# A new approach to estimating private returns to R&D

Ådne Cappelen<sup>1</sup> Pierre Mohnen<sup>2</sup> Arvid Raknerud<sup>3</sup> Marina Rybalka<sup>4</sup>

European Economic Association Meeting, 28-31 August 2023, Barcelona School of Economics

<sup>1</sup>Statistics Norway, Research Department

- <sup>2</sup>Maastricht University and UNU-MERIT
- <sup>3</sup>Statistics Norway, Research Department. E-mail: rak@ssb.no
- <sup>4</sup>Statistics Norway, Division for R&D, technology and business dynamics

## **Table of Contents**



#### Theory and empirical approaches

#### 2 Structural model





Ådne Cappelen, Pierre Mohnen, Arvid Raknerud, Marina Rybalka A new approach to estimating private returns to R&D

• • = • • = •

## Workhorse model

Workhorse model of output (for a firm i in year t) that uses R&D as an input factor:

$$\ln \mathbf{Y} = \beta \ln \mathbf{r} + \gamma \ln \mathbf{K} + \varepsilon \ln \mathbf{L} + \rho \ln \mathbf{M}$$

- Output (Y) depends on a measure of R&D stock or -services (r) in addition to the standard inputs tangible capital (K), labour (L), and intermediates (M).
- Strong implications for estimating *returns* to R&D:
  - constant elasticity with respect to R&D (=  $\beta$ )
  - marginal returns to R&D is:

$$Y'_F = \beta Y/r$$

which tends to infinity at the extensive margin (r = 0) and is not even defined for firm with no R&D (r = 0).

## Our refinements

 We assume that the production function has output elasticity of β in a *translation* of *F*:

$$r(\lambda) = \lambda + F$$

for some value of  $\lambda > 0$  to be optimally chosen.

- Allow β to be firm-specific (β<sub>i</sub>) to accommodate the huge observed heterogeneity in R&D intensity across firms.
- Quality adjustment of labour: production function has output elasticity of degree ε in an aggregate g(L) of L = (L<sup>(1)</sup>, L<sup>(2)</sup>, L<sup>(3)</sup>) – a vector of man-years from three skill classes based on educational attainments.

イロト イポト イヨト イヨト

## Measuring R&D

In the tradition of Hall and Mairesse (1995), *F* is the R&D capital stock generated by accumulating R&D spending according to the perpetual inventory method (PIM):

$$F_t = (1-\delta)F_{t-1} + I_{t-1},$$

where

- I is (real) R&D investment
- $\delta$  is the depreciation rate of the R&D capital stock, usually assumed to be 0.15

- 4 同 🕨 - 4 回 🕨 - 4 回 🕨

## **Double counting**

A researcher's wage costs, wL, may be intramural R&D (int = wL) for the R&D performing firm. Double counting would occur if *L* is also counted as labour inputs (see Schankerman, 1981).

• We will address this issue by deriving a value added function that depends, not on labour (*L*), but on the wage rate (*w*).

# Asymmetric treatment of intramural and extramural R&D

A double-counting problem often overlooked is related to extramural R&D (x), where, for example, *int* = wL for the R&D performing firm and x = wL for the financing firm.

The Frascati Manual recommends:

- capitalizing R&D performed but not R&D financed
- treat extramural R&D (x) as intermediate input (M)



Adne Cappelen, Pierre Mohnen, Arvid Raknerud, Marina Rybalka A new approach to estimating private returns

## **Economic behavior**

- Cost minimization w.r.t. L and M for pre-determined R&D capital stock, F, and tangible capital stock, K
- Firms choose the output price (P) that maximizes operating profits under assumption of monopolistic competition (some market power), with demand given by:

$$Y = \Phi P^{-e}$$

### Value added function

Structurally derived expression for value added (*V*=profits + labour earnings):

$$\ln V_{it} = -\widetilde{\varepsilon} \ln c_{it} + \widetilde{\beta}_i \ln r_{it}(\lambda) + \widetilde{\gamma} \ln K_{it} - \widetilde{\rho} \ln q_{Mt} + \widetilde{a}_{it}$$

where  $\tilde{\varepsilon} = \varepsilon \vartheta$ ,  $\tilde{\beta}_i = \beta_i \vartheta$ ,  $r_{it}(\lambda) = \lambda + F_{it}$ ,  $\tilde{\gamma} = \gamma \vartheta$ ,  $\tilde{\rho} = \rho \vartheta$ , and  $\tilde{a}_{it} = \vartheta (\ln A_{it} + \ln \Phi_{it}/(e-1)) + \tilde{\theta}$ , with

$$artheta = rac{(e-1)}{(arepsilon+
ho+e-e(arepsilon+
ho))} \in (0,(1-arepsilon-
ho)^{-1}).$$

