confronted with unexpected news. Of special

note is Jakobsen (2019), who introduces a model of coarse Bayesian updating in which a

decision-maker (DM) partitions the belief simplex into a collection of convex sets. Every

Bayesian belief, then, is understood by the DM as the representative belief corresponding

to the partition element in which the (correct) Bayesian belief lies.

Jakobsen (2019) presents an example (Example 4) of a coarse Bayesian updater who,

nevertheless, assigns a higher value to more information. We show that this is a particular

case of what we term occasionally coarse updating rules, the unique family of rules that

respect the Blackwell order when there are two states (Theorem 5.1). His Proposition 7

states precisely when a regular (for which all cells of the partition have full dimension)

coarse Bayesian updating rule respects the Blackwell order. One implication of our main

theorem (Theorem 5.1) is that Bayes’ law and the regular coarse Bayesian updating rule

with a single element (the entire simplex) are the only (regular) coarse updating rules

that respect the Blackwell order when there are three or more states.

This work is also related to the work on dynamically consistent beliefs–see, e.g., Gul

and Lantto (1990); Machina and Schmeidler (1992); Border and Segal (1994); Siniscalchi

(2011); and the survey, Machina (1989). Another seminal paper in that area is Epstein

and Le Breton (1993), who show that “dynamically consistent beliefs must be Bayesian,”

thereby establishing an equivalence (as Bayesian beliefs are obviously dynamically con-

sistent). Naturally, although dynamically consistent beliefs must mean that the DM’s

updating rule respects the Blackwell order, our Theorem 5.1 demonstrates that beliefs

that respect the Blackwell order need not be dynamically consistent.

Closely tied to the notion of dynamic consistency is the value of information for DMs

with non-expected-utility preferences. That some experiments may be harmful to a
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DM is illustrated in Wakker (1988), Hilton (1990), Safra and Sulganik (1995), and Hill

(2020). Li and Zhou (2016) show that the Blackwell order holds for almost all DMs with

uncertainty-averse preferences provided they can commit ex ante to actions, and Çelen

(2012) establishes that it holds for an MEU DM.

2 Setup

There is a finite set of states of nature, Θ, with |Θ| = n. ∆ ≡ ∆ (Θ) is the (n− 1)-simplex, the

set of probabilities on Θ. Let µ ∈ int∆ denote our decision-maker’s (DM’s) full-support

prior. A statistical experiment, or signal, is a map π : Θ→ ∆ (S), where S is a finite set of

signal realizations. Denote the set of all experiments with finite support Π.

∆2 ≡ ∆ (∆ (Θ)) denotes the set of distributions over posterior probabilities (posteriors)

x ∈ ∆. An Updating Rule, U is a map

U : ∆×Π→ ∆2

(µ,π) 7→ ρU
,

where ρ ∈ ∆2 is a distribution over posteriors whose support is a subset of ∆. One notable

updating rule is the Bayesian updating rule, UB, which produces the Bayesian distribu-

tion over posteriors, ρB, i.e., (µ,π) 7→UB
ρB.

Corresponding to an updating rule, U , is a mapping from the Bayesian distribution

over posteriors to the distribution over posteriors produced by the updating rule, Φ .

Φ : ∆2→ ∆2

ρB 7→ ρ
.

We define this mapping to be such that the following diagram commutes:

∆×Π ∆2

∆2

UB

U
Φ

Following de Clippel and Zhang (2022), we say that an updating rule U Systematically

Distorts Beliefs if its corresponding Φ is such that there exists a well-defined function
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ϕ : ∆→ ∆, where

ρB 7→Φ ρ

{x1, . . . ,xk} 7→ {ϕ (x1) , . . . ,ϕ (xk)} ,

(assuming that each xi is distinct) and PρB

(
xj

)
= Pρ

(
ϕ

(
xj

))
for all j. Throughout, we will

restrict attention to updating rules that systematically distort beliefs–which from now

we term Updating Rules–which allows us to conduct our analysis within ∆. An updating

rule, U , Respects the Blackwell Order if for any prior µ ∈ ∆, compact action set A, and

continuous utility function u : A × Θ → R, a decision maker’s ex ante expected utility

from observing experiment π is higher than from observing π′ if π ⪰ π′, where ⪰ is the

(Blackwell) partial order over experiments. π′ is said to be a garbling of π.

We note the following result. Letting experiment π correspond to the (Bayesian) dis-

tribution over posteriors with affinely independent support ρB and experiment π′ corre-

spond to the distribution over posteriors with affinely independent support ρ′B,

Theorem 2.1 (Wu (2022)). π ⪰ π′ if and only if convsuppρ′B ⊆ convsuppρB.

Given a set of actions A, we define the value function to be

V (x)Bmax
a∈A

Ex(θ)u (a,θ) ,

where x = x (θ) ∈ ∆ is the DM’s belief. Value function V is continuous and convex. More-

over, when A is finite it is piecewise affine, and its graph is a polyhedral surface in R
n.

Associated with any such value function is the projection of V onto ∆, which yields a

finite collection C of polytopes Ci (i = 1, . . . ,m, where |A| = m). By construction, action

ai is optimal for any belief x ∈ Ci and uniquely optimal for any belief x ∈ intCi . C is a

mathematical object known as a Power Diagram.

2.1 Additional Preliminaries

Restricting attention to updating rules that systematically distort beliefs allows us to not

only place our analysis squarely in belief space but also focus for the most part on ex-

periments that produce Bayesian distributions over posteriors with affinely independent
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(a) An expansive error (b) A contractive error

Figure 1: The two varieties of error. suppρB the red dots; µ, the blue x; x̂1, hollow black.

support. Given such a ρB, there are two broad classes of errors that an updating rule can

produce.

We say that an error is Expansive for ρB if for some ρB with support on k affinely

independent points of support {x1, . . . ,xk} (k ≤ n), there exists an xi ∈ suppρB such that

ϕ (xi) < convsuppρB. Alternatively, we say that an error is Expansive for some (correct)

x ∈ ∆ if ϕ (x) does not lie on the line segment between x and µ. An updating rule that is

such that there is an expansive error for some ρB or some x Produces an Expansive Error.

In contrast, we say that an error is Contractive for ρB if for some ρB with support on k

affinely independent points of support {x1, . . . ,xk} (k ≤ n), there exists an xi ∈ suppρB such

that ϕ (xi) ∈ convsuppρB and xi , ϕ (xi). Alternatively, we say that an error is Contractive

for some (correct) x ∈ ∆ if ϕ (x) lies on the line segment between x and µ (and ϕ (x) ,

x). An updating rule that is such that there is a contractive error for some ρB or some

x Produces a Contractive Error. An updating rule may produce both expansive and

contractive errors. Figure 1 illustrates the two types of error.

We say that an updating rule is Trivial on a subset S ⊆ ∆ if it is such that ϕ is a constant

function on S, i.e., for all x ∈ S, ϕ (x) = x∗ for some x∗ ∈ ∆. That is, a trivial updating rule

on S is one that maps every correct Bayesian posterior, x ∈ S, to a common posterior, x∗.
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Let ℓ (x,y) denote the line segment between x and y for any x,y ∈ ∆ and ℓ◦ (x,y) denote

the line segment between x and y for any x,y ∈ ∆, not including its endpoints:

ℓ (x,y)B
{
x′ ∈ ∆|∃λ ∈ [0,1] : λx+ (1−λ)y = x′

}
,

and

ℓ◦ (x,y)B ℓ (x,y) /{x,y}.

One special case is when the endpoints of the line segment are µ and some y ∈ ∆. We

denote this ℓy ≡ ℓ (µ,y). Denote the set of m-faces of the (n− 1)-simplex by Sm (0 ≤ m ≤

n−1). For each Sm ∈ Sm let St(Sm) denote the set of t-faces of ∆ for which Sm is also a face,

and S(Sm) = ∪n−1
t=mSt(Sm). Formally, for t ≥m,

Sm = {Sm|Sm is an m-face of ∆}, and St(Sm) = {St |Sm is an m-face of St}.

