The Falsification Adaptive Set in Linear Models with Instrumental Variables that Violate the Exogeneity or Exclusion Restriction

Nicolas Apfel¹ Frank Windmeijer²

¹Dept of Economics, University of Southampton ²Dept of Statistics and Nuffield College, University of Oxford

30 August 2023

Introduction

- Classical linear model $Y = X\beta + \mathcal{E}$ with an endogenous variable, estimated by method of instrumental variables (IVs), multiple correlated instruments **Z**.
- Standard assumption $\operatorname{cov}(\mathbf{Z}, \mathcal{E}) = 0$.
- ▶ When model is falsified, $cov(\mathbf{Z}, \mathcal{E}) \neq 0$. Need to specify the invalidity of the instruments, *exclusion* or *exogeneity* assumption.
- Masten and Poirier (2021) (MP) introduced the *Falsification Adaptive Set* (*FAS*) to report an estimate of when the baseline model is falsified.
- It is the set of just-identified estimands of the models where each relevant instrument in turn is used as the just-identifying instrument and the other instruments are included as controls.
- Reflects the model uncertainty that arises from falsification of the baseline model.

Introduction

- ▶ $\operatorname{cov}(Z, \mathcal{E}) \neq 0$, let $\mathcal{E} = A + \widetilde{\mathcal{E}}$, where *A* is the unobserved confounder, $\operatorname{cov}(X, A) \neq 0$.
- ► Violation of *Exclusion* restriction. \mathbf{Z}_{dir} has direct effect, $\tilde{\mathcal{E}} = \mathbf{Z}_{dir} \gamma_{dir} + \dot{\mathcal{E}}$, \mathbf{Z}_{indir} has indirect effect, $A = \mathbf{Z}_{indir} \gamma_{indir} + \dot{A}$, on Y.
- An invalid instrument can have both a direct and indirect effect.

Then
$$Y = X\beta + \mathbf{Z}_{dir}\gamma_{dir} + \mathbf{Z}_{indir}\gamma_{indir} + U, U = \dot{A} + \dot{\mathcal{E}}.$$

Then instruments that do not have a direct and/or indirect effect, $\gamma_{\text{dir}} = \gamma_{\text{indir}} = \mathbf{0}$, are valid if they satisfy the conditional *Exogeneity* assumption cov (\mathbf{Z}_{val} , U) = $\mathbf{0}$, and are invalid otherwise, cov ($\mathbf{Z}_{\text{inval}}$, U) = α .

Introduction

- ► FAS of MP derived under violation of the exclusion restriction only.
- We derive a different *FAS* for violation of the exogeneity assumption only.
- Natural extension is then a generalized FAS that considers violations of both assumptions.
- This is the set of all possible just-identified estimands where the just-identifying instrument is relevant, there are a maximum of k_z2^{k_z-1} of these, where k_z is the number of instruments.
- If there is at least one valid and relevant instrument, then our FAS will contain β.

Model, Assumptions and Definitions

The general model specification is given by

$$Y = X\beta + Z^{T}\gamma + U,$$

$$cov (Z, U) = \alpha.$$

- ▶ *Relevance*: The k_z -vector cov (\mathbf{Z}, X) $\neq \mathbf{0}$.
- Sufficient variation: The $k_z \times k_z$ matrix $\Sigma_z := var(\mathbf{Z})$ is invertible.

The baseline model assumes all instruments to be valid, satisfying the exclusion and exogeneity assumptions:

- *Exclusion*: $\gamma_{\ell} = 0$ for all $\ell \in \{1, \dots, k_z\}$.
- *Exogeneity*: $\alpha_{\ell} = 0$ for all $\ell \in \{1, \dots, k_z\}$.

Model, Assumptions and Definitions

- Valid Instrument: An instrument Z_{ℓ} is a valid instrument if both the exogeneity and the exclusion assumption hold, $\alpha_{\ell} = \gamma_{\ell} = 0$.
- ► *Invalid Instrument*: An invalid instrument violates either the exogeneity assumption, $\alpha_{\ell} \neq 0$, or the exclusion assumption, $\gamma_{\ell} \neq 0$, but not both, $\gamma_{\ell} \alpha_{\ell} = 0$. (Otherwise an instrument is an endogenous variable itself).
- Our objective: If there is a valid and relevant instrument, then the FAS contains β.