◆□> ◆□> ◆□> ◆□> ●

Ådne Cappelen, Pierre Mohnen, Arvid Raknerud, Marina Rybalka A new approach to estimating private returns to R&D





Figure: Average log-wage by skill class and average Sato-Vartia log-wage index ( $\ln c_{it}$ )

Ådne Cappelen, Pierre Mohnen, Arvid Raknerud, Marina Rybalka A new approach to estimating private returns to R&D

### Returns to R&D

We define

$$\mathsf{R}_{it} = rac{\partial \mathsf{V}_{it}}{\partial \mathsf{F}_{it}} = rac{\widetilde{eta}_i \, \mathsf{V}_{it}}{\mathsf{F}_{it} + \lambda}$$

as our proposed value added-based measure of private returns to R&D investment

 In the tradition of Hall et al. (2010), it is often assumed that *R<sub>it</sub>* varies randomly about a common mean, *R*, where *R* is the constant marginal *cost* of R&D ( "CMC-model").

・ 同 ト ・ ヨ ト ・ ヨ ト

To apply this assumption in our context, assuming F and K to be pre-determined, we state the existence of a steady state as follows:

$$E(R_{it}|F_{it}, K_{it}) = \frac{\widetilde{\beta}_i E(V_{it}|F_{it}, K_{it})}{F_{it} + \lambda} = R$$

By "double expectation":

$$\widetilde{\beta}_i = \mathbf{R}\psi_i(\lambda)$$

where

$$\psi_i(\lambda) = \frac{E(F_{it}|F_{it} > 0) + \lambda}{E(V_{it}|F_{it} > 0)}$$

> < 프 > < 프 >

## Equilibrium R&D intensity

- The function ψ<sub>i</sub>(λ) represents a firm-specific equilibrium ratio between V<sub>it</sub> and F<sub>it</sub> (with F<sub>it</sub> > 0).
- The empirical counterpart is:

$$\overline{\psi}_{i}(\lambda) = \frac{\sum_{t=1}^{T} \mathbf{1}_{F_{it} > 0}(F_{it} + \lambda)}{\sum_{t=1}^{T} \mathbf{1}_{F_{it} > 0} V_{it}}$$

which is useful for eliminating the nuisance parameter  $\beta_i$ 

- In the literature, the usual assumption is that β<sub>i</sub> = β (no heterogeneity in the elasticity of Y with respect to F).
- We will refer to this special case as the restricted CMC model (R-CMC), which can be stated as:

$$\widetilde{\beta} = \mathbf{R}\psi(\lambda)$$

イロト イ押ト イヨト イヨト

## Adjustment costs

- In the presence of adjustment costs, firms with a short R&D history are likely to be far from their equilibrium R&D intensity (and therefore ψ<sub>i</sub>(λ) severly biased as an estimator of ψ<sub>i</sub>(λ)).
- A sparse literature on the implications of adjustment costs of R&D investment suggests higher rates of return for firms that invest relatively more in R&D (see Resutek 2022).
- Brasch et al. (2020) show that start-up firms have much lower revenue labour productivity, V<sub>it</sub>/L<sub>it</sub>, than incumbent firms, indicating that "R&D productivity", V<sub>it</sub>/F<sub>it</sub>, may be lower for "R&D-beginners" than "R&D-incumbents".

ヘロト ヘポト ヘヨト ヘヨト

## **Operationalizations**

We assume

$$\psi_i(\lambda) \simeq \overline{\psi}_i(\lambda)(1 + \tau_{begin})$$

for "R&D-beginners", implying weighted average return of:

$$\sum_{t=1}^{T} \omega_{it} R_{it} \simeq R(1 + \tau_{begin})$$

- A negative parameter τ<sub>begin</sub> would capture low returns to R&D in firms with little R&D experience relative to "R&D-incumbents".
- Similarly we assume:

$$\psi_i(\lambda) \simeq \overline{\psi}_i(\lambda)(1 + \tau_{exper})$$

for "R&D-experienced" firms – i.e. firms with some R&D experience

Ådne Cappelen, Pierre Mohnen, Arvid Raknerud, Marina Rybalka A new approach to estimating private returns to R&D