Note that we understand the n−1-face of a simplex to be the simplex itself, and we denote

by E the set of all vertices in a simplex, i.e., E = S0.

3 Expansive Errors

In this section, we focus on updating rules that produce expansive errors. Define the sets

ÊB {ei ∈ E| ϕ (ei) , ei} ,

the (possibly empty) set of vertices for which U produces an error; and let

ŜmB {Sm ∈ Sm| ∃ x ∈ Sm : ϕ (x) , x} ,

Ŝ B ∪mŜm, Ŝ1B ∪m≥1Ŝm and Ŝ2B ∪m≥2Ŝm

be the (possibly empty) set of faces of ∆, faces of ∆ other than vertices, and faces of ∆

other than vertices or edges, respectively, containing beliefs for which U produces an

error.
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We say an updating rule is Occasionally Stubborn if

1. Sm ∈ Ŝ implies St ∈ Ŝ for all St ∈ S(Sm);

2. For all Sm ∈ Ŝ2, for all m, there exists an x∗ ∈ ∆ such that ϕ (x) = x∗ for all

x ∈ intSm;

3. If x∗ ∈ intS
′
1 for some S

′
1 ∈ Ŝ1 then either ϕ (x) = x∗ for all x ∈ intS

′
1 or there

exists a vertex of S
′
1, e

′
i such that ϕ (x) = x∗ for all x ∈ ℓ◦ (ei ′,x∗) and ϕ (x) = x for

all x ∈ S1
′ \ℓ◦ (ei ′,x∗). Moreover, for all S1 ∈ Ŝ1\

{
S
′
1

}
, ϕ (x) = x∗ for all x ∈ intS1;

and

4. ϕ (ei) ∈ ℓ (x∗, ei) for all ei ∈ Ê.

That is, occasionally stubborn updating rules must either get “every belief correct” on

the relative interior of a (non-vertex, non-edge) face; or must be such that every belief

on the relative interior of that face, and any other face with the original face as one of

its own faces must be updated to the same belief, x∗ (1 and 2). Moreover, this incorrect,

stubborn, belief is unique: all incorrectly updated beliefs other than the vertices and

possibly a subset of beliefs on one edge must be updated to x∗ (2). If a vertex is updated

incorrectly, there is more freedom: it can be updated to any belief that is “more extreme”

with respect to that vertex than x∗ (4). Finally, there may be a special case in which the

updating rule produces an error for beliefs on an edge and the incorrect belief x∗ also lies

on that edge (3). In this event, either every belief on the interior of that edge is mapped

to the incorrect belief, or only the portion of beliefs between x∗ and a vertex are, with the

remainder updated correctly (3).

The central result of this section is the following theorem.

Theorem 3.1. When there are three or more states, any updating rule that respects the Black-

well order and produces an expansive error must be occasionally stubborn.

A corollary of this is

Corollary 3.2. When there are three or more states, if an updating rule respects the Blackwell

order and produces an expansive error, it must be trivial on the interior of the probability

simplex, int∆.
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In proving Theorem 3.1, we start with the following proposition. We specify that ρB

is a distribution over posteriors with affinely-independent support on k points: suppρB =

{x1, . . . ,xk}.

Proposition 3.3. If updating rule U is expansive for some Bayesian posterior xi ∈ suppρB

and respects the Blackwell order, it is expansive for all Bayesian posteriors x for which x =

λ · suppρB, where
∑k

j λj = 1, λj ∈ [0,1] for all j = 1, . . . , k and λi > 0. Moreover, for all such x,

ϕ (x) = x∗.

Another way to put this proposition is as follows: if updating rule U is expansive for a

point xi in support of a Bayesian distribution over posteriors, ρB, and respects the Black-

well order, then the updating rule must be expansive for any point within the convex hull

of the support of ρB, other than those obtained by taking convex combinations of points

other than xi . Moreover, these points must all be mapped to the same x∗ by ϕ.

Proof. We sketch the proof here, leaving the details to Appendix A.1.

Step 1 (“Bringing the Error Point In”): We start with some belief x1, for which U has an

expansive error, and some ρB (with affinely independent support) of which x1 is a support

point. We construct two new distributions ρ′B and ρ′′B, by keeping all of the support points

of ρB the same except for the 1st. That support point, x′1, for ρ′B, instead, lies within

the convex hull of ρB’s support (and is not x1), i.e., it is “brought in.” Accordingly, by

construction ρ′B is a strict MPC of ρB. We do likewise with ρ′′B, “bringing the 1st point in

support of ρ′B in” in the same direction on which x1 was brought in, i.e., x1, x′1 and x′′1 are

collinear.

Step 2 (“Banishing the New Points”): Next, we argue (in Claim A.1) that if U respects the

Blackwell order, it must also produce an expansive error for the new points x′1 and x′′1 . In

fact, ϕ
(
x′1

)
≡ x̂′1 and ϕ

(
x′′1

)
≡ x̂′′1 must lie outside of the convex hull of ρB’s support. We

argue by contraposition: if one did not, we could find a decision problem for which the

value of information is strictly negative.

Step 3 (“If Distinct then More Contracted⇒ More Extreme”): Our third step is to argue

(in Claim A.2) that if U respects the Blackwell order and x̂′1 , x̂′′1 , x̂′′1 must be “more
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extreme” than x̂′1 in the sense that it must lie outside of the convex hull of suppρ′B ∪
{
x̂′1

}
.

Again we argue by contraposition: we construct a decision problem in which a strictly

less informative experiment is strictly better.

Figure 2 illustrates steps 1 through 3. In 2a, x1 is in red, x′1 in purple, x′′1 green, and the

prior is the blue cross. x̂1 is the hollow black point. 2b depicts how if x̂′1 (hollow purple)

lies within ρB’s support, we can find a value function (whose power diagram consists of

the blue and black shaded regions) for which the DM strictly prefers ρ′B to ρB. Similarly,

2c shows how x̂′′1 (hollow green) must be “more extreme” than x̂′1.

Step 4 (“All Meet the Same End”): Next, we argue (in Claim A.3) that, in fact, if U respects

the Blackwell order, x̂′1 and x̂′′1 are not distinct. They are same point x̂∗1. Contraposition

is again our approach, but now the proof is a little more subtle: we compare a convex

combination of ρB and ρ′′B with its strict MPC, ρ′B, and show that unless the destinations of

x′1 and x′′1 are the same, we can find a decision problem for which ρ′B is strictly preferred.

Step 5 (“Repeating Steps 1-4”): We now repeat the first four steps, with the modification

that now we “bring in” some support point of ρB, xt, other than x1, i.e., with respect to

which U may not produce an expansive error. As in Step 1, we construct two new MPCs,

keeping all points except for the tth unchanged, and such that the new points, x∆t and

x∆∆t , and xt, itself, are collinear. Then, we argue that if U respects the Blackwell order,

it must produce expansive errors for these new points, and that they must be mapped to

the same point by ϕ.

Step 6 (“Filling in a Small Gap”): The proof is almost done, but there is a small gap left

to be filled. We need to show that i) the points obtained by “bringing in the error point

in” and “bringing non-error points in” are mapped to the same point; and ii) the points

at which the “bringing in the error point in” and “bringing non-error points in” processes

meet are also mapped to the same point, x∗. ■

Next, the following lemma addresses the special case in which the error corresponds

to an uninformative experiment, i.e., ρB = δµ, which allows us to move from δµ to the

environment of Proposition 3.3.
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(a) Step 1 (b) Step 2

(c) Step 3

Figure 2: First steps of Proposition 3.3’s proof
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Lemma 3.4. If U respects the Blackwell order and ϕ (µ) , µ, then the updating rule pro-

duces an expansive error for some other distribution ρB with affinely independent support and∣∣∣suppρB
∣∣∣ ≥ 2.

Before proving the theorem, let us study the two-state special case, as we will appeal

to our analysis there in the proof of Theorem 4.1.

3.1 Two States

Our first result of this subsection anticipates our full treatment of contractive errors in

the next section. It is useful to have this lemma here, as we appeal to it in the proof of

Proposition 3.6.

