Trends in Worker Bargaining Power

Paolo Mengano University of Zurich

August 29, 2023

The Productivity-Pay Gap

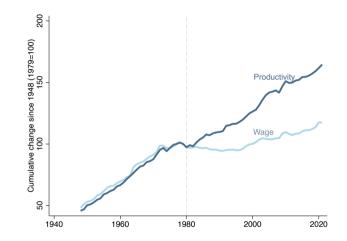


Figure: The Productivity–Pay Gap

Economic Policy Institute

Introduction

How did worker bargaining power evolve over time?

- 1. Measure worker bargaining power
 - ▶ structural method combining macroeconomics and industrial organization
- 2. Study the implications for the economy
- 3. Propose policy interventions
- 4. Shed lights on potential drivers

Literature

1. Declining worker bargaining power

Stansbury&Summers, 2020; Drautzburg et al, 2020; Lombardi et al, 2022; Ratner&Sim, 2022

microfounded evidence

2. Frictional labor markets with wage bargaining

Jaimovich et al., 2021, Dix-Carneiro et al., 2021, Cacciatore and Ghironi, 2021, ...

► theory-consistent value

3. Rent sharing

Card et al., 2018; Friedrich et al., 2021; Barth et al., 2016; Fakhfakh and FitzRoy, 2004,...

▶ model-consistent and time-varying

4. Monopsony

Manning, 2020; Berger et al., 2021; Jarosch et al., 2021; Yeh et al., 2022; Traina, 2021,...

new evidence on how the surplus is split

Model

Environment

Heterogeneous firms model with random search in the labor market (DMP)

Risk neutral workers and firms \bigcirc

- ► continuum of workers
- $\blacktriangleright\,$ free entry determines $\#\,$ firms

Workers 🕑

- \blacktriangleright employed \rightarrow working
- ▶ unemployed \rightarrow searching

Firms 🕑

- ▶ heterogeneous in productivity
- ▶ post vacancies

Labor market ${\rm \bigodot}$

- ▶ random search frictions
- Nash bargaining

Wage Equation

Nash bargaining:

wage(w) =
$$\underset{w}{\operatorname{arg\,max}}$$
 (Firm Surplus)^{1- τ} (Worker Surplus)⁷

with τ being worker bargaining power

Solving the Nash product:

$$w = \tau \begin{pmatrix} \text{marginal} \\ \text{productivity} \end{pmatrix} + (1 - \tau) \begin{pmatrix} \text{outside} \\ \text{option} \end{pmatrix} + \tau \begin{pmatrix} \text{labor market} \\ \text{conditions} \end{pmatrix}$$

Empirical Framework

Target equation: $w_{ist} = \tau MPN_{ist} + (1 - \tau)b_{st} + \tau \theta_{st}\kappa_{st} + \varepsilon_{ist}$

- 1. MPN is unobservable
- 2. endogeneity bias
- 3. $\left\{ \begin{array}{l} \text{outside, labor market} \\ \text{option}, \\ \text{conditions} \end{array} \right\}$

Target equation: $w_{ist} = \tau MPN_{ist} + (1 - \tau)b_{st} + \tau \theta_{st}\kappa_{st} + \varepsilon_{ist}$

- 1. MPN is unobservable \rightarrow estimate MPN at the firm-level
- 2. endogeneity bias
- 3. {outside. labor market option, conditions}

Target equation: $w_{ist} = \tau \text{MPN}_{ist} + (1 - \tau)b_{st} + \tau \theta_{st}\kappa_{st} + \varepsilon_{ist}$

- 1. MPN is unobservable \rightarrow estimate MPN at the firm-level
- 2. endogeneity bias \rightarrow IV strategy: lagged productivity
- 3. {outside. labor market option, conditions}

Target equation: $w_{ist} = \tau MPN_{ist} + (1 - \tau)b_{st} + \tau \theta_{st}\kappa_{st} + \varepsilon_{ist}$

- 1. MPN is unobservable \rightarrow estimate MPN at the firm-level
- 2. endogeneity bias \rightarrow IV strategy: lagged productivity
- 3. $\left\{ \substack{\text{outside, labor market}\\ \text{option}, \substack{\text{conditions}} \right\} \rightarrow \text{fixed effects} \right\}$

