Bank Fragility and Liquidity in Business-Cycle Analysis^a

Davide Porcellacchia¹, Kevin Sheedy²

30th August 2023

¹European Central Bank, ²London School of Economics

^aThis paper represents our own views, not necessarily those of the European Central Bank or Eurosystem.

Model of endogenous runs on financial intermediaries

• within standard macro framework.

Model of endogenous runs on financial intermediaries

• within standard macro framework.

Research questions:

Implications of run risk for (1) bank behaviour and (2) macroeconomic outcomes?

Model of endogenous runs on financial intermediaries

• within standard macro framework.

Research questions:

Implications of run risk for (1) bank behaviour and (2) macroeconomic outcomes?

- 1. Limit leverage and demand more liquid assets.
- 2. Amplification and propagation of shocks.

Model of endogenous runs on financial intermediaries

• within standard macro framework.

Research questions:

Implications of run risk for (1) bank behaviour and (2) macroeconomic outcomes?

- 1. Limit leverage and demand more liquid assets.
- 2. Amplification and propagation of shocks.

Macroeconomic effects of supply of liquid assets (e.g., treasuries)?

Model of endogenous runs on financial intermediaries

• within standard macro framework.

Research questions:

Implications of run risk for (1) bank behaviour and (2) macroeconomic outcomes?

- 1. Limit leverage and demand more liquid assets.
- 2. Amplification and propagation of shocks.

Macroeconomic effects of supply of liquid assets (e.g., treasuries)?

- It reduces run risk \implies supports lending.

Literature

Macro-banking: Gertler and Kiyotaki (2010), Gertler and Karadi (2011), Brunnermeier and Sannikov (2014), Gertler, Kiyotaki, and Prestipino (2020), Karadi and Nakov (2021).

 \rightarrow different friction.

Banking theory: Diamond and Dybvig (1983), Goldstein and Pauzner (2005).

 \rightarrow in general equilibrium.

Demand for reserves/liquid assets: Poole (1968), Bianchi and Bigio (2022).

 $\rightarrow\,$ different micro-foundation.

Roadmap

- 1. Coordination game among bank creditors.
 - \implies no-run condition.

- 2. Macro model
 - Four agents: firms, households, banks and a government.
 - General equilibrium and shocks.

- 3. Quantitative exercise.
- 4. Empirical evidence.

$$ullet ullet m = rac{M}{K+M}$$
, $ullet$ $n = rac{N}{K+M}$, $ullet$ $\lambda \in [0,1]$ liquidation value of capital.

At beginning of period, each bank $b \in [0, 1]$

- offers debt D to households at interest rate j, and
- makes portfolio allocation decision s.t. K + M = D + N.

$$ullet ullet m = rac{M}{K+M}$$
, $ullet$ $n = rac{N}{K+M}$, $ullet$ $\lambda \in [0,1]$ liquidation value of capital.

At beginning of period, each bank $b \in [0, 1]$

- offers debt D to households at interest rate j, and
- makes portfolio allocation decision s.t. K + M = D + N.

A share H of households hold the debt.

•
$$m = \frac{M}{K+M}$$
, • $n = \frac{N}{K+M}$, • $\lambda \in [0, 1]$ liquidation value of capital.

At beginning of period, each bank $b \in [0, 1]$

- offers debt D to households at interest rate j, and
- makes portfolio allocation decision s.t. K + M = D + N.

A share H of households hold the debt.

Fragility: Bank fails $\iff (1-H)D > M + \lambda K \iff H < \frac{(1-\lambda)(1-m)-n}{1-n} = F(m,n).$

•
$$m = \frac{M}{K+M}$$
, • $n = \frac{N}{K+M}$, • $\lambda \in [0, 1]$ liquidation value of capital.

At beginning of period, each bank $b \in [0, 1]$

- offers debt D to households at interest rate j, and
- makes portfolio allocation decision s.t. K + M = D + N.

A share H of households hold the debt.

Fragility: Bank fails $\iff (1-H)D > M + \lambda K \iff H < \frac{(1-\lambda)(1-m)-n}{1-n} = F(m,n).$

• Leverage and liquidity choices determine fragility.

Coordination game

• $H = \int_0^1 H_h \, \mathrm{d}h$, • ρ HH discount rate, • j interest on debt, • θ loss given default.

Each household $h \in [0,1]$ decides $H_h \in \{0,1\}$, i.e. whether to hold a bank's debt.

Coordination game

• $H = \int_0^1 H_h \, \mathrm{d}h$, • ρ HH discount rate, • j interest on debt, • θ loss given default.

