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Introduction

▶ Classical linear model Y = X𝛽 + ℰ with an endogenous variable,
estimated by method of instrumental variables (IVs), multiple correlated
instruments Z.

▶ Standard assumption cov (Z, ℰ) = 0.
▶ When model is falsified, cov (Z, ℰ) ≠ 0. Need to specify the invalidity of

the instruments, exclusion or exogeneity assumption.
▶ Masten and Poirier (2021) (MP) introduced the Falsification Adaptive Set

(FAS) to report an estimate of when the baseline model is falsified.
▶ It is the set of just-identified estimands of the models where each

relevant instrument in turn is used as the just-identifying instrument
and the other instruments are included as controls.

▶ Reflects the model uncertainty that arises from falsification of the
baseline model.
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Introduction

▶ cov (Z, ℰ) ≠ 0, let ℰ = A + ℰ̃, where A is the unobserved confounder,
cov (X,A) ≠ 0.

▶ Violation of Exclusion restriction. Zdir has direct effect, ℰ̃ = Zdir𝜸dir + ¤ℰ,
Zindir has indirect effect, A = Zindir𝜸indir + ¤A, on Y.

▶ An invalid instrument can have both a direct and indirect effect.
▶ Then Y = X𝛽 + Zdir𝜸dir + Zindir𝜸indir + U, U = ¤A + ¤ℰ.
▶ Then instruments that do not have a direct and/or indirect effect,

𝜸dir = 𝜸indir = 0, are valid if they satisfy the conditional Exogeneity
assumption cov (Zval ,U) = 0, and are invalid otherwise,
cov (Zinval ,U) = 𝜶.

3



Introduction

▶ FAS of MP derived under violation of the exclusion restriction only.
▶ We derive a different FAS for violation of the exogeneity assumption only.
▶ Natural extension is then a generalized FAS that considers violations of

both assumptions.
▶ This is the set of all possible just-identified estimands where the

just-identifying instrument is relevant, there are a maximum of kz2kz−1 of
these, where kz is the number of instruments.

▶ If there is at least one valid and relevant instrument, then our FAS will
contain 𝛽.
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Model, Assumptions and Definitions

▶ The general model specification is given by

Y = X𝛽 + ZT𝜸 + U,

cov (Z,U) = 𝜶.

▶ Relevance: The kz-vector cov (Z,X) ≠ 0.
▶ Sufficient variation: The kz × kz matrix 𝚺z := var (Z) is invertible.

The baseline model assumes all instruments to be valid, satisfying the
exclusion and exogeneity assumptions:
▶ Exclusion: 𝛾ℓ = 0 for all ℓ ∈{1, . . . , kz}.
▶ Exogeneity: 𝛼ℓ = 0 for all ℓ ∈{1, . . . , kz}.
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Model, Assumptions and Definitions

▶ Valid Instrument: An instrument Zℓ is a valid instrument if both the
exogeneity and the exclusion assumption hold, 𝛼ℓ = 𝛾ℓ = 0.

▶ Invalid Instrument: An invalid instrument violates either the exogeneity
assumption, 𝛼ℓ ≠ 0, or the exclusion assumption, 𝛾ℓ ≠ 0, but not both,
𝛾ℓ𝛼ℓ = 0. (Otherwise an instrument is an endogenous variable itself).

▶ Our objective: If there is a valid and relevant instrument, then the FAS
contains 𝛽.
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Identified Set, Falsification Frontier and FASexcl

MP maintains the conditional exogeneity assumption 𝜶 = 0, but relax the
exclusion assumption:
▶ Partial Exclusion: There are known constants 𝛿ℓ ⩾ 0 such that |𝛾l | ⩽ 𝛿ℓ

for ℓ = 1, . . . , kz.

Define
𝝅 := 𝚺−1

z cov (Z,X) ; 𝝍 := 𝚺−1
z cov (Z,Y) .

As 𝜶 = 0 by assumption, we have that 𝝍 = 𝝅𝛽 + 𝜸.

The identified set for 𝛽 is then given by

ℬ (𝜹) = {b ∈ ℝ : −𝜹 ⩽ (𝝍 − 𝝅b) ⩽ 𝜹} .
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Identified Set, Falsification Frontier and FASexcl

Let ℒrel denote the set of relevant instruments

ℒrel = {ℓ ∈ {1, . . . , kz} : 𝜋ℓ ≠ 0} .
The falsification adaptive set is then given in Theorem 2 of MP as

FASexcl =

[
min
ℓ∈ℒrel

𝜓ℓ

𝜋ℓ
, max
ℓ∈ℒrel

𝜓ℓ

𝜋ℓ

]
.