Lemma 3.5. Let n = 2, and suppose an updating rule U produces a contractive error for some

x > µ and respects the Blackwell order. Then, there exists x∗ ∈ [µ,x) such that for all y ∈ [x∗,1),

ϕ (y) = x∗. The mirrored statement holds if x < µ.

This lemma is similar to Steps 2, 3 and 4, above. In short, we argue that if U respects

the Blackwell order, if one moves inward (towards the prior) from a posterior, x, for which

U has a contractive error, U must also have a contractive error for these new points, which

must all be mapped to the same incorrect belief, x∗, by ϕ. In fact, all points that are more

extreme than x∗, except for 1, including those that are more extreme than x we started

with, must be mapped to x∗ by ϕ.

With this in hand, we state the main result of this subsection:

Proposition 3.6. Let the number of states n = 2. IfU respects the Blackwell order and produces

an expansive error for some posterior x′ ∈ (µ,1), ϕ (x) = x∗ > x′ for all x ∈ (0,x∗). Moreover,

there exist two intervals (one of which is possibly empty) I1 B [x∗, x̄) and I2 B [x̄,1) (x∗ ≤ x̄ <

1), with ϕ (x) = x for all x ∈ I1 and ϕ (x) = x̄ for all x ∈ I2.

The mirrored statement holds if x′ ∈ (0,µ), instead.

This proposition establishes that any updating rule that respects the Blackwell order

and produces an expansive error must be extremely coarse. Unless the signal realization

leaves the decision maker certain that the state is low, say, he must interpret all signal

realizations favoring the low state as, instead, favoring the high state.
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4 Contractive Errors

In this section, we turn our attention to updating rules that produce contractive errors.

An example of such an updating rule from the literature is “conservative” Bayesianism

(Edwards (1968)), in which case ϕ (x) = ξµ+ (1− ξ)x for all x ∈ ∆, for some ξ ∈ (0,1).

Theorem 4.1. When there are three or more states, any updating rule that respects the Black-

well order, produces a contractive error, and does not produce an expansive error, must be

occasionally stubborn.

A corollary of this is

Corollary 4.2. When there are three or more states, if an updating rule respects the Blackwell

order, produces a contractive error, and does not produce an expansive error, it must be trivial

on the interior of the probability simplex, int∆.

We will prove this by showing that an updating rule that respects the Blackwell order

and produces a contractive error must either produce an expansive error on that face, in

which case Theorem 3.1 holds; or be such that every point in intSm is mapped to µ by ϕ.

To that end, our first observation is the easy fact that updating rules that do not produce

expansive errors must be such that ϕ (µ) = µ.

Our next result points out a key difference between contractive and expansive errors.

Namely, updating rules that produce (and only produce) contractive errors must map

every point “toward” the prior.

Lemma 4.3. If an updating ruleU is contractive for some Bayesian distribution over posteriors

ρB, does not produce an expansive error, and respects the Blackwell order then ϕ (x) ∈ ℓx for all

x ∈ suppρB.

This lemma allows us to restrict some of the analysis to a single-dimensional environ-

ment. The next lemma is a consequence of this and Lemma 3.5.

Lemma 4.4. Suppose an updating rule U produces a contractive error for some x1 ∈ ∆, does

not produce an expansive error, and respects the Blackwell order. Writing ϕ (x1) C x̂1 , x1,

there exists an x∗1 ∈ ℓx̂1
such that for all x′ ∈ ℓ◦

(
x∗1,x1

)
, ϕ (x′) = x∗1.
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We follow this result with Proposition 4.5, which is an analog of Proposition 3.3.

Proposition 4.5. Suppose an updating rule U produces a contractive error for some x1 in sup-

port of some ρB with affinely independent support on n points, does not produce an expansive

error, and respects the Blackwell order. Then U produces a contractive error for all x for which

x = λ · suppρB, where
∑n

j λj = 1, λj ∈ [0,1] for all j = 1, . . . ,n and λ1 > 0. Moreover, for all

such x, ϕ (x) = µ.

Proof. We sketch the proof here, leaving the proof to Appendix A.7.

Step 1 (“Moving Along the Edge”): We start with some belief x1, for which U has an con-

tractive error, and some ρB (with affinely independent support) of which x1 is a support

point. We construct a new distribution ρ′B, by keeping all of the support points of ρB the

same except for the 1st, which we “bring in” along an arbitrary one of the edges. We show

that ϕ
(
x′1

)
= µ for any such new x′1 or else we could find a decision problem where ρ′B is

strictly preferred to ρB. We then do a similar procedure for new distributions ρ†B, which

are constructed from ρB by keeping all but the sth point (s , 1) the same, and “bringing”

the sth point in along the edge connecting it and x1. All such points must be mapped to

µ by ϕ.

Step 2 (“Face Points Mapped to the Prior”): Our final step is to fill in the remaining faces

of the simplex that is the convex hull of suppρB, ∆ρB . We do this starting with the edges

tackled in step 1, taking convex combinations of points on those edges to obtain points

on the interior of the 2-dimensional faces of ∆ρB that have x1 as a vertex. All such points

must be mapped to µ by ϕ. Then we take convex combinations of points on those 2-d

faces of ∆ρB to obtain points on the interior of the 3-d faces of ∆ρB that have x1 as a vertex.

This process continues until we fill in int∆ρB itself, completing the proof. ■

We can now prove the theorem.

Proof of Theorem 4.1. Let U have a contractive error for some xa ∈ Sm but not an expansive

error for any x ∈ Sm. Fix an arbitrary x ∈ intSt where St (t ≥ m) is a face of ∆ and where

Sm is a face of St, i.e., St ∈ St(Sm).

Case 1: x < int∆. Any such x lies in the relative interior of the convex hull of k (≤ t)

affinely independent points, {x1, . . . ,xk} that lie in St, one of which is xa. Pick some x′ ∈
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(a) Step 1 (b) Step 2

Figure 3: Proposition 4.5 Proof

intconv {x1, . . . ,xk} and some y ∈ ∂∆ with µ = λy+(1−λ)x′ for some λ ∈ (0,1). Accordingly,

µ ∈ intconv {x1, . . . ,xk , y}. Setting suppρB = {x1, . . . ,xk , y}, by Proposition 4.5, ϕ (x) = µ.

Case 2: x ∈ int∆. If there exists a collection of 3 ≤ k ≤ n affinely independent points,

one of which is xa such that x and µ lie in the relative interior of their convex hull, we are

done. Suppose instead there does not exist such a collection. However, we can then pick

a distribution ρB with support on 3 ≤ k ≤ n affinely independent points, one of which is

xa, then a distribution ρ′B with support with 3 ≤ k ≤ n affinely independent points with

some x′ ∈ intρB in support and x ∈ intconvsuppρ′B. By Proposition 4.5, ϕ (x) = µ.

Claim A.13 disciplines where ϕ can map the vertices, completing the proof. ■

4.1 Two States

Having already proved Lemma 3.5–which specifies that when there are just two states,

updating rules that produce contractive errors for some belief must map all beliefs (other

than the most extreme belief, the vertex) more extreme than the incorrectly mapped one

to the same incorrect x∗ (in a contractive manner)–there is nothing left to do. An imme-

diate consequence of the lemma is
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Proposition 4.6. Let the number of states n = 2. If U respects the Blackwell order, produces a

contractive error for some posterior x′ ∈ (µ,1], and does not produce an expansive error, then

ϕ (x) = x∗ ∈ [µ,x′) for all x ∈ [x∗,1). Moreover, ϕ (x) = x for all x ∈ [µ,x∗] and ϕ (1) ≥ x∗.

The mirrored statement holds for contractive errors for some x′ ∈ [0,µ).

When there are just two states, like when there are expansive errors, updating rules

that respect the Blackwell order must be coarse. In contrast to the expansive-error case,

errors cannot be extreme: signal realizations that lead to Bayesian beliefs more confident

about one state (than under the prior), must still yield beliefs more confident about that

state under the non-Bayesian rule.