Target equation: $w_{ist} = \tau \text{MPN}_{ist} + (1 - \tau)b_{st} + \tau \theta_{st}\kappa_{st} + \varepsilon_{ist}$

Three main challenges:

- 1. MPN is unobservable \rightarrow estimate MPN at the firm-level
- 2. endogeneity bias \rightarrow IV strategy: lagged productivity
- 3. $\left\{ \substack{\text{outside, labor market}\\ \text{option}, \text{ conditions}} \right\} \rightarrow \text{fixed effects}$

Later: incorporate worker dimension

Target equation: $w_{ist} = \tau \text{MPN}_{ist} + (1 - \tau)b_{st} + \tau \theta_{st}\kappa_{st} + \varepsilon_{ist}$

Three main challenges:

- 1. MPN is unobservable \rightarrow estimate MPN at the firm-level
- 2. endogeneity bias \rightarrow IV strategy: lagged productivity
- 3. $\left\{ \substack{\text{outside, labor market}\\ \text{option}, \text{ conditions}} \right\} \rightarrow \text{fixed effects}$

Later: incorporate worker dimension \rightarrow no effect on aggregate trend

US: Compustat financial information on universe of publicly listed firms

- ▶ balance sheet and income statement
- $\blacktriangleright\,$ sales, # employees, wages (lc/n), intermediate inputs, fixed assets, COGS
- ▶ period: 1960 2019

US: Compustat financial information on universe of publicly listed firms

- ▶ balance sheet and income statement
- $\blacktriangleright\,$ sales, # employees, wages (lc/n), intermediate inputs, fixed assets, COGS
- ▶ period: 1960 2019

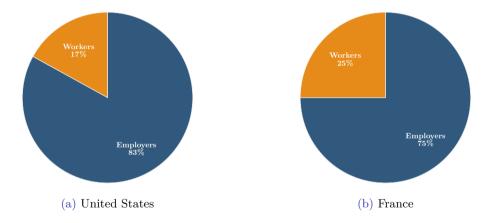
 \Rightarrow focus on Manufacturing: ${\sim}37\%$ of workforce

Summary Statistics

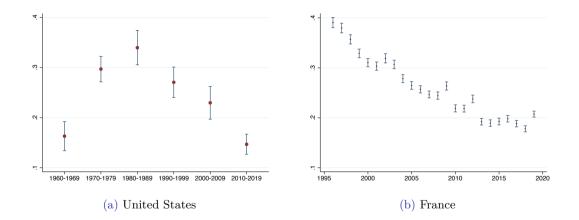
France: Administrative data

- 1. FARE/FICUS: financial information on universe of firms, 1994-2019 (2020)
 - ▶ universe of private firms
 - ▶ balance sheet and income statement

France: Administrative data

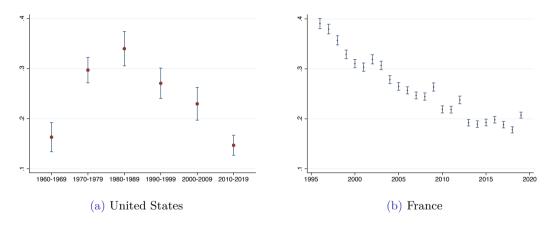

- 1. FARE/FICUS: financial information on universe of firms, 1994-2019 (2020)
- 2. DADS-Postes: job-level information, 1994-2019 (2020)
 - universe of employees
 - wages, hours, age, office location, residence, occupation, contract, (collective agreement)
 - ▶ anonymized data with firm identifier
 - ▶ 2-year tracking

France: Administrative data

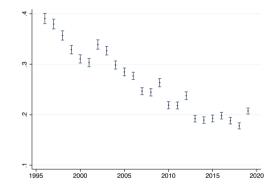

- 1. FARE/FICUS: financial information on universe of firms, 1994-2019 (2020)
- 2. DADS-Postes: job-level information, 1994-2019 (2020)
- 3. Robustness and extensions:
 - a) DADS-Panel: worker panel 1976-2019 (20), up to 8% of workforce \rightarrow education
 - b) EAP: survey on production, 2008-19 (20) \rightarrow prices
 - c) TIC Entreprises: survey on ICT, 2008-19 (20) \rightarrow ERP, ICT, robots
 - d) EAE Industrie: annual business survey, 1994-2007 \rightarrow export, outsourcing

