Trends in Worker Bargaining Power

Paolo Mengano
University of Zurich

August 29, 2023

The Productivity-Pay Gap

Figure: The Productivity-Pay Gap
Economic Policy Institute

Introduction

> How did worker bargaining power evolve over time?

1. Measure worker bargaining power

- structural method combining macroeconomics and industrial organization

2. Study the implications for the economy
3. Propose policy interventions
4. Shed lights on potential drivers

Literature

1. Declining worker bargaining power

Stansbury\&Summers, 2020; Drautzburg et al, 2020; Lombardi et al, 2022; Ratner\&Sim, 2022

- microfounded evidence

2. Frictional labor markets with wage bargaining

Jaimovich et al., 2021, Dix-Carneiro et al., 2021, Cacciatore and Ghironi, 2021, ...

- theory-consistent value

3. Rent sharing

Card et al., 2018; Friedrich et al., 2021; Barth et al., 2016; Fakhfakh and FitzRoy, 2004,...

- model-consistent and time-varying

4. Monopsony

Manning, 2020; Berger et al., 2021; Jarosch et al., 2021; Yeh et al., 2022; Traina, 2021,...

- new evidence on how the surplus is split

Model

Environment

Heterogeneous firms model with random search in the labor market (DMP)

Risk neutral workers and firms

- continuum of workers
- free entry determines \# firms

Workers (

- employed \rightarrow working
- unemployed \rightarrow searching

Firms

- heterogeneous in productivity
- post vacancies

Labor market

- random search frictions
- Nash bargaining

Wage Equation

Nash bargaining:

$$
\operatorname{wage}(w)=\underset{w}{\arg \max }(\text { Firm Surplus })^{1-\tau}(\text { Worker Surplus })^{\tau}
$$

with τ being worker bargaining power

Solving the Nash product:

$$
w=\tau\binom{\text { marginal }}{\text { productivity }}+(1-\tau)\binom{\text { outside }}{\text { option }}+\tau\binom{\text { labor market }}{\text { conditions }}
$$

Empirical Framework

Estimation With Firm Heterogeneity

$$
\text { Target equation: } w_{i s t}=\tau \mathrm{MPN}_{i s t}+(1-\tau) b_{s t}+\tau \theta_{s t} \kappa_{s t}+\varepsilon_{i s t}
$$

Three main challenges:

1. MPN is unobservable
2. endogeneity bias
3. $\left\{\begin{array}{c}\text { outside, } \\ \text { option }\end{array}, \begin{array}{c}\text { labor market } \\ \text { conditions }\end{array}\right\}$

Estimation With Firm Heterogeneity

$$
\text { Target equation: } w_{i s t}=\tau \mathrm{MPN}_{i s t}+(1-\tau) b_{s t}+\tau \theta_{s t} \kappa_{s t}+\varepsilon_{i s t}
$$

Three main challenges:

1. MPN is unobservable \rightarrow estimate MPN at the firm-level
2. endogeneity bias
3. $\left\{\begin{array}{c}\text { outside, } \\ \text { option }\end{array}, \begin{array}{c}\text { labor market } \\ \text { conditions }\end{array}\right\}$

Estimation With Firm Heterogeneity

$$
\text { Target equation: } w_{i s t}=\tau \mathrm{MPN}_{i s t}+(1-\tau) b_{s t}+\tau \theta_{s t} \kappa_{s t}+\varepsilon_{i s t}
$$

Three main challenges:

1. MPN is unobservable \rightarrow estimate MPN at the firm-level
2. endogeneity bias \rightarrow IV strategy: lagged productivity
3. $\left\{\begin{array}{c}\text { outside, } \\ \text { option }\end{array}\right.$ labor market $\left.\begin{array}{c}\text { conditions }\end{array}\right\}$

Estimation With Firm Heterogeneity

$$
\text { Target equation: } w_{i s t}=\tau \mathrm{MPN}_{i s t}+(1-\tau) b_{s t}+\tau \theta_{s t} \kappa_{s t}+\varepsilon_{i s t}
$$