5 Updating Rules that Respect the Blackwell Order, and

Those That Do Not

At last we arrive at the main result of the paper, a full characterization of precisely which

updating rules (that systematically distort beliefs) respect the Blackwell order.

If there are just two states, we say an updating rule is Occasionally Coarse if there

exist two (one or both of which are possibly empty) intervals C1 B (0, a) and C2 B

(b,1), with 0 ≤ a ≤ b ≤ 1 such that

1. ϕ (x) = a for all x ∈ C1,

2. ϕ (x) = b for all x ∈ C2,

3. ϕ (x) = x for all x ∈ [a,b], and

4. ϕ (0) ≤ a and ϕ (1) ≥ b.

An updating rule that is occasionally coarse has at most two convex regions (intervals)

of beliefs on which it collapses any belief to a single belief. Moreover, there is possibly

another convex region, in between these two coarse regions, in which the updating rule is

Bayes’ law. The DM may also make mistakes about beliefs corresponding to certainty (the

vertices) but they cannot be too severe. This is exactly the “more extreme” requirement

for occasionally stubborn updating rules.

17



Figure 4: Occasionally Coarse Updating

Theorem 5.1. If there are two states (n = 2), an updating rule respects the Blackwell order if

and only if it is occasionally coarse. If there are three or more states (n ≥ 3), an updating rule

respects the Blackwell order if and only if it is occasionally stubborn.

Example 5.2 (Occasionally Coarse Rules). There are two states, Θ = {0,1}, and the set of

actions is the unit interval, A = [0,1]. The DM’s utility function is the standard “quadratic

loss” utility, translated up by .3 (to make the graph prettier): u (a,θ) = − (a−θ)2 + .3. Ac-

cordingly, V (x) = −x (1− x) + .3. Figure 4 illustrates the updating rule on the simplex, the

value function V , and the corresponding indirect value function W . Here is an Interac-

tive Link, where one can adjust the parameters–u,a,b and v that determine the family of
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(a) Trivial on Edges (b) Trivial on 1.5 Edges

Figure 5: Occasionally Stubborn Updating

occasionally coarse rules–by moving the corresponding sliders.

Example 5.3 (Occasionally Stubborn Rules). Figure 5 illustrates two occasionally stub-

born updating rules when there are 3 states. In the first (5a) ϕ ((0,0)) =
(

1
5 ,

1
6

)
, ϕ ((0,1)) =(

3
10 ,

1
2

)
, ϕ ((1,0)) = (1,0), and ϕ (x) =

(
1
5 ,

1
3

)
for all other x ∈ ∆.

In the second (5b) ϕ ((0,1)) =
(

3
10 ,

7
10

)
, ϕ (x) =

(
1
2 ,

1
2

)
for all x with 0 < x1 < 1

2 and x2 =

1 − x1, ϕ (x) = x for all x with 1
2 ≤ x1 ≤ 1 and x2 = 1 − x1 or 0 ≤ x1 ≤ 1 and x2 = 0, and

ϕ (x) =
(

1
2 ,

1
2

)
for all other x ∈ ∆.

We say that an updating rule continuously distorts beliefs if ϕ is continuous on ∆. We

say that an updating rule smoothly distorts beliefs if ϕ is continuously differentiable on

int∆. When there are at least three states, as any point on the boundary ∂∆ is the limit of

a sequence of beliefs on the interior of the sequence, we have the following corollary of

Theorem 5.1.

Corollary 5.4. If there are three or more states (n ≥ 3), a non-trivial updating that continu-

ously distorts beliefs respects the Blackwell order if and only if it is Bayes’ law.

When there are two states, imposing continuity of ϕ only refines the occasionally

coarse updating rules only slightly. The only difference is that now ϕ (0) = a and ϕ (1) = b.
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Instead, imposing smoothness is needed to produce Bayes’ law, as ϕ (x) = max {a,min {x,b}}

is continuous on [0,1] but not differentiable at a (or b) for a (b) ∈ (0,1):

Corollary 5.5. A non-trivial updating that smoothly distorts beliefs respects the Blackwell

order if and only if it is Bayes’ law.

6 Some Final Remarks

One could generalize the definition of an updating rule to where it is now a map U : ∆×

Π×U (A,Θ)→R, where U (A,Θ) is a finite set of compact-action decision problems. That

is, the updating rule could adapt to the decision problem itself. In this case, our approach

would not work; in fact, there are other such updating rules (that systematically distort

beliefs) that respect the Blackwell order. For example, any updating rule that maps beliefs

within an element of the power diagram induced by the decision problem within the

element renders the value of information positive.

6.1 Non-Expected-Utility Preferences

Our results extend beyond the expected-utility realm. Specifically, Karni and Safra (2022)

introduce axioms that ultimately yield a value function

Ṽ (x)Bmax
a∈A

w
(
Ex(θ)u (a,θ)

)
,

where w : R→ R is strictly increasing and convex.1 Importantly, note that when A is fi-

nite, the projection of Ṽ onto ∆ produces the same Power Diagram as that corresponding

to a DM with EU preferences, regardless of the shape of the (strictly increasing) w. It is

clear, then, that all of our proofs go through, replacing · with w (·) in the value function.

1As Karni and Safra (2022) note, this formulation is similar to the smooth ambiguity representation of

Klibanoff et al. (2005), with the modification that w, here, is convex.
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6.2 Updating Rules that Do Not Systematically Distort Beliefs

Although many updating rules in the literature systematically distort beliefs, not all do,

including some realistic ones. As noted by de Clippel and Zhang (2022), updating rules

that correspond to information aggregation failures or correlation neglect for multiple

signals may not systematically distort beliefs. What can we say about these rules?

Not much. Obviously, our sufficiency result continues to hold, but our necessity result

does not. For instance, an updating rule that is Bayes’ law for any experiment except a

completely uninformative experiment, in which case it produces some posterior other

than µ with probability one, respects the Blackwell order. Some insights do carry over;

however, like the fact that updating rules with errors that produce more “extreme” beliefs

than Bayes’ law must do so for all less informative experiments. Mirroring Claim A.1,

Remark 6.1. Let experiments π and π′ correspond to ρB and ρ′B, respectively; and let

π ⪰ π′. If U respects the Blackwell order and is such that convsuppΦ (ρB) ⊈ convsuppρB,

then convsuppΦ
(
ρ′B

)
⊈ convsuppρB.
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A Omitted Proofs

A.1 Proposition 3.3 Proof

Proof. Step 1 (“Bringing the Error Point In”): Fix µ and π that yield ρB with k affinely

independent points of support {x1, . . . ,xk} (k ∈N, 2 ≤ k ≤ n), and let U have an expansive

error for ρB. That is, for x1 ∈ suppρB, ϕ (x1) = x̂1 < convsuppρB. Let p ≡ p1 ∈ (0,1) denote

PρB (x1); and let pj ∈ (0,1) denote PρB

(
xj

)
and x̂j B ϕ

(
xj

)
for all j , 1.

Consider first two additional Bayesian distributions over posteriors. The first, ρ′B,

corresponding to experiment π′, has support on a subset of
{
x′1,x2, . . .xk

}
; that is, all of

the support points except for the 1st one are also support points of ρB. Moreover, let

x′1 ∈ convsuppρB \
{
x′1

}
, so that ρ′B is a strict MPC of ρB. Let q ∈ (0,1) denote Pρ′B

(
x′1

)
. Let

qj ∈ (0,1) denote Pρ′B

(
xj

)
for all j , 1. Note that q > p and qj ≤ pj for all j , 1, with at least

one inequality strict.