## **Empirical model**

The dependent variable in the empirical analysis is  $\ln V_{it}$  and the stochastic specification of the structural equation is:

$$\ln V_{it} = -\widetilde{\varepsilon} \ln c_{it} + \widetilde{\gamma} \ln K_{it} + \widetilde{\beta}_i \ln r_{it}(\lambda) + a_i + \mu_t^* + \zeta_{it}$$

where  $a_i$  is a fixed firm effect,  $\mu_t^*$  is the fixed time-effect, and  $\zeta_{it}$  is a n AR(1) error term:

$$\zeta_{it} = \phi \zeta_{i,t-1} + \mathbf{e}_{it}$$



We quasi-difference to eliminate the fixed firm effect and the AR(1) error term:

$$\Delta \ln V_{it} = \phi \Delta \ln V_{i,t-1} - \widetilde{\varepsilon} \Delta \ln c_{it} + \phi \widetilde{\varepsilon} \Delta \ln c_{i,t-1} + \widetilde{\beta}_i \Delta \ln r_{it}(\lambda) - \phi \widetilde{\beta}_i \Delta \ln r_{i,t-1}(\lambda) + \widetilde{\gamma} \Delta \ln K_{it} - \phi \widetilde{\gamma} \Delta \ln K_{i,t-1} + \Delta \mu_t + \Delta e_{it}$$

This equation constitutes the basis for GMM estimation.

イロト イポト イヨト イヨト

э

## Moment conditions

For given  $\lambda$ , the GMM-estimator uses the following moments (in the tradition of Arellano and Bond, 1991):

$$E(\ln V_{i,t-s}\Delta e_{it}) = 0$$
  

$$E(\ln c_{i,t-s+1}\Delta e_{it}) = 0$$
  

$$E(\ln r_{i,t-s+1}(\lambda)\Delta e_{it}) = 0$$
  

$$E(\ln K_{i,t-s+1}\Delta e_{it}) = 0$$

for  $s \ge 2$ . That is:

- We treat *all* the right-hand side variables as pre-determined endogenous variables.
- A testable identifying assumption is that Δe<sub>it</sub> is an MA(1) noise term.
- Over-identifying restrictions can also be tested.

## Optimal choice of translation parameter

To estimate or calibrate  $\lambda$ , we maximize the generalized  $R^2$  model selection criterion proposed by Pesaran and Smith (1994) in the context of IV estimation



TABLE 1: Estimates of the coefficients of the value added equation with symmetric treatment of intramural and extramural R&D (I = int + x). Robust standard errors (SE)

| Indep. variables in                                                            | Coeff.                    |        | GMM-e   | stimat       | es      | FE-estimates |         |  |
|--------------------------------------------------------------------------------|---------------------------|--------|---------|--------------|---------|--------------|---------|--|
| structural equation                                                            |                           | CMC    |         | <b>R-CMC</b> |         | R-CMC        |         |  |
|                                                                                |                           | Est.   | SE      | Est.         | SE      | Est.         | SE      |  |
| $\ln V_{i,t-1}$                                                                | $\phi$                    | .306   | .011*** | .311         | .021*** |              |         |  |
| $-\ln c_{it}$                                                                  | $\widetilde{\varepsilon}$ | .502   | .164*** | .509         | .167*** | .639         | .110*** |  |
| $\ln K_{it}$                                                                   | $\tilde{\gamma}$          | .195   | .016*** | .207         | .016*** | .166         | .006*** |  |
| $\ln r_{it}(\lambda)$                                                          | $\widetilde{\beta}$       |        |         | .045         | .003*** | .042         | .002*** |  |
| $\overline{\psi}_i(\lambda) \ln r_{it}(\lambda)^1$                             | R                         | .181   | .049*** |              |         |              |         |  |
| $\overline{\psi}_i(\lambda) \mathbb{1}_{(T_i \leq 3)} \ln r_{it}(\lambda)^2$   | $\tau_{begin}$            | 180    | .049*** |              |         |              |         |  |
| $\overline{\psi}_i(\lambda) \mathbb{1}_{(T_i \in [4,12])} \ln r_{it}(\lambda)$ | $\tau_{exper}$            | 029    | .053    |              |         |              |         |  |
| $\sigma_e^2$                                                                   |                           | .11    |         | .11          |         |              |         |  |
| $\sigma_c^2$                                                                   |                           | -      |         |              |         | .41          |         |  |
| $\lambda$                                                                      |                           | .38    |         | .38          |         | .38          |         |  |
| Number of firm-years                                                           |                           | 40,344 | 1       | 40,34        | 4       | 40,34        | 4       |  |
| Number of firms                                                                |                           | 4,590  |         | 4,590        |         | 4,590        |         |  |
| R-squared $(R^2)^3$                                                            |                           | .10    |         | .10          |         | .41          |         |  |