Results

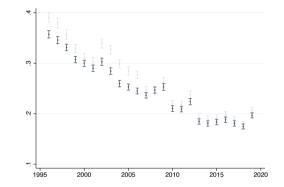
Constant Bargaining Power



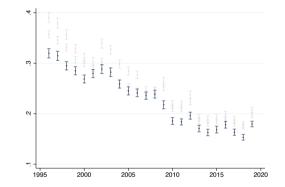
Trends in Bargaining Power


Trends in Bargaining Power

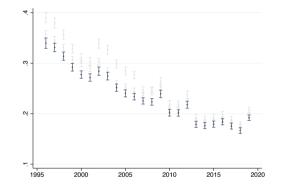
FR Economy


1. Firm Heterogeneity

- 1. Firm Heterogeneity
 - ► Technical change



- 1. Firm Heterogeneity
 - ► Technical change
 - ► Technological differences



- 1. Firm Heterogeneity
 - ► Technical change
 - ► Technological differences
 - ▶ Product market power

- 1. Firm Heterogeneity
 - ► Technical change
 - ► Technological differences
 - ▶ Product market power
 - ▶ Intra-firm bargaining

- 1. Firm Heterogeneity
 - ► Technical change
 - ► Technological differences
 - ▶ Product market power
 - ▶ Intra-firm bargaining
- 2. Worker Heterogeneity
 - ► Sorting

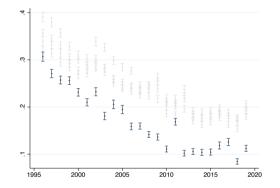
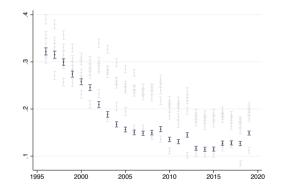
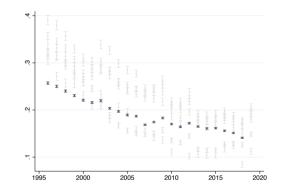



Figure: FR Manufacturing



- 1. Firm Heterogeneity
 - ► Technical change
 - ► Technological differences
 - ▶ Product market power
 - ▶ Intra-firm bargaining
- 2. Worker Heterogeneity
 - ► Sorting
 - ▶ Occupation composition

- 1. Firm Heterogeneity
 - ► Technical change
 - ► Technological differences
 - ▶ Product market power
 - ▶ Intra-firm bargaining
- 2. Worker Heterogeneity
 - ► Sorting
 - ▶ Occupation composition
 - ► Worker information

Why Is This Important?

Compare steady states with highest and lowest WBP

Variable	Model		Data	
	80s	10s	80s	10s
Unemp	7.3	6.1	7.3	6.3
W/P	1	0.91	1	0.72
Barg. Power	0.34	0.15	0.34	0.15

Table: United States

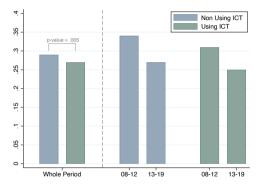
 \rightarrow policy interventions!

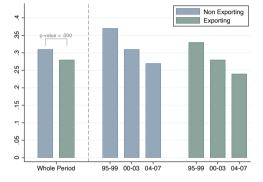
What Happened to Bargaining Power?

What Happened to Bargaining Power?

Find the sources of the decline

 \blacktriangleright distinguish firms and workers according to specific characteristics

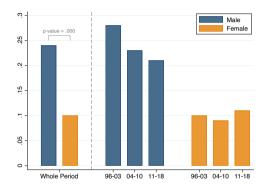

estimate differential BP

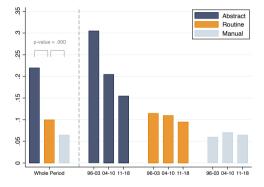

$$w_{it}^{A} = \tau^{A} \text{MPN}_{it} + \Omega_{it}^{A} + \varepsilon_{it}^{A} \quad \text{vs} \quad w_{it}^{B} = \tau^{B} \text{MPN}_{it} + \Omega_{it}^{B} + \varepsilon_{it}^{B}$$
$$w_{jit}^{A} = \tau^{A} \text{MPN}_{jit} + \Omega_{jit}^{A} + \varepsilon_{jit}^{A} \quad \text{vs} \quad w_{jit}^{B} = \tau^{B} \text{MPN}_{jit} + \Omega_{jit}^{B} + \varepsilon_{jit}^{B}$$

