Strategic Innovation and Competition by Superstars

Renjie Bao¹ Jan Eeckhout²

¹ Princeton² UPF Barcelona

EEA Annual Meeting
UPF Barcelona

August 30, 2023

Strategic Innovation and Competition by Superstars

STRATEGIC INNOVATION AND COMPETITION BY SUPERSTARS

- Strategic Innovation: study a growth model of innovation (quality ladder) and consider strategic interaction when firms innovate
- Competition: oligopolistic competition with strategic interaction when firms produce
- Superstars: focus on the formation of superstar firms

STRATEGIC INNOVATION AND COMPETITION BY SUPERSTARS

- Strategic Innovation: study a growth model of innovation (quality ladder) and consider strategic interaction when firms innovate
- Competition: oligopolistic competition with strategic interaction when firms produce
- Superstars: focus on the formation of superstar firms

Today: a theoretical framework incorporating all these features

- We distinguish two types of innovation on:
 - 1. new idea (quality ladder): spillover

2. productivity: exclusive

a new generation of products, e.g., $3G \to 4G \to 5G$ own productivity, e.g., building towers

• We distinguish two types of innovation on:

new idea (quality ladder): spillover
 productivity: exclusive
 a new generation of products, e.g., 3G → 4G → 5G
 own productivity, e.g., building towers

• Derive new insights in answering old questions

1. Does higher profitability always mean more entry?

- We distinguish two types of innovation on:
 - 1. new idea (quality ladder): spillover

2. productivity: exclusive

a new generation of products, e.g., $3G \rightarrow 4G \rightarrow 5G$ own productivity, e.g., building towers

- Derive new insights in answering old questions
 - 1. Does higher profitability always mean more entry? The source matters!
 - * Demand: high profit margin ⇒ inelastic demand ⇒ incentivize entry
 - * Supply: high profit margin \Rightarrow high incumbent productivity \Rightarrow deter entry

a new generation of products, e.g., $3G \rightarrow 4G \rightarrow 5G$

- We distinguish two types of innovation on:
 - 1. new idea (quality ladder): spillover

2. productivity: exclusive own productivity, e.g., building towers

- Derive new insights in answering old questions
 - 1. Does higher profitability always mean more entry? The source matters!
 - * Demand: high profit margin ⇒ inelastic demand ⇒ incentivize entry
 - * Supply: high profit margin ⇒ high incumbent productivity ⇒ deter entry
 - 2. Where do the superstar firms come from?

- We distinguish two types of innovation on:
 - 1. new idea (quality ladder): spillover

2. productivity: exclusive

a new generation of products, e.g., $3G \rightarrow 4G \rightarrow 5G$ own productivity, e.g., building towers

- Derive new insights in answering old questions
 - 1. Does higher profitability always mean more entry? The source matters!
 - * Demand: high profit margin \Rightarrow inelastic demand \Rightarrow incentivize entry
 - * Supply: high profit margin ⇒ high incumbent productivity ⇒ deter entry
 - 2. Where do the superstar firms come from?
 - * We provide a new explanation: first mover advantage
 - * Incentive to be excessively big to deter entry

CONTRIBUTION

- We distinguish two types of innovation on:
 - 1. new idea (quality ladder): spillover

a new generation of products, e.g., $3G \rightarrow 4G \rightarrow 5G$ 2. productivity: exclusive own productivity, e.g., building towers

- Derive new insights in answering old questions
 - 1. Does higher profitability always mean more entry? The source matters!
 - * Demand: high profit margin ⇒ inelastic demand ⇒ incentivize entry
 - * Supply: high profit margin ⇒ high incumbent productivity ⇒ deter entry
 - 2. Where do the superstar firms come from?
 - * We provide a new explanation: first mover advantage
 - * Incentive to be excessively big to deter entry
 - 3. Does product differentiation always create market power?

- We distinguish two types of innovation on:
 - 1. new idea (quality ladder): spillover

a new generation of products, e.g., $3G \rightarrow 4G \rightarrow 5G$

2. productivity: exclusive

own productivity, e.g., building towers

- Derive new insights in answering old questions
 - 1. Does higher profitability always mean more entry? The source matters!
 - * Demand: high profit margin ⇒ inelastic demand ⇒ incentivize entry
 - * Supply: high profit margin ⇒ high incumbent productivity ⇒ deter entry
 - 2. Where do the superstar firms come from?
 - * We provide a new explanation: first mover advantage
 - * Incentive to be excessively big to deter entry
 - 3. Does product differentiation always create market power? Endogenous market structure
 - * Industries with low elasticity of substitution are favor of entrants
 - * Might end up with lower market power due to intense competition