Three main challenges:

1. MPN is unobservable \rightarrow estimate MPN at the firm-level
2. endogeneity bias \rightarrow IV strategy: lagged productivity
3. $\left\{\begin{array}{c}\text { outside, } \\ \text { option } ;\end{array} \begin{array}{c}\text { labor market } \\ \text { conditions }\end{array}\right\} \rightarrow$ fixed effects

Estimation With Firm Heterogeneity

$$
\text { Target equation: } w_{i s t}=\tau \mathrm{MPN}_{i s t}+(1-\tau) b_{s t}+\tau \theta_{s t} \kappa_{s t}+\varepsilon_{i s t}
$$

Three main challenges:

1. MPN is unobservable \rightarrow estimate MPN at the firm-level
2. endogeneity bias \rightarrow IV strategy: lagged productivity
3. $\left\{\begin{array}{c}\text { outside, } \\ \text { option } ;\end{array} \begin{array}{c}\text { labor market } \\ \text { conditions }\end{array}\right\} \rightarrow$ fixed effects

Later: incorporate worker dimension

Estimation With Firm Heterogeneity

$$
\text { Target equation: } w_{i s t}=\tau \mathrm{MPN}_{i s t}+(1-\tau) b_{s t}+\tau \theta_{s t} \kappa_{s t}+\varepsilon_{i s t}
$$

Three main challenges:

1. MPN is unobservable \rightarrow estimate MPN at the firm-level
2. endogeneity bias \rightarrow IV strategy: lagged productivity
3. $\left\{\begin{array}{c}\text { outside, } \\ \text { option } ;\end{array} \begin{array}{c}\text { labor market } \\ \text { conditions }\end{array}\right\} \rightarrow$ fixed effects

Later: incorporate worker dimension \rightarrow no effect on aggregate trend

Data

US: Compustat
financial information on universe of publicly listed firms

- balance sheet and income statement
- sales, \# employees, wages (lc/n), intermediate inputs, fixed assets, COGS
- period: 1960-2019

Data

US: Compustat
financial information on universe of publicly listed firms

- balance sheet and income statement
- sales, \# employees, wages (lc/n), intermediate inputs, fixed assets, COGS
- period: 1960-2019
\Rightarrow focus on Manufacturing: $\sim 37 \%$ of workforce

Data

France: Administrative data

1. FARE/FICUS: financial information on universe of firms, 1994-2019 (2020)

- universe of private firms
- balance sheet and income statement

Data

France: Administrative data

1. FARE/FICUS: financial information on universe of firms, 1994-2019 (2020)
2. DADS-Postes: job-level information, 1994-2019 (2020)

- universe of employees
- wages, hours, age, office location, residence, occupation, contract, (collective agreement)
- anonymized data with firm identifier
- 2-year tracking

Data

France: Administrative data

1. FARE/FICUS: financial information on universe of firms, 1994-2019 (2020)
2. DADS-Postes: job-level information, 1994-2019 (2020)
3. Robustness and extensions:
a) DADS-Panel: worker panel 1976-2019 (20), up to 8% of workforce \rightarrow education
b) EAP: survey on production, 2008-19 (20) \rightarrow prices
c) TIC Entreprises: survey on ICT, 2008-19 (20) \rightarrow ERP, ICT, robots
d) EAE Industrie: annual business survey, 1994-2007 \rightarrow export, outsourcing

Results

Constant Bargaining Power

(a) United States

(b) France

Trends in Bargaining Power

(a) United States

(b) France

Trends in Bargaining Power

(a) United States

(b) France

Trends in Bargaining Power - Robustness

1. Firm Heterogeneity

Trends in Bargaining Power - Robustness

1. Firm Heterogeneity

- Technical change

Figure: FR Manufacturing

Trends in Bargaining Power - Robustness

1. Firm Heterogeneity

- Technical change
- Technological differences

Figure: FR Manufacturing

Trends in Bargaining Power - Robustness

1. Firm Heterogeneity

- Technical change
- Technological differences
- Product market power

Figure: FR Manufacturing

Trends in Bargaining Power - Robustness

1. Firm Heterogeneity

- Technical change
- Technological differences
- Product market power
- Intra-firm bargaining