Two purposes

- 1. show differences across groups
- 2. study differential trends

Sources of Decline in Worker Bargaining Power





(a) Technology

(b) Trade

Sources of Decline in Worker Bargaining Power

(a) Gender

(b) Occupation

Conclusions

Propose a novel method for estimating worker bargaining power

Measure time-varying bargaining power uncovering an aggregate decline

Help reconcile unemployment and labor share trends and design policy interventions

Such a decline is concentrated in non routine occupations and male workers

▶ technology, competition, trade, and outsourcing seem to play a smaller role

Ongoing projects: link to labor force participation, the effect of COVID

Thank you! paolo.mengano@uzh.ch

Appendix

Non Profit Condition

Worker Problem

Workers

$$E_{t} = w_{t} + \beta \mathbb{E}[(1-s)E_{t+1} + sU_{t+1}]$$

$$U_{t} = b_{t} + \beta \mathbb{E}[p(\theta_{t})E_{t+1} + (1-p(\theta_{t}))U_{t+1}]$$

Surplus from becoming employed:

$$E_t - U_t = w_t - b_t + \beta \mathbb{E}[(1 - s - p(\theta_t))(E_{t+1} - U_{t+1})]$$

Firm Problem

Firm problem

$$\Pi_{t} = \max_{v_{t},k_{t}} \pi_{t} + \beta \mathbb{E}[\Pi_{t+1}]$$

s.t. $N_{t+1} = (1-s)N_{t} + V_{t}q(\theta_{t})$
 $A_{t+1} = g(A_{t}) + \nu_{t+1}$

with $\pi_t = F(A_t, N_t) - w_t N_t - \kappa_t V_t$

Labor Market

Random search frictions: workers and firms meet at random

Matching function

- ▶ CRS, increasing in v and u
- $\blacktriangleright M(v,u) = Av^{\alpha}u^{1-\alpha}$

Tightness ratio: $\theta = \frac{v}{u}$ Exogenous separation: s Job filling rate: $q(\theta) = \frac{M}{v}$ Job finding rate: $p(\theta) = \frac{M}{u} = \theta q(\theta)$

Summary Statistics for France

Table: Summary statistics

(a) Firms

	p1	p25	p50	p75	p99	Mean	Ν
Sales	113	510	1,041	$2,\!406$	41,756	3,231	8,987,284
Value Added	35	186	353	754	$9,\!818$	877	$8,\!856,\!811$
Materials	1	107	334	998	$24,\!605$	1,566	$8,\!987,\!284$
Capital	5	106	270	733	19,528	$1,\!223$	$8,\!987,\!284$

(b) Workers

	p1	p25	p50	p75	p99	Mean	Ν
Wages	5.5	10.0	12.1	15.9	43.3	14.2	$227,\!043,\!310$

Notes: this table shows summary statistics for firms and employees in the sample of analysis. All variables are real. Values for firms are in thousands of Euros, values for employees are in Euros.

Summary Statistics for the US

	All	Reporting	Non-Reporting	Δ
Revenues	$1,\!185$	$3,\!849$	924	$2,925^{***}$
Capital	345	$1,\!259$	256	$1,\!003^{***}$
Employees	6	21	5	16^{***}
Wages	35	35		
Observations	128,757	13,794	$114,\!963$	

Table: Summary Statistics

Revenues and Capital are expressed in USD millions;

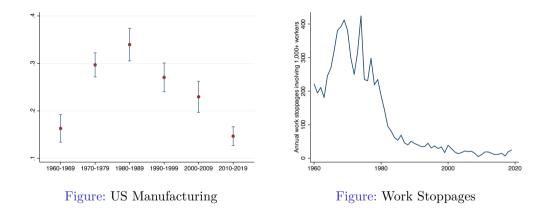
Number of Employees and Wages in thousands of workers and USD, respectively