The second, ρ′′B, corresponding to experiment π′′, has support on a subset of
{
x′′1 ,x2, . . .xk

}
;

i.e., all but the 1st support point are also in support of ρ′B. Moreover, let x′1 = γx1 +

(1−γ)x′′1 for some γ ∈ (0,1), so that this distribution is a strict MPC of ρ′B (and there-

fore also of ρB) and so that x1, x′1 and x′′1 are collinear. Let r ∈ (0,1) denote Pρ′′B

(
x′′1

)
. Let

rj ∈ (0,1) denote Pρ′′B

(
xj

)
for all j , 1. Note that r > q and rj ≤ qj for all j , 1, with at least

one inequality strict. Let x̂′1B ϕ
(
x′1

)
and x̂′′1 B ϕ

(
x′′1

)
.

Claim A.1. Step 2 (“Banishing the New Points”): x̂′1 < convsuppρB and x̂
′′
1 < convsuppρB.

Proof. Suppose for the sake of contraposition that x̂′1 ∈ convsuppρB. As x̂1 < convsuppρB,{
x̂′1

}
∪ convsuppρB, (which equals convsuppρB) and x̂1 can be strictly separated by some

hyperplane

Hα,β B
{
x ∈ R

n−1
∣∣∣α · x = β

}
.

WLOG we may assume convsuppρB is a strict subset of the closed half-space
{
x ∈ R

n−1
∣∣∣α · x ≤ β

}
.

Consider the value function V (x) = max {0,α · x − β}. Define the sets

AB
{
xj ∈ {x2, . . . , xk}|α · x̂j > β

}
,
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and

BB
{
xj ∈ {x2, . . . , xk}|α · x̂j ≤ β

}
.

We may relabel the points so that the first l xs lie in A, the last (k − 1− l) xs lie in B. Thus,

the agent’s payoff under experiment π is

l∑
j=2

pj
(
α · xj − β

)
+ p (α · x1 − β) ,

whereas the agent’s payoff under experiment π′ is

l∑
j=2

qj
(
α · xj − β

)
.

Taking the difference of these two expressions, we obtain

l∑
j=2

(
pj − qj

)
︸   ︷︷   ︸
≥0

(
α · xj − β

)
︸      ︷︷      ︸

<0

+p (α · x1 − β)︸        ︷︷        ︸
<0

< 0.

We have obtained a violation of Blackwell’s theorem. ■

Claim A.2. Step 3 (“If Distinct, then More Contracted⇒ More Extreme Errors”): If x̂′1 , x̂
′′
1 ,

there exists a hyperplane that strictly separates x̂′′1 and conv
({
x̂′1

}
∪ suppρ′B

)
.

Proof. Suppose for the sake of contraposition that there does not exist a hyperplane

that strictly separates x̂′′1 and conv
({
x̂′1

}
∪ suppρ′B

)
. This implies, via the strict separat-

ing hyperplane theorem, that x̂′′1 ∈ conv
({
x̂′1

}
∪ suppρ′B

)
, since the latter set is by con-

struction compact and convex. By Claim A.1, neither x̂′1 nor x̂′′1 lie in convsuppρ′B (as

suppρ′B ⊆ suppρB). Accordingly, x̂′1 < conv
({
x̂′′1

}
∪ suppρ′B

)
. Thus, by the strict separating

hyperplane theorem, there exists an (n−2 dimensional) hyperplane that strictly separates

x̂′1 and conv
({
x̂′′1

}
∪ suppρ′B

)
. From here, the proof replicates that of Claim A.1. ■

Claim A.3. Step 4 (“All Meet the Same End”): x̂′i = x̂′′i C x̂∗i

Proof. Suppose for the sake of contraposition not. Consider a third experiment π† that

produces a correct distribution over posteriors ρ†B with support on a subset of{
x1, . . . ,xi−1,xi ,x

′′
i ,xi+1, . . .xk

}
,

25



where P

(
xj

)
= qj for all j , i and the probabilities of x′′i and xi are precisely such that ρ′B

is a strict mean-preserving contraction of this distribution. By Claim A.2, there exists a

hyperplane that strictly separates x̂′′i and conv
({
x̂′i
}
∪ suppρ′B

)
, Hγ,δ B

{
x ∈ R

n−1
∣∣∣γ · x = δ

}
,

where conv
({
x̂′i
}
∪ suppρ′B

)
is a strict subset of the closed half-space

{
x ∈ R

n−1
∣∣∣γ · x ≤ δ

}
.

For value function V (x) = max {0,γ · x − δ}, the difference in payoffs for the agent from

experiments π′ and π† is strictly negative, a violation. ■

Step 5 (“Repeating Steps 1-4”): Consider second two additional Bayesian distributions

over posteriors ρ△B and ρ△△B , corresponding to experiments π△ and π△△, respectively. The

first has support on a subset of
{
x1, . . . ,xt−1,x

△
t ,xt+1, . . .xk

}
, where t ∈ {2, . . . , k}. Again, all

but one of the support points are also in support ρB, but now the support point we are

changing is not the 1st. Moreover, let

x△t ∈ convsuppρB \ (conv(suppρB \ {x1})∪ {xt}) ,

i.e., x△t is neither xt nor a convex combination of exclusively points in the support of ρB

other than x1. ρ△B is a strict MPC of ρB. Let sj ∈ (0,1) denote Pρ△B

(
xj

)
for all j. Note that

st > pt, s ≡ s1 < p1 ≡ p, and sj ≤ pj for all j , t,1.

The second has support on a subset of
{
x1, . . . ,xt−1,x

△△
t ,xt+1, . . .xk

}
, where t ∈ {2, . . . , k}.

Yet again, all but one of the support points also support ρB. Moreover, let

x△△t ∈ convsuppρ△B \
(
conv

(
suppρ△B \ {x1}

)
∪

{
x△t

})
,

i.e., x△△t is neither x△t nor a convex combination of exclusively points in the support of

ρ△B other than x1. Let x△t = γxt + (1−γ)x△△t for some γ ∈ (0,1) so that x△t , x△△, and xt are

collinear. This distribution is a strict MPC of ρ△B (and therefore also of ρB). Let uj ∈ (0,1)

denote Pρ△△B

(
xj

)
for all j. Note that ut > st, u ≡ u1 < si ≡ s, and uj ≤ sj for all j , t,1. Let

x̂△t B ϕ
(
x△t

)
and x̂△△t B ϕ

(
x△△t

)
.

We have the following three claims, the proofs for which mirror (mutatis mutandis)

those for Claims A.1, A.2, and A.3, respectively, and which we, therefore, omit.

Claim A.4. x̂△t < convsuppρB and x̂△△t < convsuppρB.

ClaimA.5. If x̂△t , x̂
△△
t , there exists a hyperplane that strictly separates x̂△△t and conv

({
x̂△t

}
∪ suppρ△B

)
.
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Claim A.6. x̂△t = x̂△△t C x̂∗t .

The final step is to fill in a small gap.

Claim A.7. Step 6 (“Filling in a Small Gap”): Let U have expansive errors for distinct poste-

riors x,y ∈ ∆. If

ϕ (λx+ (1−λ)y) = ŷ ∀ λ ∈ [0,λ∗) (λ∗ ∈ (0,1)) and ϕ (λx+ (1−λ)y) = x̂ ∀ λ ∈ (λ∗,1] ,

x̂ = ŷ = ϕ (λx+ (1−λ)y) for all λ ∈ [0,1].

Proof. WLOG x, y, and µ are collinear. First, we show that x̂ = ŷ. Suppose not. Evidently,

conv {x̂,x,y} and {ŷ} can be strictly separated by a hyperplane or conv {ŷ,x,y} and {x̂} can

be strictly separated by a hyperplane. WLOG we assume the former. Let such a strictly

separating hyperplane be

Hα,β B
{
x ∈ R

n−1
∣∣∣α · x = β

}
.

WLOG we specify that conv {x̂,x,y} is a strict subset of the closed half-space
{
x ∈ R

n−1
∣∣∣α · x ≤ β

}
.

Consider the value function V (x) = max {0,α · x − β} and two distributions ρB and ρ′B with

support on {x,y} and {x′, y} where x′ = λx + (1−λ)y for some λ ∈ [1− ε,1), where ε > 0 is

small. Let p B PρB (y) and p′ B Pρ′B
(y) and observe that p′ < p. By construction, ρ′B is a

strict MPC of ρB. However, the DM’s payoff under the former is p′ (α · y − β) > p (α · y − β),

her payoff under the latter, so U does not respect the Blackwell order. By contraposition,

we must have x̂ = ŷ.