Figure: FR Manufacturing

Trends in Bargaining Power - Robustness

1. Firm Heterogeneity

- Technical change
- Technological differences
- Product market power
- Intra-firm bargaining

2. Worker Heterogeneity

- Sorting

Figure: FR Manufacturing

Trends in Bargaining Power - Robustness

1. Firm Heterogeneity

- Technical change
- Technological differences
- Product market power
- Intra-firm bargaining

2. Worker Heterogeneity

- Sorting
- Occupation composition

Figure: FR Manufacturing

Trends in Bargaining Power - Robustness

1. Firm Heterogeneity

- Technical change
- Technological differences
- Product market power
- Intra-firm bargaining

2. Worker Heterogeneity

- Sorting
- Occupation composition
- Worker information

Figure: FR Manufacturing

Why Is This Important?

Compare steady states with highest and lowest WBP

Table: United States

Variable	Model			Data	
	80 s	10 s		80 s	10 s
Unemp	7.3	6.1		7.3	6.3
W/P	1	0.91		1	0.72
Barg. Power	0.34	0.15		0.34	0.15

\rightarrow policy interventions!

What Happened to Bargaining Power?

What Happened to Bargaining Power?

Find the sources of the decline

- distinguish firms and workers according to specific characteristics
- estimate differential BP

$$
\begin{array}{ccc}
w_{i t}^{A}=\tau^{A} \mathrm{MPN}_{i t}+\Omega_{i t}^{A}+\varepsilon_{i t}^{A} & \text { vs } & w_{i t}^{B}=\tau^{B} \mathrm{MPN}_{i t}+\Omega_{i t}^{B}+\varepsilon_{i t}^{B} \\
w_{j i t}^{A}=\tau^{A} \mathrm{MPN}_{j i t}+\Omega_{j i t}^{A}+\varepsilon_{j i t}^{A} & \text { vs } & w_{j i t}^{B}=\tau^{B} \mathrm{MPN}_{j i t}+\Omega_{j i t}^{B}+\varepsilon_{j i t}^{B}
\end{array}
$$

Two purposes

1. show differences across groups
2. study differential trends

Sources of Decline in Worker Bargaining Power

(a) Technology

(b) Trade

Sources of Decline in Worker Bargaining Power

(a) Gender

(b) Occupation

Conclusions

Propose a novel method for estimating worker bargaining power
Measure time-varying bargaining power uncovering an aggregate decline
Help reconcile unemployment and labor share trends and design policy interventions

Such a decline is concentrated in non routine occupations and male workers

- technology, competition, trade, and outsourcing seem to play a smaller role

Ongoing projects: link to labor force participation, the effect of COVID

> Thank you!
> paolo.mengano@uzh.ch

Appendix

Non Profit Condition

$$
\underbrace{\kappa}_{\text {Vacancy cost }}=\underbrace{\beta \mathbb{E}\left[q\left(\theta_{t}\right) J_{i t+1}\right]}_{\text {Expected profits }}
$$

Worker Problem

Workers

$$
\begin{aligned}
& E_{t}=w_{t}+\beta \mathbb{E}\left[(1-s) E_{t+1}+s U_{t+1}\right] \\
& U_{t}=b_{t}+\beta \mathbb{E}\left[p\left(\theta_{t}\right) E_{t+1}+\left(1-p\left(\theta_{t}\right)\right) U_{t+1}\right]
\end{aligned}
$$

Surplus from becoming employed:

$$
E_{t}-U_{t}=w_{t}-b_{t}+\beta \mathbb{E}\left[\left(1-s-p\left(\theta_{t}\right)\right)\left(E_{t+1}-U_{t+1}\right)\right]
$$