Calibration

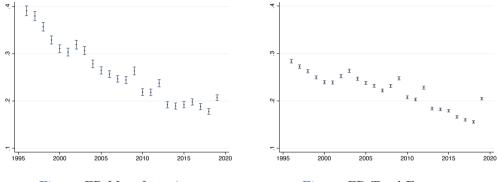
Parameter		US		France
	Value	Source	Value	Source
Productivity (z)	1	normalization	1	normalization
Discount factor (β)	0.99	4% annual interest	0.99	4% annual interest
Bargaining power (τ)	0.34	own estimation	0.28	own estimation
Outside option (b)	0.4	Shimer (2005)	0.6	Cahuc et al. (2010)
Separation rate (s)	0.1	2001q1 - 2019 q4	0.02	Hairault et al. (2015)
Matching elasticity (α)	0.22	Lange et al. (2020)	0.5	Cahuc et al. (2010)
Matching scale (A)	1	normalization	0.1	normalization

Calibration κ to match unemployment rate

Why Is This Important?


Compare steady states with highest and lowest WBP

Variable	Mo	odel	Data		
Variable	95	18	95	18	
Unemp	11.8	9.2	11.8	9.0	
W/P	1	0.94	1	0.99	
Barg. Power	0.28	0.16	0.28	0.16	


Table: France

 \rightarrow policy interventions!

Bargaining Power in the United States

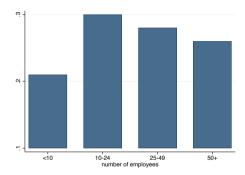

Bargaining Power in France

Figure: FR Manufacturing

Figure: FR Total Economy

Bargaining Power by Size

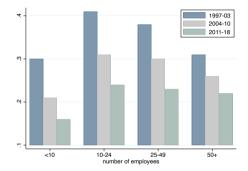
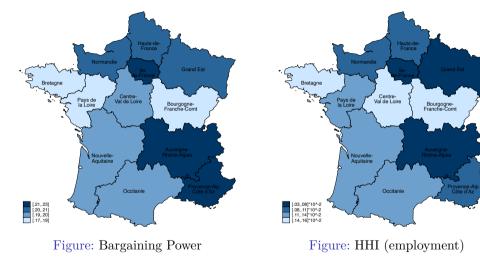
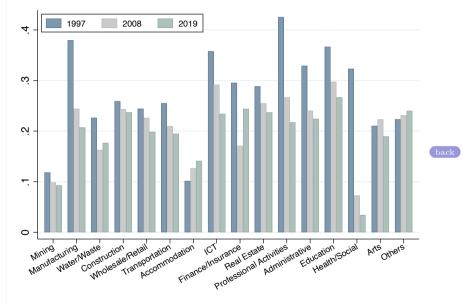



Figure: Time-varying

back


Trends in Bargaining Power: Regional Differences *

*only manufacturing firms operating in a single region

Trends in Bargaining Power: Industry Breakdown

Trends in Bargaining Power: Breakdown in Manufacturing

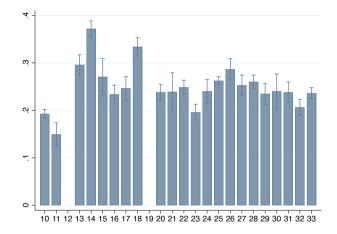
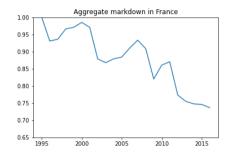



Figure: Bargaining Power

Bargaining vs Markdowns

back

Measuring Workers' Productivity

$$MPN = \frac{\partial F(\cdot)}{\partial N} = \epsilon_{Y,N} \frac{Y}{N}$$

 $\varepsilon_{Y,L}$ is unobservable and recovering it presents many challenges (Ackerberg et al. 2015)

▶ technology, competition

Olley & Pakes' intuition (control function approach):

1. firm productivity is unobservable to the econometrician but observable to the firm

 \rightarrow use another observable variable to infer unobserved productivity

2. exploit the stochastic (first-order Markov) process of productivity

Aim: recover Hicks-neutral productivity as a residual: $Y = AF(\cdot) \rightarrow A = Y/F(\cdot)$

Two main challenges:

- 1. what is in the residual?
- 2. what is $F(\cdot)$?