Each household $h \in [0,1]$ decides $H_h \in \{0,1\}$, i.e. whether to hold a bank's debt.

A household's net payoff from holding bank debt:

$$\pi(F,H) = -1 + \frac{1+j}{1+\rho} \mathbb{1}_{H \ge F} + (1-\theta) \left(1 - \mathbb{1}_{H \ge F}\right)$$

Coordination game

• $H = \int_0^1 H_h \, \mathrm{d}h$, • ρ HH discount rate, • j interest on debt, • θ loss given default.

Each household $h \in [0,1]$ decides $H_h \in \{0,1\}$, i.e. whether to hold a bank's debt.

A household's net payoff from holding bank debt:

$$\pi(F,H) = -1 + \frac{1+j}{1+\rho} \mathbb{1}_{H \ge F} + (1-\theta) \left(1 - \mathbb{1}_{H \ge F}\right)$$

 $\pi(F, H)$ $\downarrow \downarrow \downarrow \downarrow$ $F \qquad 1 \qquad H$ $-\theta$

Information structure: • (F, H) unobservable, • arbitrarily precise idiosyncratic signal \hat{F}_{h} .

ightarrow Standard global game.

No-run constraint

•
$$m = \frac{M}{K+M}$$
, • $n = \frac{N}{K+M}$, • $\lambda \in [0, 1]$ liquidation value of capital.

Standard global game \implies households behave as if $\hat{F}_h = F$ and $H \sim U[0,1]$.

Lemma

Unique equilibrium strategy implies $H_h = 1$ only if $\hat{F}_h \leq F^*(j, \rho)$ with

$$\frac{j-\rho}{1+\rho} = \frac{F^*}{1-F^*}\theta.$$
(1)

No-run constraint

•
$$m = \frac{M}{K+M}$$
, • $n = \frac{N}{K+M}$, • $\lambda \in [0, 1]$ liquidation value of capital.

Standard global game \implies households behave as if $\hat{F}_h = F$ and $H \sim U[0,1]$.

Lemma

Unique equilibrium strategy implies $H_h = 1$ only if $\hat{F}_h \leq F^*(j, \rho)$ with

$$\frac{i-\rho}{1+\rho} = \frac{F^*}{1-F^*}\theta.$$
(1)

7/16

Proposition

In equilibrium, the bank avoids failure only if $F(m, n) \leq F^*(j, \rho)$. The resulting no-run condition is

$$m + \frac{1}{1-\lambda} \cdot n + \frac{\lambda + (1-\lambda)m}{\theta(1-\lambda)} \cdot \frac{j-\rho}{1+\rho} \ge 1.$$
⁽²⁾

• r_t expected return on physical capital, • i_t interest on liquid assets.

Bank maximizes PDV(dividends) s.t. BCs, no-run condition and minimum dividend payout.

Bank's optimality conditions Bank problem

• r_t expected return on physical capital, • i_t interest on liquid assets.

Bank maximizes PDV(dividends) s.t. BCs, no-run condition and minimum dividend payout.

Given $\{r_s\}_{s=t}^{+\infty}$ with $\frac{r_t - \rho_t}{1 + \rho_t} \in (0, \theta \frac{1-\lambda}{\lambda})$, FOCs imply:

• binding no-run condition

$$\mathcal{K}_t = rac{1}{1-rac{\lambda}{ heta}\left(rac{j_t-
ho_t}{1+
ho_t}+ heta
ight)}\left(\mathcal{N}_t + rac{1}{ heta}rac{j_t-
ho_t}{1+
ho_t}\mathcal{M}_t
ight),$$

(3)

Bank's optimality conditions Bank problem

• r_t expected return on physical capital, • i_t interest on liquid assets.

Bank maximizes PDV(dividends) s.t. BCs, no-run condition and minimum dividend payout.

Given $\{r_s\}_{s=t}^{+\infty}$ with $\frac{r_t - \rho_t}{1 + \rho_t} \in (0, \theta \frac{1-\lambda}{\lambda})$, FOCs imply:

• binding no-run condition

$$K_t = \frac{1}{1 - \frac{\lambda}{\theta} \left(\frac{j_t - \rho_t}{1 + \rho_t} + \theta\right)} \left(N_t + \frac{1}{\theta} \frac{j_t - \rho_t}{1 + \rho_t} M_t\right),\tag{3}$$

• optimal bank leverage pinned down by

$$\frac{j_t - \rho_t}{1 + \rho_t} = \max\left\{0, \frac{\theta}{\lambda} \left[1 - \lambda - \sqrt{1 - \frac{\lambda}{\theta} \left(\frac{r_t - \rho_t}{1 + \rho_t} + \theta\right)}\right]\right\},\tag{4}$$

Bank's optimality conditions Bank problem

• r_t expected return on physical capital, • i_t interest on liquid assets.