Note: Windmeijer (2005) robust standard errors (SE); \*\*\*\*\*\*\* refer, respectively, to significant estimates at the 10, 5, and 1 percent level.

<sup>1</sup>  $\overline{\psi}_i(\lambda)$  refers to the firm's average R&D intensity, as defined in Equation (15).

 $^2$   $T_i$  is the number of years with  $F_{it}>0$  in the years 2001-2018.

<sup>3</sup> R<sup>2</sup> refers to (the differenced) Equation (22) in the case of GMM and (the level) Equation (19) in the case of FE.

イロト イポト イヨト イヨト

TABLE 3: Distribution of estimated marginal gross returns to R&D  $(R_{it})$  with symmetric treatment of intramural and extramural R&D (I = int + x). By subsample, conditional on  $F_{it} > 0$ 

| Model                                             | All obs.     | Subsample with $F_{it} > 0$ |         |          |  |
|---------------------------------------------------|--------------|-----------------------------|---------|----------|--|
|                                                   | $F_{it} > 0$ | R&D-                        | R&D-    | R&D-     |  |
|                                                   |              | begin. <sup>1</sup>         | exper.2 | incumb.3 |  |
| CMC: heterogeneous elast.                         |              |                             |         |          |  |
| Weighted average <sup>4)</sup>                    | .173         | .001                        | .146    | .177     |  |
| Median                                            | .169         | .001                        | .153    | .190     |  |
| Unweighted average                                | .270         | .001                        | .276    | .294     |  |
| R-CMC: common elasticity                          |              |                             |         |          |  |
| Weighted average                                  | .209         | .628                        | .334    | .191     |  |
| Median                                            | .422         | .678                        | .520    | .344     |  |
| Unweighted average                                | 6.47         | 8.56                        | 6.17    | 6.45     |  |
| Share of R&D in 2018 (share $\sum_i F_{i,2018}$ ) | 1            | .05                         | .17     | .78      |  |
| No. of firm-years with $F_{it} > 0$               | 30,331       | 2,370                       | 15,507  | 27,822   |  |
| No. of firms with $F_{it} > 0$                    | 4,238        | 1,046                       | 2,146   | 1,046    |  |

Note: Derived using the GMM estimates displayed in Table 1

<sup>1</sup> Firms that were R&D-active (i.e., with  $F_{it} > 0$ ) for maximum 3 years in the period 2001-2018

イロト イポト イヨト イヨ

<sup>2</sup> Firms that were R&D-active for between 4 and 12 years in the period 2001-2018

 $^3$  Firms that were R&D-active for more than 12 years in the period 2001-2018

<sup>4</sup> Weighted by share of R&D  $(F_{it})$ 

| TABLE 5: Distribution       | of estimated  | marginal gross | returns to | <b>R&amp;D</b> $(R_{it})$ when |
|-----------------------------|---------------|----------------|------------|--------------------------------|
| only intramural R&I         | ) are treated | as investments | I = int.   | By subsample,                  |
| conditional on $F_{it} > 0$ |               |                |            |                                |

| Model                                             | All obs.     | Subsample with $F_{it} > 0$ |         |          |  |
|---------------------------------------------------|--------------|-----------------------------|---------|----------|--|
|                                                   | $F_{it} > 0$ | R&D-                        | R&D-    | R&D-     |  |
|                                                   |              | begin. <sup>1</sup>         | exper.2 | incumb.3 |  |
| CMC: heterogeneous elast.                         |              |                             |         |          |  |
| Weighted average <sup>4)</sup>                    | .256         | .001                        | .184    | .268     |  |
| Median                                            | .238         | .001                        | .153    | .194     |  |
| Unweighted average                                | .339         | .002                        | .276    | .287     |  |
| R-CMC: common elasticity                          |              |                             |         |          |  |
| Weighted average                                  | .241         | .900                        | .334    | .221     |  |
| Median                                            | .420         | .655                        | .493    | .357     |  |
| Unweighted average                                | 3.71         | 5.03                        | 3.05    | 4.01     |  |
| Share of R&D in 2018 (share $\sum_i F_{i,2018}$ ) | 1            | .05                         | .17     | .78      |  |
| No. of firm-years with $F_{it} > 0$               | 30,331       | 2,370                       | 15,507  | 27,822   |  |
| No. of firms with $F_{it} > 0$                    | 4,238        | 1,046                       | 2,146   | 1,046    |  |

Note: Derived using the GMM estimates displayed in Table 4.