Aim: recover Hicks-neutral productivity as a residual: $Y = AF(\cdot) \rightarrow A = Y/F(\cdot)$

Two main challenges:

- 1. what is in the residual?
- 2. what is $F(\cdot)$?

Aim: recover Hicks-neutral productivity as a residual: $Y = AF(\cdot) \rightarrow A = Y/F(\cdot)$

Two main challenges:

- 1. what is in the residual?
- 2. what is $F(\cdot)$?

1.
$$Y_{it} = A_{it} K_{it}^{\epsilon_K} N_{it}^{\epsilon_L}$$

Aim: recover Hicks-neutral productivity as a residual: $Y = AF(\cdot) \rightarrow A = Y/F(\cdot)$

Two main challenges:

- 1. what is in the residual?
- 2. what is $F(\cdot)$?

Two steps:

1. $y_{it} = a_{it} + \epsilon_K k_{it} + \epsilon_L n_{it} + \varepsilon_{it}$

Aim: recover Hicks-neutral productivity as a residual: $Y = AF(\cdot) \rightarrow A = Y/F(\cdot)$

Two main challenges:

- 1. what is in the residual?
- 2. what is $F(\cdot)$?

Two steps:

1. $y_{it} = m_t^{-1}(m_{it}, \Omega_{it}) + \epsilon_K k_{it} + \epsilon_L n_{it} + \varepsilon_{it}$

Aim: recover Hicks-neutral productivity as a residual: $Y = AF(\cdot) \rightarrow A = Y/F(\cdot)$

Two main challenges:

- 1. what is in the residual?
- 2. what is $F(\cdot)$?

Two steps:

1. $y_{it} = \phi(m_{it}, k_{it}, n_{it}, \Omega_{it}) + \varepsilon_{it}$

Aim: recover Hicks-neutral productivity as a residual: $Y = AF(\cdot) \rightarrow A = Y/F(\cdot)$

Two main challenges:

- 1. what is in the residual?
- 2. what is $F(\cdot)$?

1.
$$y_{it} = \phi(m_{it}, k_{it}, n_{it}, \Omega_{it}) + \varepsilon_{it} \rightarrow \hat{y}_{it}$$

Aim: recover Hicks-neutral productivity as a residual: $Y = AF(\cdot) \rightarrow A = Y/F(\cdot)$

Two main challenges:

- 1. what is in the residual?
- 2. what is $F(\cdot)$?

1.
$$y_{it} = \phi(m_{it}, k_{it}, n_{it}, \Omega_{it}) + \varepsilon_{it} \rightarrow \hat{y}_{it}$$

2. $a_{it} = g(a_{it-1}) + \nu_{it}$

Aim: recover Hicks-neutral productivity as a residual: $Y = AF(\cdot) \rightarrow A = Y/F(\cdot)$

Two main challenges:

- 1. what is in the residual?
- 2. what is $F(\cdot)$?

1.
$$y_{it} = \phi(m_{it}, k_{it}, n_{it}, \Omega_{it}) + \varepsilon_{it} \rightarrow \hat{y}_{it}$$

2.
$$\underbrace{a_{it}}_{\hat{y}_{it} - \epsilon \times \{k, n\}_{it}} = g(\underbrace{a_{it-1}}_{\hat{y}_{it-1} - \epsilon \times \{k, n\}_{it-1}}) + \nu_{it}$$

Aim: recover Hicks-neutral productivity as a residual: $Y = AF(\cdot) \rightarrow A = Y/F(\cdot)$

Two main challenges:

- 1. what is in the residual?
- 2. what is $F(\cdot)$?