Finally, define x◦ B λ∗x + (1−λ∗)y. We want to show that x̂ = ϕ (x◦)C x̂◦. Otherwise,

we could construct three distributions ρB, with support on {x,x◦, y}; ρ′B, with support on

{x′, y′}, where x′ ∈ (x,x◦) and y′ ∈ (x◦, y); and ρ′′B, which either has support on {x◦, y′′}where

y′′ ∈ (x◦, y′) or is δx◦ . By construction ρ′′B is a strict MPC of ρ′B, which is a strict MPC of

ρB. Following the previous paragraph’s approach, it is apparent that if x̂◦ , x̂ either ρ′

is strictly preferred to ρ or ρ′′ is strictly preferred to ρ′, which establishes the result by

contraposition. ■

This concludes the proof of the proposition. ■
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A.2 Lemma 3.4 Proof

Proof. Let x1,x2 ∈ ∆ be such that µ = λx1 + (1−λ)x2 for some λ ∈ (0,1) and such that

ϕ (µ) < conv {x1,x2}. Let ρB have support {x1,x2}. If U has an expansive error for ρB,

we are done. Otherwise, consider instead ρ′B = γρB + (1−γ)δµ for some γ ∈ (0,1). By

construction, U has an expansive error for ρ′B. But then we can generate a fusion of ρ′B,

ρ′′B, with support on {x3,x4} where x3 = τx1 + (1− τ)µ and x4 = ιx2 + (1− ι)µ, for some

appropriately chosen τ, ι ∈ (0,1). If U is not expansive for ρ′′B, the value of information is

not positive, which proves the result by contraposition. ■

A.3 Lemma 3.5 Proof

Proof. Consider ρB, corresponding to π with suppρB = {0, z} (z ∈ (µ,1]), where z > ϕ (z) =

ẑ ≥ µ. Also consider ρ′B, corresponding to π′, with support {0, z′} with z′ ∈ (ẑ, z). Let

p B Pρ′B
(z′). Evidently, we cannot have ẑ′ B ϕ (z′) > ẑ or else value function V (x) B

max
{
0,x − ẑ′+ẑ

2

}
illustrates that U does not respect the Blackwell order.

Following the same logic, for ρ′′B with support {0, z′′} with z′′ ∈ (ẑ′, z′), we must have

ẑ′′ B ϕ (z′′) ≤ ẑ′. Suppose for the sake of contraposition that ẑ′′ < ẑ′. Consider the ternary

distribution with support {0, z′′, z}, ρmB , corresponding to experiment πm, with PρmB
(0) = 1−

p. Observe that ρ′B is a strict MPC of ρmB . Consider value function V (x)Bmax
{
0,x − ẑ′+ẑ′′

2

}
.

After some algebra, we see that π′ is strictly superior to πm under U if and only if

p
z′ − z′′

z − z′′

(
z − ẑ′ + ẑ′′

2

)
< p

(
z′ − ẑ′ + ẑ′′

2

)
⇔ z′′ − ẑ′ + ẑ′′

2
> 0,

which holds as z′′ > ẑ′ > ẑ′′.

Accordingly, U does not respect the Blackwell order and so we must have ẑ′ = ẑ′′.

Thus, we must have ϕ (x) = x∗ ≥ µ for all x ∈ (x∗, z).

If z = 1, we are done. Suppose now that z < 1. Suppose there exists some y ∈ (z,1)

with ŷ B ϕ (y) > x∗. Evidently, for all y′ ∈ (y,1), ŷ B ϕ (y′) ≥ ŷ or else we could construct

a value function for which information has strictly negative value under U . Consider ρB,

corresponding to π with support {0, z − ε,y′}, with ε ∈ (0, z − x∗); and ρ′B, corresponding

to π′ with support {0, y}. Let 1 − p B PρB (0) = Pρ′B
(0), p B Pρ′B

(y), q B PρB (y′), and

p − qB PρB (z − ε), with (p − q) (z − ε) + qy′ = py.
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For value function V (x) = max
{
0,x − min{z−ε,ŷ}+x∗

2

}
the DM strictly prefers π′ to π under

U if and only if

p

(
y −

min {z − ε, ŷ}+ x∗

2

)
> q

(
y′ −

min {z − ε, ŷ}+ x∗

2

)
,

which holds if and only if

z − ε >
min {z − ε, ŷ}+ x∗

2
,

which holds by assumption, yielding a strictly negative value for information. ■

A.4 Proposition 3.6 Proof

Proof. WLOG x′ ∈ (µ,1). By assumption ϕ (x′) C x̂′ > x′ By Proposition 3.3, for all x ∈

(0,x′), ϕ (x) = x∗, where x∗ ≥ x̂′ > x′.

Claim A.8. ϕ (x∗)C x̂∗ = x∗.

Proof. If x̂∗ > x∗, then by Proposition 3.3, if U respects the Blackwell order, ϕ (x′) ≥ x̂∗, a

contradiction.

Next, suppose for the sake of contraposition that x̂∗ < x∗. Figure 6 illustrates this proof.

Observe that i) x̂∗ ≥ x′ and ii) for all z ∈ (x̂∗,x∗), ϕ (z) C ẑ ≤ x̂∗ (or else we could generate

a strictly negative value of information). However, then consider two experiments, ρB,

with support on
{
0, x

′+µ
2 ,x∗

}
with pB PρB (x∗) and qB PρB

(
x′+µ

2

)
; and ρ′B with support on{

0, x̂
∗+x∗
2

}
, where

(p+ q)
x̂∗ + x∗

2
= px∗ + q

x′ +µ

2
.

Then, consider value function

V (x) = max

0,x −
x̂∗+x∗

2 + x∗

2

 ,

which reveals that ρ′B (which yields a payoff of 0 to the DM under U , ignoring the payoff

from 0 as it will cancel out) is strictly preferred by the DM to ρB (which yields a strictly

negative payoff to the DM). ■

Claim A.9. ϕ (x) = x∗ for all x ∈ [x′,x∗].
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Figure 6: Claim A.8 proof
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Figure 7: Claim A.9 proof
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Proof. Figure 7 illustrates this proof. Evidently, we must have ϕ (x) ≤ x∗ for all x ∈ [x′,x∗].

Suppose for some z ∈ [x′,x∗) ϕ (z)C ẑ < x∗. Consider ρB, corresponding to π, with support

on
{
0,µ,x∗

}
(with respective probabilities 1 − p, p − q and q) and ρ′B, corresponding to π′,

with support on {0, z} (with respective probabilities 1−p and p) and where we must have

pz = (p − q)µ+ qx∗. Then for value function

V (x) = max
{

0,x − max {ẑ, z}+ x∗

2

}
,

the DM’s payoff from π′ is strictly higher than that from π under U if and only if

0 > q

(
x∗ − max {ẑ, z}+ x∗

2

)
+ (p − q)

(
µ− max {ẑ, z}+ x∗

2

)
,

which holds if and only if
max {ẑ, z}+ x∗

2
> z,

which is true by assumption. By contraposition we obtain the result. ■

Evidently, ϕ (y)C ŷ ≥ x∗ for all y ∈ (x∗,1] or else we could get a strictly negative value

for information. Moreover, if ŷ > y for some y ∈ (x∗,1), that would imply x̂∗ ≥ ŷ > x∗, a

contradiction. Thus, ŷ ≤ y for all y ∈ [x∗,1]. Finally, if ŷ < y for some y ∈ (x∗,1), then

Lemma 3.5 implies there exists some x̄ ∈ [x∗, y) such that ϕ (x) = x̄ for all x ∈ [x̄,1). ■

A.5 Proof of Theorem 3.1

Proof. Our first step is to show that we may, without loss of generality, focus on errors

produced by the updating rule for non-vertex beliefs.