Firm Problem

Firm problem

$$
\begin{aligned}
\Pi_{t}= & \max _{v_{t}, k_{t}} \pi_{t}+\beta \mathbb{E}\left[\Pi_{t+1}\right] \\
\text { s.t. } & N_{t+1}=(1-s) N_{t}+V_{t} q\left(\theta_{t}\right) \\
& A_{t+1}=g\left(A_{t}\right)+\nu_{t+1}
\end{aligned}
$$

with $\pi_{t}=F\left(A_{t}, N_{t}\right)-w_{t} N_{t}-\kappa_{t} V_{t}$

Labor Market

Random search frictions: workers and firms meet at random

Matching function

- CRS, increasing in v and u
- $M(v, u)=A v^{\alpha} u^{1-\alpha}$

Tightness ratio: $\theta=\frac{v}{u}$
Exogenous separation: s
Job filling rate: $q(\theta)=\frac{M}{v}$
Job finding rate: $p(\theta)=\frac{M}{u}=\theta q(\theta)$

Summary Statistics for France

Table: Summary statistics
(a) Firms

	p1	p25	p50	p75	p99	Mean	N
Sales	113	510	1,041	2,406	41,756	3,231	$8,987,284$
Value Added	35	186	353	754	9,818	877	$8,856,811$
Materials	1	107	334	998	24,605	1,566	$8,987,284$
Capital	5	106	270	733	19,528	1,223	$8,987,284$

(b) Workers

	p1	p25	p50	p75	p99	Mean	N
Wages	5.5	10.0	12.1	15.9	43.3	14.2	$227,043,310$

Notes: this table shows summary statistics for firms and employees in the sample of analysis. All variables are real. Values for firms are in thousands of Euros, values for employees are in Euros.

Summary Statistics for the US

Table: Summary Statistics

	All	Reporting	Non-Reporting	Δ
Revenues	1,185	3,849	924	$2,925^{* * *}$
Capital	345	1,259	256	$1,003^{* * *}$
Employees	6	21	5	$16^{* * *}$
Wages	35	35	.	.
Observations	128,757	13,794	114,963	

Revenues and Capital are expressed in USD millions;
Number of Employees and Wages in thousands of workers and USD, respectively

Calibration

Parameter	US				France	
	Value	Source		Value	Source	
Productivity (z)	1	normalization		1	normalization	
Discount factor (β)	0.99	4% annual interest		0.99	4% annual interest	
Bargaining power (τ)	0.34	own estimation		0.28	own estimation	
Outside option (b)	0.4	Shimer (2005)		0.6	Cahuc et al. (2010)	
Separation rate (s)	0.1	2001q1-2019q4		0.02	Hairault et al. (2015)	
Matching elasticity (α)	0.22	Lange et al. (2020)		0.5	Cahuc et al. (2010)	
Matching scale (A)	1	normalization		0.1	normalization	

Calibration κ to match unemployment rate

Why Is This Important?

Compare steady states with highest and lowest WBP

Table: France

Variable	Model			Data	
	95	18		95	18
Unemp	11.8	$\mathbf{9 . 2}$		11.8	$\mathbf{9 . 0}$
W/P	1	$\mathbf{0 . 9 4}$		1	$\mathbf{0 . 9 9}$
Barg. Power	0.28	0.16		0.28	0.16

\rightarrow policy interventions!

Bargaining Power in the United States

Figure: US Manufacturing

Figure: Work Stoppages

Bargaining Power in France

Figure: FR Manufacturing

Figure: FR Total Economy

Bargaining Power by Size

Figure: Constant

Figure: Time-varying

Trends in Bargaining Power: Regional Differences*

Figure: Bargaining Power

Figure: HHI (employment)

Trends in Bargaining Power: Industry Breakdown

Trends in Bargaining Power: Breakdown in Manufacturing

Figure: Bargaining Power

Bargaining vs Markdowns

Measuring Workers' Productivity

$$
\mathrm{MPN}=\frac{\partial F(\cdot)}{\partial N}=\epsilon_{Y, N} \frac{Y}{N}
$$

$\varepsilon_{Y, L}$ is unobservable and recovering it presents many challenges (Ackerberg et al. 2015)

- technology, competition

Olley \& Pakes' intuition (control function approach):

1. firm productivity is unobservable to the econometrician but observable to the firm
\rightarrow use another observable variable to infer unobserved productivity
2. exploit the stochastic (first-order Markov) process of productivity

Control Function Approach

Aim: recover Hicks-neutral productivity as a residual: $Y=A F(\cdot) \rightarrow A=Y / F(\cdot)$
Two main challenges:

1. what is in the residual?