Model Setup

OVERVIEW

- Representative household: nested-CES consumption; labor only factor
- Firms make innovation and production decisions
 - 1. Innovating firms compete for quality ladder in each industry
 - Free entry specified by non-negative expected profits
 - At most one firm gets the new idea (henceforth, winner) and stay to the next stage
 - 2. Producing firms make investment on productivity
 - Winner (if any) moves first
 - Free entry: other firms enter simultaneously until entry becomes not profitable
 - 3. Producing firms compete on the product market a là Atkeson and Burstein (2008)
- Repeated static problem, but with interesting dynamics for the economy as a whole

Household Problem

• Representative households problem:

$$\max_{\{C_t, L_t\}} \mathcal{U}_0 = \sum_{t=0}^{\infty} \beta^t C_t, \quad \text{s.t. } C_t = W_t L_t + \Pi_t, \quad \underline{L}_t = \overline{\underline{L}}$$
 (1)

with a nested-CES consumption aggregation:

$$C_t = \left[\int_0^1 \left(\frac{q_{jt}}{c_{jt}} c_{jt} \right)^{\frac{\theta-1}{\theta}} dj \right]^{\frac{\theta}{\theta-1}} \quad \text{and} \quad c_{jt} = \left[\sum_i c_{ijt}^{\frac{\eta_j-1}{\eta_j}} \right]^{\frac{\eta_j}{\eta_j-1}}$$

- A standard problem that can be summarized by the following static solutions:
 - Labor supply: $L_t = \overline{L}$
 - Demand system: $c_{ijt} = q_{jt}^{\theta-1} \left(\frac{p_{ijt}}{p_{jt}}\right)^{-\eta_j} \left(\frac{p_{jt}}{P_t}\right)^{-\theta} C_t$

Firm Problem - 1. Innovation on Quality Ladder

- Quality dynamics: at time t, past quality $q_{j,t-1}$ is accessible to all innovating firms
 - With a quality ladder, quality improves to $q_{jt} = \lambda q_{j,t-1}$
 - Otherwise, it remains at the same level $q_{jt} = q_{j,t-1}$
- Innovation process on quality ladder of industry j at time t
 - $-N_j$ (determined by free entry) firms compete for quality ladder with research level l_{njt}^q
 - Probability of firm n and of industry j drawing the quality ladder:

$$h_{njt} = l_{njt}^q / \left[(q_{j,t-1}/\overline{q}_t) \overline{l}^q + \sum_{n'} l_{n'jt}^q \right], \quad H_{jt} = \sum_n h_{njt} \le 1$$

Innovating firms problem

$$\max_{l_{njt}^q} \left\{ h_{njt} \mathbb{E}\left[\pi_{jt}^{\text{win}} | q_{jt}, \eta_j, \psi \right] - W_t \left(\lambda q_{j,t-1} \right)^{\theta-1} \left(l_{njt}^q + \phi^q \right) \right\} \tag{2}$$

Firm Problem - 2. Investment on Productivity

- Productivity a is determined by firm type z and investment $l^a = \frac{1}{z} \frac{a^{\gamma}}{\gamma}$
 - All followers have the same type \overline{z}
 - Leader's (if any) type $z_{0i} \in [\underline{z}_0, +\infty)$ follows a Pareto distribution
- Leader's (if any) first mover problem

$$\pi_{jt}^{\text{win}} = \max_{a_0} \left\{ \pi_0 \left(a_0, I_j(a_0), a_f(a_0) | q_{jt}, \eta_j, \psi_t \right) - W_t q_{jt}^{\theta - 1} \left(\frac{1}{z_{0jt}} \frac{a_0^{\gamma}}{\gamma} + \phi^a \right) \right\} \tag{3}$$

• Follower problem conditional on the number of followers $I_i \geq 1$

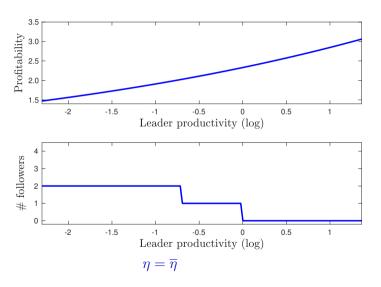
$$\pi_{jt}^{\text{fol}} = \max_{a_f} \left\{ \pi_f \left(a_0, a_f | I_j, \mathbf{a}_0, q_{jt}, \eta_j, \psi_t \right) - W_t q_{jt}^{\theta - 1} \left(\frac{1}{\overline{z}} \frac{a_f^{\gamma}}{\gamma} + \phi^a \right) \right\} \tag{4}$$