1.
$$y_{it} = \phi(m_{it}, k_{it}, n_{it}, \Omega_{it}) + \varepsilon_{it} \rightarrow \hat{y}_{it}$$

2.
$$\underbrace{a_{it}}_{\hat{y}_{it} - \epsilon \times \{k, n\}_{it}} = g(\underbrace{a_{it-1}}_{\hat{y}_{it-1} - \epsilon \times \{k, n\}_{it-1}}) + \nu_{it}$$

Aim: recover Hicks-neutral productivity as a residual: $Y = AF(\cdot) \rightarrow A = Y/F(\cdot)$

Two main challenges:

- 1. what is in the residual?
- 2. what is $F(\cdot)$?

Two steps:

1.
$$y_{it} = \phi(m_{it}, k_{it}, n_{it}, \Omega_{it}) + \varepsilon_{it} \rightarrow \hat{y}_{it}$$

2.
$$\underbrace{a_{it}}_{\hat{y}_{it} - \epsilon \times \{k, n\}_{it}} = g(\underbrace{a_{it-1}}_{\hat{y}_{it-1} - \epsilon \times \{k, n\}_{it-1}}) + \nu_{it}$$

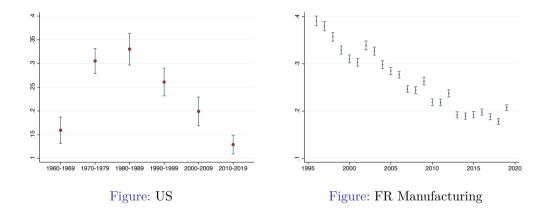
Value added vs Gross Output, Cobb-Douglas vs Translog, Single labor vs multiple labor types, Revenues vs Quantities back

Instruments and Fixed Effects

IV: lagged productivity \rightarrow structural identification

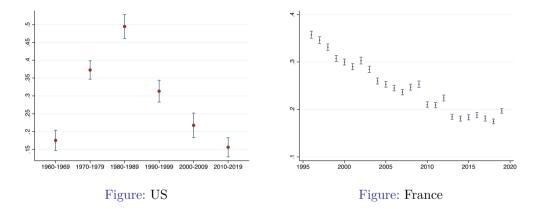
- ▶ relevance: Markov Process
- exclusion restriction: period-by-period renegotiation

FEs: industry \times year \rightarrow time variation but restrictive on the cross-section


▶ gradually relax introducing worker dimension

Final equation:

$$w_{ist} = \tau \underbrace{\operatorname{MPN}_{ist}}_{\stackrel{\uparrow}{\operatorname{MPN}_{ist-1}}} + \Omega_{ist} + \varepsilon_{ist}$$



Technical Change

Allowing the production function to vary every year

Alternative Production Function: Translog

flexible and firm-specific production function: $y_{it} = a_{it} + \beta_K 1k_{it} + \beta_K 2k_{it}^2 + \beta_L 1n_{it} + \beta_L 2n_{it}^2 + \beta_K Lk_{it}n_{it} + \varepsilon_{it}$

Bargaining Power with Heterogeneous Markups

Wage equation with market power in the output market

 $w = \tau \mathrm{MRPN} + (1 - \tau)b + \tau \theta \kappa$

Hence, in need of MRPN!

It takes the form: MRPN= $\frac{\beta_L}{\mu} \frac{PY}{N} \rightarrow$ De Loecker & Warzynski's approach

Bargaining Power with Heterogeneous Markups

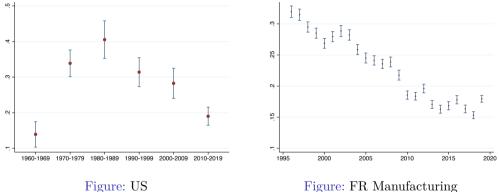


Figure: US

back

Firms internalize effect of new hire on existing workforce: $w = \tau \left(\text{MPN} - N \frac{\partial w}{\partial N} \right) + (1 - \tau)b + \tau \theta \kappa$

Firms internalize effect of new hire on existing workforce:

$$w = \tau \left(\text{MPN} - N \frac{\partial w}{\partial N} \right) + (1 - \tau)b + \tau \theta \kappa$$
$$w N^{\frac{1}{\tau}} = \int \frac{\text{MPN}}{N^{1 - \frac{1}{\tau}}} dN + \left[(1 - \tau)b + \tau \theta \kappa \right] N^{\frac{1}{\tau}} + C_2$$