2 . what is $F(\cdot)$?

Control Function Approach

Aim: recover Hicks-neutral productivity as a residual: $Y=A F(\cdot) \rightarrow A=Y / F(\cdot)$
Two main challenges:

1. what is in the residual?
2. what is $F(\cdot)$?

Two steps:

Control Function Approach

Aim: recover Hicks-neutral productivity as a residual: $Y=A F(\cdot) \rightarrow A=Y / F(\cdot)$
Two main challenges:

1. what is in the residual?
2. what is $F(\cdot)$?

Two steps:

1. $Y_{i t}=A_{i t} K_{i t}^{\epsilon_{K}} N_{i t}^{\epsilon_{L}}$

Control Function Approach

Aim: recover Hicks-neutral productivity as a residual: $Y=A F(\cdot) \rightarrow A=Y / F(\cdot)$
Two main challenges:

1. what is in the residual?
2. what is $F(\cdot)$?

Two steps:

1. $y_{i t}=a_{i t}+\epsilon_{K} k_{i t}+\epsilon_{L} n_{i t}+\varepsilon_{i t}$

Control Function Approach

Aim: recover Hicks-neutral productivity as a residual: $Y=A F(\cdot) \rightarrow A=Y / F(\cdot)$
Two main challenges:

1. what is in the residual?
2. what is $F(\cdot)$?

Two steps:

$$
\text { 1. } y_{i t}=m_{t}^{-1}\left(m_{i t}, \Omega_{i t}\right)+\epsilon_{K} k_{i t}+\epsilon_{L} n_{i t}+\varepsilon_{i t}
$$

Control Function Approach

Aim: recover Hicks-neutral productivity as a residual: $Y=A F(\cdot) \rightarrow A=Y / F(\cdot)$
Two main challenges:

1. what is in the residual?
2. what is $F(\cdot)$?

Two steps:

1. $y_{i t}=\phi\left(m_{i t}, k_{i t}, n_{i t}, \Omega_{i t}\right)+\varepsilon_{i t}$

Control Function Approach

Aim: recover Hicks-neutral productivity as a residual: $Y=A F(\cdot) \rightarrow A=Y / F(\cdot)$
Two main challenges:

1. what is in the residual?
2. what is $F(\cdot)$?

Two steps:

1. $y_{i t}=\phi\left(m_{i t}, k_{i t}, n_{i t}, \Omega_{i t}\right)+\varepsilon_{i t} \rightarrow \hat{y}_{i t}$

Control Function Approach

Aim: recover Hicks-neutral productivity as a residual: $Y=A F(\cdot) \rightarrow A=Y / F(\cdot)$
Two main challenges:

1. what is in the residual?
2. what is $F(\cdot)$?

Two steps:

1. $y_{i t}=\phi\left(m_{i t}, k_{i t}, n_{i t}, \Omega_{i t}\right)+\varepsilon_{i t} \rightarrow \hat{y}_{i t}$
2. $a_{i t}=g\left(a_{i t-1}\right)+\nu_{i t}$

Control Function Approach

Aim: recover Hicks-neutral productivity as a residual: $Y=A F(\cdot) \rightarrow A=Y / F(\cdot)$
Two main challenges:

1. what is in the residual?
2. what is $F(\cdot)$?