Claim A.10. IfU respects the Blackwell order and produces an expansive error for some vertex

ei , it produces an expansive error for some x on the relative interior of every face Sm for which

ei is also a vertex.

Proof. Fix some ei for which U produces an expansive error and pick an arbitrary face

of ∆, Sm, that has ei as a vertex. By the definition of an expansive error, êi B ϕ (ei) <

ℓei , the line segment between ei and µ. If the face Sm = ∆, we can construct the binary

distribution, ρB, with support {ei ,x2}, where x2 is such that µ = λx2 + (1−λ)ei for some
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λ ∈ (0,1). For any λ that is sufficiently close to 1, êi < convsuppρB. By Proposition 3.3, U

produces an expansive error for all x ∈ intconvsuppρB, which includes some x ∈ int∆.

If the face Sm , ∆ then we construct the distribution ρB with support {ei ,x1,x2}, where

x1 ∈ intSm and x2 ∈ int∆. For all x1 sufficiently close to ei and all x2 sufficiently close to

µ (with µ ∈ intconvsuppρB), êi < convsuppρB. Thus, Proposition 3.3 implies U produces

an expansive error for all x ∈ intconvsuppρB, which includes some x ∈ intSm. ■

Thus, let x1 ∈ intSm for some Sm ∈ Ŝ1 and U have an expansive error for x1, with

x̂1 B ϕ (x1). Pick an arbitrary St ∈ St(Sm). There are four cases to consider: 1. x̂1 < intSt

and St , ∆, 2. x̂1 < intSt and St = ∆, 3. x̂1 ∈ intS1 (the St under scrutiny is an edge), and 4.

x̂1 ∈ intSt with t ≥ 2 (the St under scrutiny is not an edge).

Case 1: x̂1 < intSt and St , ∆. Let γB have support on t affinely independent points

{x1, . . . ,xt} with xi ∈ St for all i, xi = ei for all i , 1 where ei are distinct vertices of St, and

pi B P (xi).2

Claim A.11. ϕ (x) = x∗ < St for all x ∈ convsuppγB with x = λ · suppγB for vector λ with∑t
j=1λj = 1, λj ∈ [0,1] for all j and λ1 > 0.

Proof. Omitted, as the proof follows the proof of Proposition 3.3 nearly exactly. ■

Next, construct a γ ′B with support on t affinely independent points, of which t − 1 are

vertices of St and the last support point is λ · suppγB, where
∑t

j=1λj = 1, λj ∈ [0,1] for

all j, λ1 > 0), and λu is close to 1 for some u , 1 with eu ∈ suppγB. Evidently, for all

x ∈ intSt, there exists a λ of this form such that x ∈ intconvsuppγ ′B. Accordingly, Claim

A.11 implies ϕ (x) = x̂1 = x∗ for all x ∈ intSt.

Case 2: x̂1 < intSt and St = ∆. Let ρB have support on 2 points, x1 and x2, with µ ∈

ℓ◦ (x1,x2). By Proposition 3.3, ϕ (x) = x∗ for all x ∈ ℓ◦ (x1,x2). Next construct ρ′B with

affinely independent support on
{
x′1, . . . ,x

′
n

}
, where convsuppρ′B ⊂ int∆, x′1 ∈ ℓ◦ (x1,x2);

and such that x∗ < intconvsuppρ′B. By Proposition 3.3 ϕ (x) = x∗, for all x ∈ intconvsuppρ′B.

2Note that γB is not a Bayes-plausible distribution over posteriors, as µ < St ; however, suppγB ∪ xt+1

with xt+1 < St and µ in their convex hull is the support of some ρB with affinely independent support, so we

may WLOG work with just γB. We carry this approach throughout this proof.
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If x∗ ∈ int∆, we are in Case 4, below. If x∗ < int∆, then observe that for all x ∈ int∆, we

can find two points x′′1 ∈ intconvsuppρ′B and x′′2 ∈ int∆ such that x,µ ∈ ℓ◦
(
x′′1 ,x

′′
2

)
. Thus,

Proposition 3.3 implies ϕ (x) = x∗.

Case 3: x̂1 ∈ intS1. Consider γB with binary support on {x1,x2}, where x1,x2 ∈ S1 (recall

x1–which must also be in intS1–is the specified point for which U has an expansive error).

Define

e∗i B
{
ei ∈ E| x1 ∈ ℓ◦

(
x̂1, e

∗
i

)}
.

By construction, this is well-defined. Then,

Claim A.12. ϕ (x) = x∗ = x̂1 ∈ intS1 for all x ∈ ℓ◦
(
x∗, e∗i

)
. Moreover, either ϕ (x) = x for all

x ∈ intS1 \ ℓ◦
(
x∗, e∗i

)
or ϕ (x) = x∗ for all x ∈ intS1.

Proof. Following the proofs of Claims A.8 and A.9, ϕ (x) = x∗ = x̂1 ∈ intS1 for all x ∈

ℓ◦
(
x∗, e∗i

)
. Moreover, following the remainder of the proof of Proposition 3.6, either i.

ϕ (x) = x for all x ∈ intS1 \ ℓ◦
(
x∗, e∗i

)
; or ii. there is some x̃ ∈ intS1 \ ℓ◦

(
x∗, e∗i

)
such that

ϕ (x) = x̃ for all x ∈ intS1\ℓ◦
(
x̃, e∗i

)
and ϕ (x) = x for all x = λx∗+(1−λ) x̃ for some λ ∈ [0,1].

Suppose for the sake of contradiction that x̃ , x∗. However, then by the first case of this

theorem’s proof, ϕ (x) = x∗ = x̃ for all x ∈ int∆, which is false. Thus, x̃ = x∗. ■

Case 4: x̂1 ∈ intSt, with t ≥ 2. For x,y ∈ St, define

℘ (x,y)B
{
x′ ∈ St | ∃ λ ∈ [0,1] : λx′ + (1−λ)y = x

}
,

i.e., these are the points on the line between x and y on the “opposite” side of x from y.

If St , ∆, observe that for any x ∈ intSt \ ({x1} ∪℘ (x̂1,x1)), we can find a γB with binary

support {x1,x2} such that x ∈ intconvsuppγB (x is a strict convex combination of x1 and

x2) and x̂1 < convsuppγB; and so, by Proposition 3.3, ϕ (x) = x∗ for all such x. Moreover

by Claim A.7, we must also have ϕ (x) = x∗ = x̂1 for all x ∈ intSt.

If St = ∆, we construct the following two distributions: ρ1
B, with support on {x1,x2},

where µ is a strict convex combination of x1 and x2, and x2 is close to µ; and ρ2
B, which has

support on n affinely independent points, one of which is in the interior of suppρ1
B, and all

of which are close to µ. Proposition 3.3 implies that ϕ (x) = x∗ for all x ∈ intconvsuppρ1
B
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and for all x ∈ intconvsuppρ2
B. Provided the support points of ρ2

B are sufficiently close to

µ, which we assume, x∗, x̂1 < convsuppρ2
B.

Furthermore, for any x ∈ int∆ \ (℘ (x∗,µ)∪℘ (x̂1,µ)∪℘ (x1,µ)), we can find a ρ3
B with

binary support {x3,x4} such that x4 ∈ intconvsuppρ2
B, x,µ ∈ intconvsuppρ3

B (x is a strict

convex combination of x3 and x4), and x∗, x̂1 < convsuppρ3
B. Consequently, by Proposition

3.3, ϕ (x) = x∗ for all such x. Moreover by Claim A.7, we must also have ϕ (x) = x∗ = x̂1 for

all x ∈ intSt.

There is one gap left to fill: what else does respecting the Blackwell order necessitate,

when the updating rule makes mistakes on a vertex (or multiple vertices)? Writing êi B

ϕ (ei), we have

Claim A.13. If an updating rule produces an error for some vertex ei (i ∈ {1, . . . ,n}) êi ∈

ℓ (x∗, ei).

Proof. Suppose for the sake of contraposition that êi and conv {ei ,x∗} can be strictly sepa-

rated by a hyperplane

Hα,β B
{
x ∈ R

n−1
∣∣∣α · x = β

}
.