Firms internalize effect of new hire on existing workforce:

$$w = \tau \left(\text{MPN} - N \frac{\partial w}{\partial N} \right) + (1 - \tau)b + \tau \theta \kappa$$
$$w N^{\frac{1}{\tau}} = \int \frac{\text{MPN}}{N^{1 - \frac{1}{\tau}}} dN + \left[(1 - \tau)b + \tau \theta c \right] N^{\frac{1}{\tau}} + C_2$$

Additional assumptions:

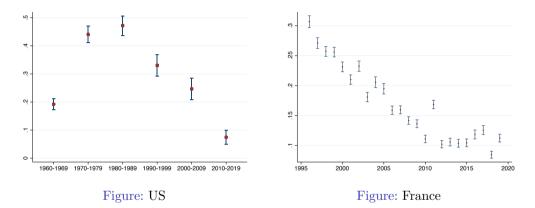
1. Cobb-Douglas: $Y = AN^{\beta_L}K^{\beta_K} \Rightarrow MPN = \beta_L \frac{Y}{N}$

$$w = \frac{1}{(\beta_L + \frac{1}{\tau} - 1)} MPN + (1 - \tau)b + \tau\theta\kappa + C_3 N^{-\frac{1}{\tau}}$$

Firms internalize effect of new hire on existing workforce:

$$w = \tau \left(\text{MPN} - N \frac{\partial w}{\partial N} \right) + (1 - \tau)b + \tau \theta \kappa$$
$$w N^{\frac{1}{\tau}} = \int \frac{\text{MPN}}{N^{1 - \frac{1}{\tau}}} dN + \left[(1 - \tau)b + \tau \theta c \right] N^{\frac{1}{\tau}} + C_2$$

Additional assumptions:

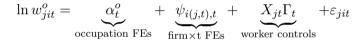

1. Cobb-Douglas: $Y = AN^{\beta_L}K^{\beta_K} \Rightarrow MPN = \beta_L \frac{Y}{N}$

$$w = \frac{1}{(\beta_L + \frac{1}{\tau} - 1)} MPN + (1 - \tau)b + \tau\theta\kappa + C_3 N^{-\frac{1}{\tau}}$$

2. $\lim_{N \to 0} \underbrace{Nw}_{\text{Labor Cost}} = 0 \quad \Rightarrow \quad C_3 = 0$

$$w = \frac{1}{(\beta_L + \frac{1}{\tau} - 1)} \operatorname{MPN} + (1 - \tau)b + \tau \theta \kappa$$

The Role Of Sorting


Estimation in first differences

 \rightarrow Preliminary: don't find evidence for increasing sorting

Controlling For Occupation Composition

Intuition: include occupation-specific components (FEs) (Wong, 2021; Chen et al., 2020)

Step 1: estimate occupation FEs (on random subsample, 20%)

Step 2: construct firm-level "labor bundle" in efficiency units

$$\tilde{H}_{it} = \sum_{j} \exp(\alpha_t^o) h_{jit}^o$$

... estimate PFE, $Y_{it} = F_t(A_{it}, \tilde{H}_{it}, K_{it})$, and BP

Comparing Occupation and Worker Ability

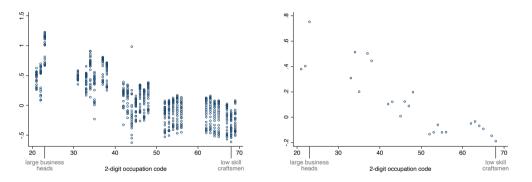


Figure: Occupation Ability

Figure: Worker Ability from 8% of workforce

Bargaining Power Controlling For Occupation Composition



Figure: FR Total Economy

Figure: FR Manufacturing

Including Worker Information

$$w_{jit} = \tau_t MPL_{it} + X_{jt}\Gamma_t + \delta_{st} + \varepsilon_{jit}$$

with X_{jt} including:

- ▶ polynomial in age
- ▶ gender, region, contract dummies

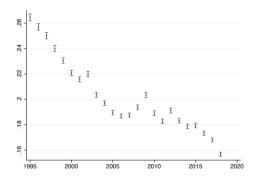


Figure: FR Manufacturing