Identified Set, Falsification Frontier and FAS_{excl}

MP maintains the conditional exogeneity assumption $\alpha = 0$, but relax the exclusion assumption:

► *Partial Exclusion*: There are known constants $\delta_{\ell} \ge 0$ such that $|\gamma_l| \le \delta_{\ell}$ for $\ell = 1, ..., k_z$.

Define

$$\pi := \boldsymbol{\Sigma}_z^{-1} \mathrm{cov}\left(\boldsymbol{Z},\boldsymbol{X}\right); \ \boldsymbol{\psi} := \boldsymbol{\Sigma}_z^{-1} \mathrm{cov}\left(\boldsymbol{Z},\boldsymbol{Y}\right).$$

As $\alpha = 0$ by assumption, we have that $\psi = \pi\beta + \gamma$.

The identified set for β is then given by

$$\mathcal{B}(\boldsymbol{\delta}) = \left\{ b \in \mathbb{R} : -\boldsymbol{\delta} \leq (\boldsymbol{\psi} - \boldsymbol{\pi} b) \leq \boldsymbol{\delta} \right\}.$$

Identified Set, Falsification Frontier and FAS_{excl}

Let \mathcal{L}_{rel} denote the set of relevant instruments

$$\mathcal{L}_{rel} = \left\{ \ell \in \{1, \ldots, k_z\} : \pi_\ell \neq 0 \right\}.$$

The falsification adaptive set is then given in Theorem 2 of MP as

$$FAS_{excl} = \left[\min_{\ell \in \mathcal{L}_{rel}} \frac{\psi_{\ell}}{\pi_{\ell}}, \max_{\ell \in \mathcal{L}_{rel}} \frac{\psi_{\ell}}{\pi_{\ell}}\right].$$

As MP point out in their Lemma 1, for $\ell \in \mathcal{L}_{rel}$, $\frac{\psi_{\ell}}{\pi_{\ell}} \left(=\beta + \frac{\gamma_{\ell}}{\pi_{\ell}}\right)$ are the IV/2sls estimands in the just identified model specification

$$Y = X\beta_{\ell} + \mathbf{Z}_{\{-\ell\}}^T \boldsymbol{\gamma}_{\{-\ell\}} + \boldsymbol{U}_{\ell}$$
⁽¹⁾

where $Z_{\{-\ell\}} = Z \setminus \{Z_{\ell}\}$, and using Z_{ℓ} as the excluded just-identifying instrument, see also Windmeijer et al. (2021).

Identified Set, Falsification Frontier and FAS_{excl}

- ► FAS_{excl} contains β if $0 \in \left[\min_{\ell \in \mathcal{L}_{rel}} \frac{\gamma_{\ell}}{\pi_{\ell}}, \max_{\ell \in \mathcal{L}_{rel}} \frac{\gamma_{\ell}}{\pi_{\ell}}\right]$
- Sufficient: When α = 0, β ∈FAS_{excl} if there is a relevant and valid instrument with γ_ℓ = 0.

Estimation

MP proposes to estimate the relevant set by

$$\widehat{\mathcal{L}}_{rel} = \{\ell \in \{1, \ldots, k_z\} : F_\ell \ge C_n\},\$$

where F_{ℓ} is the first-stage F-statistic for H_0 : $\pi_{\ell} = 0$. They set as default value $C_n = 10$. This is same as first-stage hard thresholding procedure of Guo et al. (2018),

$$\left.\frac{\widehat{\pi}_{\ell}}{\operatorname{se}\left(\widehat{\pi}_{\ell}\right)}\right| \geq \sqrt{C_n} = 3.16.$$

Let $\hat{\beta}_{\ell} = \frac{\hat{\psi}_{\ell}}{\hat{\pi}_{\ell}}$ be the IV estimator of β_{ℓ} in the just-identified model specification with $Z_{\{-\ell\}}$ included as controls. Then *FAS*_{excl} is estimated by

$$\widehat{FAS}_{excl} = \left[\min_{\ell \in \widehat{\mathcal{L}}_{rel}} \widehat{\beta}_{\ell}, \max_{\ell \in \widehat{\mathcal{L}}_{rel}} \widehat{\beta}_{\ell} \right].$$

A maximum of k_z IV, or two OLS regressions.