As MP point out in their Lemma 1, for ℓ ∈ ℒrel,
𝜓ℓ

𝜋ℓ

(
= 𝛽 + 𝛾ℓ

𝜋ℓ

)
are the IV/2sls

estimands in the just identified model specification

Y = X𝛽ℓ + ZT
{−ℓ }𝜸{−ℓ } + Uℓ (1)

where Z{−ℓ } = Z \ {Zℓ }, and using Zℓ as the excluded just-identifying
instrument, see also Windmeĳer et al. (2021).
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Identified Set, Falsification Frontier and FASexcl

▶ FASexcl contains 𝛽 if 0 ∈
[
minℓ∈ℒrel

𝛾ℓ
𝜋ℓ

,maxℓ∈ℒrel
𝛾ℓ
𝜋ℓ

]
▶ Sufficient: When 𝜶 = 0, 𝛽 ∈FASexcl if there is a relevant and valid

instrument with 𝛾ℓ = 0.
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Estimation

MP proposes to estimate the relevant set by

ℒ̂rel = {ℓ ∈ {1, . . . , kz} : Fℓ ⩾ Cn} ,

where Fℓ is the first-stage F-statistic for H0 : 𝜋ℓ = 0. They set as default value
Cn = 10. This is same as first-stage hard thresholding procedure of Guo et al.
(2018), ���� 𝜋ℓ

se
(
𝜋ℓ

) ���� ⩾ √
Cn = 3.16.

Let �̂�ℓ =
𝜓ℓ

𝜋ℓ
be the IV estimator of 𝛽ℓ in the just-identified model specification

with Z{−ℓ } included as controls. Then FASexcl is estimated by

F̂ASexcl =

[
min
ℓ∈ℒ̂rel

�̂�ℓ , max
ℓ∈ℒ̂rel

�̂�ℓ

]
.

A maximum of kz IV, or two OLS regressions.
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Failure of Exogeneity Assumption

▶ We now assume that 𝜸 = 0, but invalid instruments violate the
exogeneity assumption, cov (Z,U) = 𝜶.

▶ MP argue that, mathematically, the same technical analysis can be used
as for the violation of the exclusion restriction, as from linear projection,

Y = X𝛽 + ZT𝜼 + ¤U.

▶ However, as
𝜼 = 𝚺−1

z cov (Z,U) = 𝚺−1
z 𝜶,

and with correlated instruments, it could be the case that all �ℓ ≠ 0 even
when there are valid instruments present.

▶ Therefore FASexcl is not guaranteed to contain 𝛽 if there is a valid and
relevant instrument .
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Failure of Exogeneity Assumption

▶ Define the kz-vectors 𝝅∗ and 𝝍∗ with ℓ -th elements given by

𝜋∗
ℓ

:= (var (Zℓ ))−1 cov (Zℓ ,X) ; 𝜓∗
ℓ

:= (var (Zℓ ))−1 cov (Zℓ ,Y) ,

for ℓ = 1, . . . , kz.
▶ By same arguments as for the FASexcl, we obtain the FASexo as

FASexo =

[
min
ℓ∈ℒ∗

rel

𝜓∗
ℓ

𝜋∗
ℓ

, max
ℓ∈ℒ∗

rel

𝜓∗
ℓ

𝜋∗
ℓ

]
,

where ℒ∗
rel =

{
ℓ ∈ {1, . . . , kz} : 𝜋∗

ℓ
≠ 0

}
.
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Failure of Exogeneity or Exclusion Assumption

▶ We now consider the full specification

Y = X𝛽 + ZT𝜸 + U,

cov (Z,U) = 𝜶.

▶ Together with the assumption that an invalid instrument can violate
either the exclusion or the conditional exogeneity assumption.