WLOG, we may assume conv {ei ,x∗} ⊂ H≤α,β B
{
x ∈ R

n−1
∣∣∣α · x ≤ β

}
, which implies êi ∈ ∆ \

H≤α,β .

Consider the value function V (x) = max {0,α · x − β}, and let ρB have support {ei , y}

with pB PρB (ei). The payoff to the DM from ρB is

p (αei − β) ,

which is strictly decreasing in p, yielding a strictly negative value of information. ■

Note that we do not assume that the error is expansive in this claim. It holds regardless

of the type of error. ■

A.6 Lemma 4.3 Proof

Proof. Let ϕ (x) , x for some x ∈ suppρB. WLOG we may suppose that ρB is binary, since

we can always just collapse the points other than the specified x to their barycenter,
¯
x. If
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ρB, does not produce an expansive error and ϕ (x) < ℓx then ϕ (x) ∈ ℓ
¯
x. However, as

¯
x , µ,

ρB must produce an expansive error, a contradiction. ■

A.7 Proposition 4.5 Proof

Proof. Let ρB, corresponding to π, have n affinely independent points of support {x1, . . . ,xn}

and U have a contractive error for one of them, WLOG x1. Let p ≡ p1 ∈ (0,1) denote

PρB (x1); and let pj ∈ (0,1) denote PρB

(
xj

)
and x̂j B ϕ

(
xj

)
for all j.

Step 1 (“Edge Points Mapped to the Prior”): Consider another Bayesian distribution

over posteriors, ρ′B, corresponding to π′, with support on
{
x′1,x2, . . . ,xn

}
; that is, all of

the support points except for the first one are also support points of ρB. Moreover, let

x′1 ∈ ℓ◦ (x1,xs) for some s , 1, so that ρ′B is a strict MPC of ρB and x′1 lies on the edge

between x1 and xs. Let p′ ∈ (0,1) denote Pρ′B

(
x′1

)
. Let p′j ∈ (0,1) denote Pρ′B

(
xj

)
for all

j , 1. Note that p′ > p, p′s < ps and p′j = pj for all j , 1, s.

Claim A.14. x̂′1B ϕ
(
x′1

)
= µ.

Proof. As U does not produce an expansive error, x̂′1 ∈ ℓx′1 , where possibly x̂′1 = x′1. Sup-

pose for the sake of contraposition that x̂′1 , µ. In that case the sets conv
{
x̂′1,x

′
1,x1

}
and

conv
{
x̂1,µ

}
can be strictly separated by a hyperplane

Hα,β B
{
x ∈ R

n−1
∣∣∣α · x = β

}
.

WLOG we may assume that conv
{
x̂1

1,x
1
1,x1

}
is a strict subset of the closed half-space{

x ∈ R
n−1

∣∣∣α · x ≥ β
}
. Consider the value function V (x) = max {0,α · x − β}. We may ignore

points xj with j , s,1. Since we are assuming that there are no expansive errors, we may

WLOG assume α · x̂s > β and α · xs > β. Thus, the agent’s payoff under experiment π is

ps (α · xs − β), and her payoff under experiment π′ is p′s (α · xs − β) + p′1
(
α · x′1 − β

)
. Taking

the difference of these two expressions, we obtain

(ps − p′s) (α · xs − β)− p′1 (α · x′1 − β) = −p1 (α · x1 − β) < 0,

as ps + p1 = p′s + p′1 and psxs + p1x1 = p′sxs + p′1x
′
1. ■
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Now another Bayesian distribution over posteriors, ρ†B, corresponding to π†, with sup-

port on {
x1,x2, . . . ,xs − 1,x†s ,xs+1, . . .xn

}
,

where s , 1. By construction, all of the support points except for x†s are also support

points of ρ†B. Moreover, let x†s ∈ ℓ◦ (x1,xs), so that ρ†B is a strict MPC of ρB and x†s lies on

the edge between x1 and xs. Let p† ∈ (0,1) denote Pρ†B

(
x†1

)
. Let p†j ∈ (0,1) denote Pρ†B

(
xj

)
for all j , 1. Note that p† < p, p†s > ps and p†j = pj for all j , 1, s.

Claim A.15. x̂†s B ϕ
(
x†s

)
= µ.

Proof. Omitted as it is virtually identical to the proof of Claim A.14. ■

Step 2 (“Face Points Mapped to the Prior”): The final step is to show that the points in

intconvsuppρB must all be mapped to µ by ϕ.

i. Consider any 2-dimensional face of the simplex ∆ρB B convsuppρB for which two

(of the three) edges, S1
ρB,i

and S1
ρB,l

, share vertex x1. Evidently, any point x ∈ int∆ρB can be

obtained as the strict convex combination of points xi ∈ intS1
ρB,i

and xl ∈ S1
ρB,l

. It is easy to

see that for all such x, U respecting the Blackwell order (and not producing a contractive

error) implies ϕ (x) = µ. If n = 2, we are done.

ii. If n > 2, consider any 3-dimensional face of ∆ρB for which three (of the four) 2-d

faces are those specified in i. Following the same logic, any point in the relative interior

of this collection of 3-d faces must be mapped to µ by ϕ. If n = 3, we are done.

iii. If n > 3, consider any 4-dimensional face...and so on.

This process continues until we arrive at a single face is of maximal dimension (∆ρB),

when it terminates, allowing us to conclude the result. ■

A.8 Theorem 5.1 Proof

Proof. First, let n = 2. Necessity follows from Propositions 3.6 and 4.6 and Claim A.13. As

for sufficiency, we define function W (x)B Ex(θ)u (â∗,θ), where, understanding x̂B ϕ (x),

â∗ ∈ argmax
â∈argmaxa∈AEx̂(θ)u(a,θ)

Ex(θ)u (â,θ) .
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A positive value for information is implied by W ’s convexity in x.

By construction, (denoting ϕ (0) = u and ϕ (1) = v)

W (x) =



αx+ β, if x = 0

σx+ η, if 0 < x ≤ a

V (x) , if a < x < b

γx+ δ, if b ≤ x < 1

τx+ ρ, if x = 1,

where αy + β ≥ σy + η for all y ≤ u, σa+ η = V (a), σ = V ′ (a−), V (b) = γb + δ, γ = V ′ (b+),

τy + ρ ≥ γy + δ for all y ≥ v, and V (x) is convex.

Second, let n ≥ 3. Necessity is a consequence of Theorems 3.1 and 4.1. For sufficiency,

consider again W (x) ≡maxâ∈argmaxa∈AEx̂(θ)u(a,θ)Ex(θ)u (â,θ). Observe that, letting s denote

the vector parallel to line-segment ℓ◦(x∗, e∗i ) in the direction of x∗ from e∗i , Ds (f (x)) the

directional derivative of function f at x along s and Ds (f (x−)) the left-sided directional

derivative of function f at x along s,

(i) W (x) = α · x+ β for all x ∈ intSm, for all Sm ∈ Ŝ2, where V (x∗) = α · x∗ + β.

(ii) If x∗ < intS1 for some S1 ∈ Ŝ1, W (x) = α · x+ β for all x ∈ intS1, for all S1 ∈ Ŝ1.

(iii) If x∗ ∈ intS ′1 for some S ′1 ∈ Ŝ1, either

(a) W (x) = α·x+β for all x ∈ ℓ◦(x∗, e∗i ), for some vertex e∗i of S ′1, W (x) = V (x) ≥ α·x+β

for all x ∈ intS ′1 \ ℓ◦(x∗, e
∗
i ), and Ds (V (x∗−)) = Ds (α · x∗ + β); or

(b) W (x) = α · x+ β for all x ∈ intS ′1.

(iv) For all x ∈ Sm, for all Sm < Ŝ, W (x) = V (x) ≥ α · x+ β.

(v) For all ei ∈ Ê, W (ei) ≥ α · ei + β, as for a Bayesian, the regions of beliefs on which

actions are optimal are convex.

Thus, W is convex. ■
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