Failure of Exogeneity Assumption

- We now assume that $\gamma = 0$, but invalid instruments violate the exogeneity assumption, $\operatorname{cov}(Z, U) = \alpha$.
- MP argue that, mathematically, the same technical analysis can be used as for the violation of the exclusion restriction, as from linear projection,

$$Y = X\beta + \mathbf{Z}^T \boldsymbol{\eta} + \dot{U}.$$

However, as

$$\boldsymbol{\eta} = \boldsymbol{\Sigma}_z^{-1} \mathrm{cov} \left(\boldsymbol{Z}, \boldsymbol{U} \right) = \boldsymbol{\Sigma}_z^{-1} \boldsymbol{\alpha},$$

and with correlated instruments, it could be the case that all $\eta_{\ell} \neq 0$ even when there are valid instruments present.

• Therefore FAS_{excl} is not guaranteed to contain β if there is a valid and relevant instrument .

Failure of Exogeneity Assumption

• Define the k_z -vectors π^* and ψ^* with ℓ -th elements given by

$$\pi_{\ell}^* := (\operatorname{var}(Z_{\ell}))^{-1} \operatorname{cov}(Z_{\ell}, X); \ \psi_{\ell}^* := (\operatorname{var}(Z_{\ell}))^{-1} \operatorname{cov}(Z_{\ell}, Y),$$
for $\ell = 1, \dots, k_z$.

• By same arguments as for the FAS_{excl} , we obtain the FAS_{exc} as

$$FAS_{exo} = \left[\min_{\ell \in \mathcal{L}_{rel}^*} \frac{\psi_{\ell}^*}{\pi_{\ell}^*}, \max_{\ell \in \mathcal{L}_{rel}^*} \frac{\psi_{\ell}^*}{\pi_{\ell}^*}\right],$$

where $\mathcal{L}_{rel}^* = \left\{\ell \in \{1, \dots, k_z\} : \pi_{\ell}^* \neq 0\right\}.$

Failure of Exogeneity or Exclusion Assumption

We now consider the full specification

$$Y = X\beta + \mathbf{Z}^{T}\gamma + U,$$

$$\operatorname{cov}\left(\mathbf{Z}, U\right) = \alpha.$$

- Together with the assumption that an invalid instrument can violate either the exclusion or the conditional exogeneity assumption.
- ▶ We therefore consider all possible just-identified model specifications.
- For $k_z = 2$, there are 4 of these, and the resulting *FAS* is simply *FAS*_{excl} \cup *FAS*_{exco}.
- If there is a relevant and valid instrument, then clearly $\beta \in FAS$.

General Results

- For general k_z there are s_{kz} = k_zs^{kz-1} just identified model specifications, or just identifying transformed instruments
- For example, for $k_z = 3$ we have

$$\widetilde{\boldsymbol{Z}} = \left(Z_1, Z_{1|2}, Z_{1|3}, Z_{1|23}, Z_2, Z_{2|1}, Z_{2|3}, Z_{2|13}, Z_3, Z_{3|1}, Z_{3|2}, Z_{3|12}\right)^T,$$

with e.g.

$$Z_{1|2} = Z_1 - Z_2 \left(\operatorname{var} \left(Z_2 \right) \right)^{-1} \operatorname{cov} \left(Z_2, Z_1 \right).$$

• Then define the s_{k_z} -vectors $\tilde{\pi}$ and $\tilde{\psi}$ with *j*-th elements

$$\widetilde{\pi}_j := \left(\operatorname{var} \left(\widetilde{Z}_j \right) \right)^{-1} \operatorname{cov} \left(\widetilde{Z}_j, X \right); \ \widetilde{\psi}_j := \left(\operatorname{var} \left(\widetilde{Z}_j \right) \right)^{-1} \operatorname{cov} \left(\widetilde{Z}_j, Y \right).$$

-

General Results

The set of relevant instruments is specified as

$$\widetilde{\mathcal{L}}_{rel} = \left\{ j \in \left\{ 1, \dots, s_{k_z} \right\} : \widetilde{\pi}_j \neq 0 \right\}$$