 $^1$  Firms that were R&D active (i.e., with  $F_{it}>0)$  in maximum 3 years in 2001-2018

<sup>2</sup> R&D active firms between 4 and 12 years in 2001-2018

 $^3$  R&D active firms for more than 12 years in 2001-2018

<sup>4</sup> Weighted by share of R&D (F<sub>it</sub>)

イロト イポト イヨト イヨト

TABLE 6: Distribution of marginal gross returns to R&D ( $R_{ii}$ ) estimated using Cobb-Douglas production function ( $\lambda = 0$ ) and different definitions of R&D investment. By subsample, conditional on  $F_{it} > 0$ 

| Model                                                                | All obs.     | Subsample with $F_{it} > 0$ |         |          |  |  |
|----------------------------------------------------------------------|--------------|-----------------------------|---------|----------|--|--|
|                                                                      | $F_{it} > 0$ | R&D-                        | R&D-    | R&D-     |  |  |
|                                                                      |              | begin. <sup>1</sup>         | exper.2 | incumb.3 |  |  |
| Symmetric treatment of intramural and extramural R&D $(I = int + x)$ |              |                             |         |          |  |  |
| CMC: heterogeneous elast.                                            |              |                             |         |          |  |  |
| Weighted average <sup>4)</sup>                                       | .138         | 241                         | .241    | .150     |  |  |
| Median                                                               | .116         | 270                         | .052    | .161     |  |  |
| Unweighted average                                                   | .172         | 373                         | .276    | .248     |  |  |
| <b>R-CMC</b> : common elasticity                                     |              |                             |         |          |  |  |
| Weighted average                                                     | .637         | 1.23                        | 1.33    | .598     |  |  |
| Median                                                               | 1.21         | 1.48                        | 1.54    | 1.06     |  |  |
| Unweighted average                                                   | 24.9         | 63.5                        | 20.82   | 25.78    |  |  |
| Only intramural R&D treated as investment $(I = int)$                |              |                             |         |          |  |  |
| CMC: heterogeneous elast.                                            |              |                             |         |          |  |  |
| Weighted average <sup>4)</sup>                                       | .249         | 295                         | .241    | .253     |  |  |
| Median                                                               | .267         | 330                         | .270    | .271     |  |  |
| Unweighted average                                                   | .357         | 429                         | .357    | .390     |  |  |
| <b>R-CMC</b> : common elasticity                                     |              |                             |         |          |  |  |
| Weighted average                                                     | .991         | 2.84                        | 1.33    | .939     |  |  |
| Median                                                               | 1.65         | 2.04                        | 1.96    | 1.49     |  |  |
| Unweighted average                                                   | 16.05        | 19.09                       | 13.07   | 17.59    |  |  |

Note: Returns estimates derived from models estimated using GMM on subsample of observations with  $F_{it} > 0$ . See Table 9 in Appendix C.

<sup>1</sup> Firms that were R&D-active (i.e., with  $F_{it} > 0$ ) for maximum 3 years in the period 2001-2018

 $^2$  Firms that were R&D-active for between 4 and 12 years in the period 2001-2018

<sup>3</sup> Firms that were R&D-active for more than 12 years in the period 2001-2018

Ådne Cappelen, Pierre Mohnen, Arvid Raknerud, Marina Rybalka A new approach to estimating private returns to R&D

## Conclusion

- We have proposed an extended Cobb-Douglas production function, which allows for firms with zero R&D capital.
- We incorporated heterogeneity in labour quality.
- We have obtained robust (weighted) average *net* return estimates of 5-10 percent (gross return less  $\delta = 0.15$ ).
- We have accommodated the huge observed heterogeneity in R&D intensities by allowing R&D elasticities to be firm-specific, which is key to obtain robust estimates of returns to R&D within a family of model variants

< □ > < 同 > < 回 > <