Two steps:

1. $y_{i t}=\phi\left(m_{i t}, k_{i t}, n_{i t}, \Omega_{i t}\right)+\varepsilon_{i t} \rightarrow \hat{y}_{i t}$
2. $\underbrace{a_{i t}}_{\hat{y}_{i t}-\epsilon \times\{k, n\}_{i t}}=g(\underbrace{a_{i t-1}}_{\hat{y}_{i t-1}-\epsilon \times\{k, n\}_{i t-1}})+\nu_{i t}$

Control Function Approach

Aim: recover Hicks-neutral productivity as a residual: $Y=A F(\cdot) \rightarrow A=Y / F(\cdot)$
Two main challenges:

1. what is in the residual?
2. what is $F(\cdot)$?

Two steps:

1. $y_{i t}=\phi\left(m_{i t}, k_{i t}, n_{i t}, \Omega_{i t}\right)+\varepsilon_{i t} \rightarrow \hat{y}_{i t}$
2. $\underbrace{a_{i t}}_{\hat{y}_{i t}-\epsilon \times\{k, n\}_{i t}}=g(\underbrace{a_{i t-1}}_{\hat{y}_{i t-1}-\epsilon \times\{k, n\}_{i t-1}})+\nu_{i t}$

Control Function Approach

Aim: recover Hicks-neutral productivity as a residual: $Y=A F(\cdot) \rightarrow A=Y / F(\cdot)$
Two main challenges:

1. what is in the residual?
2. what is $F(\cdot)$?

Two steps:

1. $y_{i t}=\phi\left(m_{i t}, k_{i t}, n_{i t}, \Omega_{i t}\right)+\varepsilon_{i t} \rightarrow \hat{y}_{i t}$
2. $\underbrace{a_{i t}}_{\hat{y}_{i t}-\epsilon \times\{k, n\}_{i t}}=g(\underbrace{a_{i t-1}}_{\hat{y}_{i t-1}-\epsilon \times\{k, n\}_{i t-1}})+\nu_{i t}$

Value added vs Gross Output, Cobb-Douglas vs Translog, Single labor vs multiple labor types, Revenues vs Quantities

Instruments and Fixed Effects

IV: lagged productivity \rightarrow structural identification

- relevance: Markov Process
- exclusion restriction: period-by-period renegotiation

FEs: industry \times year \rightarrow time variation but restrictive on the cross-section

- gradually relax introducing worker dimension

Final equation:

$$
w_{i s t}=\tau \underbrace{\mathrm{MPN}_{i s t}}_{\substack{\mathrm{MPN}_{i s t-1}}}+\Omega_{i s t}+\varepsilon_{i s t}
$$

Technical Change

Figure: US

Figure: FR Manufacturing

Allowing the production function to vary every year

Alternative Production Function: Translog

Figure: US

Figure: France
flexible and firm-specific production function:

$$
y_{i t}=a_{i t}+\beta_{K} 1 k_{i t}+\beta_{K} 2 k_{i t}^{2}+\beta_{L} 1 n_{i t}+\beta_{L} 2 n_{i t}^{2}+\beta_{K} L k_{i t} n_{i t}+\varepsilon_{i t}
$$

Bargaining Power with Heterogeneous Markups

Wage equation with market power in the output market

$$
w=\tau \mathrm{MRPN}+(1-\tau) b+\tau \theta \kappa
$$

Hence, in need of MRPN!
It takes the form: $\operatorname{MRPN}=\frac{\beta_{L}}{\mu} \frac{P Y}{N} \rightarrow$ De Loecker \& Warzynski's approach

Bargaining Power with Heterogeneous Markups

Figure: US

Figure: FR Manufacturing

Wages with Multi-Worker Negotiation

Firms internalize effect of new hire on existing workforce:
$w=\tau\left(\operatorname{MPN}-N \frac{\partial w}{\partial N}\right)+(1-\tau) b+\tau \theta \kappa$

Wages with Multi-Worker Negotiation

Firms internalize effect of new hire on existing workforce:

$$
\begin{aligned}
& w=\tau\left(\mathrm{MPN}-N \frac{\partial w}{\partial N}\right)+(1-\tau) b+\tau \theta \kappa \\
& w N^{\frac{1}{\tau}}=\int \frac{\mathrm{MPN}}{N^{1-\frac{1}{\tau}}} d N+[(1-\tau) b+\tau \theta \kappa] N^{\frac{1}{\tau}}+C_{2}
\end{aligned}
$$