FIRM PROBLEM - 3. PRODUCTION

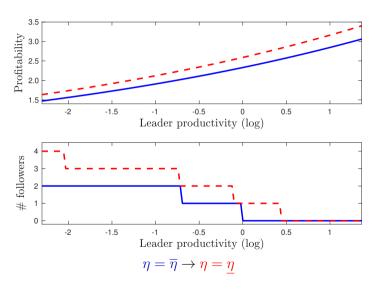
- Firms compete in Cournot given the distribution of quality $\{q_{jt}\}$, productivity $\{a_{0jt},a_{fjt}\}$ and market structure $\{I_{jt}\}$
- Firm problem:

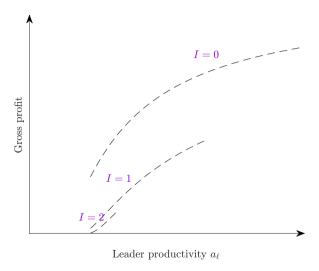
$$\pi_{ijt} = \max_{y_{ijt}} \left\{ p_{ijt}(y_{ijt}, y_{-ijt}) y_{ijt} - \left(\frac{W_t}{a_{ijt}}\right) y_{ijt} \right\} \tag{5}$$

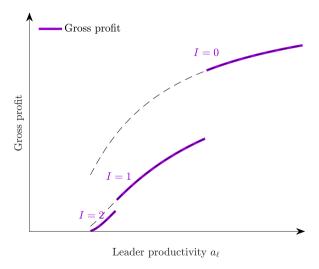
- Strategic interaction occurs within each industry j through the demand system
- Take aggregates as given: no strategic interaction across industries

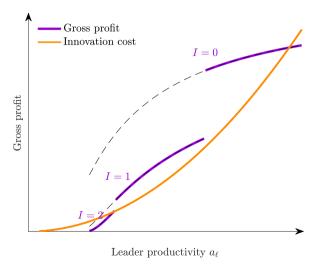

STATIONARY EQUILIBRIUM

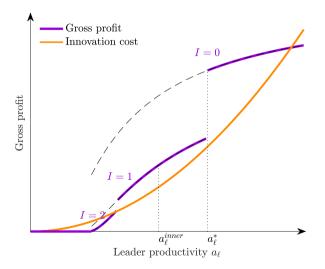
- Stationary distribution over the *relative* quality $x_{jt} = \log q_{jt} \log \overline{q}_t$
- A stationary equilibrium along balanced growth path is a set of
 - household's consumption $\{c_{ijt}\}$ and labor supply L_t
 - innovating firm choices $l^q: X \times \Theta \to \mathbb{R}$ and market structure $N: X \times \Theta \to \mathbb{N}$
 - leader choices $a_0: Z \times X \times \Theta \to \mathbb{R}$
 - followers choices $a_f: A \times X \times \Theta \to \mathbb{R}$ and market structure $I: A \times X \times \Theta \to \mathbb{N}$
 - producing firms choices $y: A \times A \times \mathbb{N} \to \mathbb{R}, (a_0, a_f, I) \mapsto y$
 - prices $\{p_{ijt}\}$ and $\{W_t\}$
 - stationary distribution of relative quality x

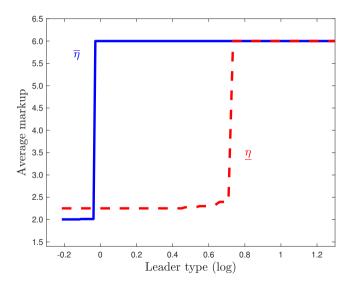

such that all the agents optimize, goods and labor markets clear, and the relative quality distribution is invariant over time

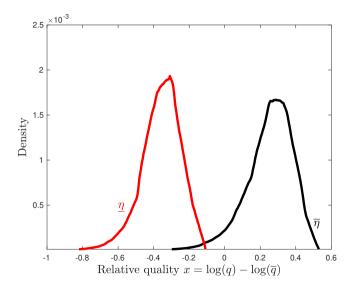

Applications


1. Higher Profitability, More Entry?




1. Higher Profitability, More Entry?





3. Lower Substitutability, Larger Market Power?

3. Lower Substitutability, Larger Market Power?

Conclusions

NEXT STEPS

- 1. Long-run growth driven by innovation on quality ladders; market power matters for transition
- 2. Quantification and cross-sectional analysis
- 3. Counterfactual policies: taxes and subsidies

Strategic Innovation and Competition by Superstars

Renjie Bao¹ Jan Eeckhout²

¹ Princeton² UPF Barcelona

EEA Annual Meeting
UPF Barcelona

August 30, 2023