▶ We therefore consider all possible just-identified model specifications.
▶ For kz = 2, there are 4 of these, and the resulting FAS is simply

FASexcl ∪ FASexo.
▶ If there is a relevant and valid instrument, then clearly 𝛽 ∈ FAS.
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General Results

▶ For general kz there are skz = kzskz−1 just identified model specifications,
or just identifying transformed instruments

▶ For example, for kz = 3 we have

Z̃ =

(
Z1 ,Z1|2 ,Z1|3 ,Z1|23 ,Z2 ,Z2|1 ,Z2|3 ,Z2|13 ,Z3 ,Z3|1 ,Z3|2 ,Z3|12

)T
,

with e.g.
Z1|2 = Z1 − Z2 (var (Z2))−1 cov (Z2 ,Z1) .

▶ Then define the skz -vectors �̃� and �̃� with j-th elements

𝜋j :=
(
var

(
Z̃j
))−1

cov
(
Z̃j ,X

)
; 𝜓j :=

(
var

(
Z̃j
))−1

cov
(
Z̃j ,Y

)
.
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General Results

▶ The set of relevant instruments is specified as

ℒ̃rel =
{
j ∈

{
1, . . . , skz

}
: 𝜋j ≠ 0

}
▶ The generalized falsification adaptive set is

FAS =

[
min
j∈ℒ̃rel

𝜓j

𝜋j
, max
j∈ℒ̃rel

𝜓j

𝜋j

]
=

[
min
j∈ℒ̃rel

�̃�j , max
j∈ℒ̃rel

�̃�j

]
,

where, for j ∈ ℒ̃rel, the IV estimands are given by

�̃�j =
𝜓j

𝜋j
=

cov
(
Z̃j ,Y

)
cov

(
Z̃j ,X

) .
▶ 𝛽 ∈ FAS if there is a relevant and valid instrument.
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Empirical Example, kz = 3

▶ Empirical analysis of roads and trade by Duranton et al. (2014).
▶ The outcome variable is a measure of how much a city exports. The one

considered here is called the “propensity to export weight”.
▶ The treatment variable is the log number of kilometers of interstate

highway within a city in 2007.
▶ There are three potential instruments

▶ Z1 = Plan is the log number of kilometers of highway in the city according to
a planned highway construction map, approved by the federal government
in 1947

▶ Z2 = Railroads is the log number of kilometers of railroads in the city in 1898
▶ Z3 = Exploration is a measure of the quantity of historical exploration routes

that passed through the city.

▶ Partial sample correlations are �̂�12 = 0.57, �̂�13 = 0.34 and �̂�23 = 0.11.

▶ If for example 𝜸 = (0, 0, 𝛾3)T and 𝜶 = (𝛼1 , 0, 0)T with 𝛾3 ≠ 0 and 𝛼1 ≠ 0,
then Z2|3 is a valid instrument. Z2|3 is the just-identifying instrument Z2
when Z3 is included as a control and Z1 omitted from the instrument set.
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Empirical Example, kz = 3

Table 1: IV estimation results, Duranton et al. (2014, Table 5, column 2)

Instruments
Z1 ,Z2 ,Z3 Z1|2,3 Z2|1,3 Z3|1,2 Z1 Z2 Z3

hway 0.57
(0.16)

0.28
(0.25)

3.16
(1.39)

−0.32
(0.86)

0.55
(0.17)

1.09
(0.26)

0.13
(0.38)

F 90.30 58.13 6.97 20.00 154.5 35.84 15.97
J p 0.043

Z1|2 Z1|3 Z2|1 Z2|3 Z3|1 Z3|2

hway 0.22
(0.21)

0.40
(0.16)

3.74
(1.90)

1.18
(0.26)

−0.61
(1.11)

−0.02
(0.38)

F 81.14 122.45 5.29 34.31 14.27 31.07
F̂ASexcl [−0.32, 0.28]
F̂ASexo [0.13, 1.09]
F̂AS [−0.61, 1.18]

Notes: Outcome variable “propensity to export weight”, n = 66. Additional controls
“log employment” and “Market access (export)”. Heteroskedasticity robust test
statistics and (standard errors). Z1 is instrument “Plan”, Z2 is “Railroads”, Z3 is

“Exploration”.
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Conclusions

▶ We have generalized the FASexcl of MP to properly take into account
possibe violations of both the exclusion and exogeneity assumptions.

▶ Report the FAS when the model has been falsified
▶ Alternatively, use valid/invalid instrument selection methods, as in

Kang et al. (2016), Windmeĳer et al. (2019), Guo et al. (2018) and
Windmeĳer et al. (2021).
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