Wages with Multi-Worker Negotiation

Firms internalize effect of new hire on existing workforce:
$w=\tau\left(\mathrm{MPN}-N \frac{\partial w}{\partial N}\right)+(1-\tau) b+\tau \theta \kappa$

$$
w N^{\frac{1}{\tau}}=\int \frac{\mathrm{MPN}}{N^{1-\frac{1}{\tau}}} d N+[(1-\tau) b+\tau \theta c] N^{\frac{1}{\tau}}+C_{2}
$$

Additional assumptions:

1. Cobb-Douglas: $Y=A N^{\beta_{L}} K^{\beta_{K}} \quad \Rightarrow \quad \mathrm{MPN}=\beta_{L} \frac{Y}{N}$

$$
w=\frac{1}{\left(\beta_{L}+\frac{1}{\tau}-1\right)} \mathrm{MPN}+(1-\tau) b+\tau \theta \kappa+C_{3} N^{-\frac{1}{\tau}}
$$

Wages with Multi-Worker Negotiation

Firms internalize effect of new hire on existing workforce:
$w=\tau\left(\mathrm{MPN}-N \frac{\partial w}{\partial N}\right)+(1-\tau) b+\tau \theta \kappa$

$$
w N^{\frac{1}{\tau}}=\int \frac{\mathrm{MPN}}{N^{1-\frac{1}{\tau}}} d N+[(1-\tau) b+\tau \theta c] N^{\frac{1}{\tau}}+C_{2}
$$

Additional assumptions:

1. Cobb-Douglas: $Y=A N^{\beta_{L}} K^{\beta_{K}} \quad \Rightarrow \quad \mathrm{MPN}=\beta_{L} \frac{Y}{N}$

$$
w=\frac{1}{\left(\beta_{L}+\frac{1}{\tau}-1\right)} \mathrm{MPN}+(1-\tau) b+\tau \theta \kappa+C_{3} N^{-\frac{1}{\tau}}
$$

2. $\lim _{N \rightarrow 0} \underbrace{N w}_{\text {Labor Cost }}=0 \Rightarrow C_{3}=0$

$$
w=\frac{1}{\left(\beta_{L}+\frac{1}{\tau}-1\right)} \mathrm{MPN}+(1-\tau) b+\tau \theta \kappa
$$

The Role Of Sorting

Figure: US

Figure: France

Estimation in first differences
\rightarrow Preliminary: don't find evidence for increasing sorting

Controlling For Occupation Composition

Intuition: include occupation-specific components (FEs) (Wong, 2021; Chen et al., 2020)

Step 1: estimate occupation FEs (on random subsample, 20\%)

$$
\ln w_{j i t}^{o}=\underbrace{\alpha_{t}^{o}}_{\text {occupation FEs }}+\underbrace{\psi_{i(j, t), t}}_{\text {firm } \times \mathrm{t} \text { FEs }}+\underbrace{X_{j t} \Gamma_{t}}_{\text {worker controls }}+\varepsilon_{j i t}
$$

Step 2: construct firm-level "labor bundle" in efficiency units

$$
\tilde{H}_{i t}=\sum_{j} \exp \left(\alpha_{t}^{o}\right) h_{j i t}^{o}
$$

\ldots estimate PFE, $Y_{i t}=F_{t}\left(A_{i t}, \tilde{H}_{i t}, K_{i t}\right)$, and BP

Comparing Occupation and Worker Ability

Figure: Occupation Ability

Figure: Worker Ability from 8% of workforce

Bargaining Power Controlling For Occupation Composition

Figure: FR Total Economy

Figure: FR Manufacturing

Including Worker Information

$$
w_{j i t}=\tau_{t} M P L_{i t}+X_{j t} \Gamma_{t}+\delta_{s t}+\varepsilon_{j i t}
$$

with $X_{j t}$ including:

- polynomial in age
- gender, region, contract dummies

Figure: FR Manufacturing