The generalized falsification adaptive set is

$$FAS = \left[\min_{j \in \widetilde{\mathcal{L}}_{rel}} \frac{\widetilde{\psi}_j}{\widetilde{\pi}_j}, \max_{j \in \widetilde{\mathcal{L}}_{rel}} \frac{\widetilde{\psi}_j}{\widetilde{\pi}_j}\right] = \left[\min_{j \in \widetilde{\mathcal{L}}_{rel}} \widetilde{\beta}_j, \max_{j \in \widetilde{\mathcal{L}}_{rel}} \widetilde{\beta}_j\right],$$

where, for $j \in \widetilde{\mathcal{L}}_{rel}$, the IV estimands are given by

$$\widetilde{\beta}_j = \frac{\widetilde{\psi}_j}{\widetilde{\pi}_j} = \frac{\operatorname{cov}\left(\widetilde{Z}_j, Y\right)}{\operatorname{cov}\left(\widetilde{Z}_j, X\right)}.$$

▶ $\beta \in FAS$ if there is a relevant and valid instrument.

Empirical Example, $k_z = 3$

- Empirical analysis of roads and trade by Duranton et al. (2014).
- The outcome variable is a measure of how much a city exports. The one considered here is called the "propensity to export weight".
- The treatment variable is the log number of kilometers of interstate highway within a city in 2007.
- There are three potential instruments
 - ▶ $Z_1 = Plan$ is the log number of kilometers of highway in the city according to a planned highway construction map, approved by the federal government in 1947
 - \blacktriangleright Z₂ = *Railroads* is the log number of kilometers of railroads in the city in 1898
 - \blacktriangleright Z₃ = *Exploration* is a measure of the quantity of historical exploration routes that passed through the city.
- Partial sample correlations are $\hat{\rho}_{12} = 0.57$, $\hat{\rho}_{13} = 0.34$ and $\hat{\rho}_{23} = 0.11$.
- If for example $\gamma = (0, 0, \gamma_3)^T$ and $\alpha = (\alpha_1, 0, 0)^T$ with $\gamma_3 \neq 0$ and $\alpha_1 \neq 0$, then $Z_{2|3}$ is a valid instrument. $Z_{2|3}$ is the just-identifying instrument Z_2 when Z_3 is included as a control and Z_1 omitted from the instrument set.

Empirical Example, $k_z = 3$

Table 1: IV estimation results, Duranton et al. (2014, Table 5, column 2)

Instruments							
	Z_1, Z_2, Z_3	$Z_{1 2,3}$	Z _{2 1,3}	Z _{3 1,2}	Z_1	Z_2	Z_3
hway	0.57	0.28	3.16	-0.32	0.55	1.09	0.13
	(0.16)	(0.25)	(1.39)	(0.86)	(0.17)	(0.26)	(0.38)
F	90.30	58.13	6.97	20.00	154.5	35.84	15.97
Jр	0.043						
		$Z_{1 2}$	$Z_{1 3}$	$Z_{2 1}$	$Z_{2 3}$	$Z_{3 1}$	$Z_{3 2}$
hway		0.22	0.40	3.74	1.18	-0.61	-0.02
		(0.21)	(0.16)	(1.90)	(0.26)	(1.11)	(0.38)
F		81.14	122.45	5.29	34.31	14.27	31.07
FAS _{excl}	[-0.32, 0.28]						
\widehat{FAS}_{exo}	[0.13, 1.09]						
\widehat{FAS}	[-0.61, 1.18]						

Notes: Outcome variable "propensity to export weight", n = 66. Additional controls "log employment" and "Market access (export)". Heteroskedasticity robust test statistics and (standard errors). Z_1 is instrument "Plan", Z_2 is "Railroads", Z_3 is "Exploration".

Conclusions

- We have generalized the FAS_{excl} of MP to properly take into account possibe violations of both the exclusion and exogeneity assumptions.
- Report the FAS when the model has been falsified
- Alternatively, use valid/invalid instrument selection methods, as in Kang et al. (2016), Windmeijer et al. (2019), Guo et al. (2018) and Windmeijer et al. (2021).