Bank maximizes PDV(dividends) s.t. BCs, no-run condition and minimum dividend payout.

Given $\{r_s\}_{s=t}^{+\infty}$ with $\frac{r_t - \rho_t}{1 + \rho_t} \in (0, \theta \frac{1-\lambda}{\lambda})$, FOCs imply:

• binding no-run condition

$$K_t = \frac{1}{1 - \frac{\lambda}{\theta} \left(\frac{j_t - \rho_t}{1 + \rho_t} + \theta\right)} \left(N_t + \frac{1}{\theta} \frac{j_t - \rho_t}{1 + \rho_t} M_t\right),\tag{3}$$

• optimal bank leverage pinned down by

$$\frac{j_t - \rho_t}{1 + \rho_t} = \max\left\{0, \frac{\theta}{\lambda} \left[1 - \lambda - \sqrt{1 - \frac{\lambda}{\theta} \left(\frac{r_t - \rho_t}{1 + \rho_t} + \theta\right)}\right]\right\},\tag{4}$$

• demand for liquid assets

$$\frac{\rho_t - i_t}{1 + \rho_t} = \frac{1}{\theta} \left(\frac{j_t - \rho_t}{1 + \rho_t} \right)^2.$$
(5)

Calibration: targets and parameters

• A model period is one month. • Data 1986–2006.

			Description	Notation	Va
Description	Notation	Value	Bank-asset liquidity relative to T-bills	λ	0.
Real Treasury Bill rate	i	1.4%	Loss given bank default	θ	0.0
TED		0.000/	Minimum dividend distribution	γ	0.0
I ED spread	J - I	0.63%	Subjective discount factor	β	0.9
Real return on bank equity	q	10.8%	Electicity of intertomoural substitution		c
Pank conital ratio	17	7 0%	Elasticity of Intertemporal substitution	σ	U
Dalik Capital Patio	п	1.9%	Frisch elasticity of labour supply	ψ	
Liquidity ratio	т	20.8%	Capital elasticity of output	α	1

Depreciation	δ	0.0063	9/16
--------------	---	--------	------

One-off 5% capital destruction shock Additional variables

Increase in supply of liquid assets

OLS regressions with daily data of TED spread, LIBOR, and T-bill rate on supply of treasuries

- 2005-2022.
- Controls: day, month, year dummies, FOMC dates, NBER recessions, lags of TED spread, LIBOR, T-bill rate, 10-year treasury yield, corporate bond yield, S&P500, S&P financials index
- Identification: supply of treasuries does not respond to endogenous variables within a day.

OLS regressions with daily data of TED spread, LIBOR, and T-bill rate on supply of treasuries

- 2005-2022.
- Controls: day, month, year dummies, FOMC dates, NBER recessions, lags of TED spread, LIBOR, T-bill rate, 10-year treasury yield, corporate bond yield, S&P500, S&P financials index
- Identification: supply of treasuries does not respond to endogenous variables within a day.
- Issuance of treasuries predetermined at auctions

	(1)	(2)	(3)			
	TED spread	LIBOR	T-bill rate			
Treasuries	-0.028***	-0.007*	0.021***			
	(0.2%)	(6.5%)	(0.8%)			
p-values in parentheses. * $p < 10%$, ** $p < 5%$, *** $p < 1%$. Treasuries are log-transformed and multiplied by 100.						

Standard errors are bootstrapped with 1000 draws.

Conclusion

RBC model + bank fragility.

Coordination game among bank creditors:

- 1. Fragility is costly because funding costs \uparrow .
- 2. Leverage \downarrow and liquidity $\uparrow \implies$ fragility $\downarrow.$

Macro model:

- 1. Demand for liquid assets.
- 2. Amplification and propagation of shocks via spreads.
- 3. Liquidity supports bank lending and activity.

Quantitative exercise: After capital-destruction shock, GDP falls 40% more and more persistently.

Empirical evidence implies liquidity supply reduces spreads.

Bank's problem

Given prices $\{i_t, r_t, \rho_t\}_{t=0}^{+\infty}$ and init. cond. N_0 , bank sets $\{D_t, K_t, M_t, j_t, N_{t+1}, \Pi_{t+1}, \}_{t=0}^{+\infty}$ to maximize

$$\sum_{t=0}^{+\infty} \beta^t \frac{u'(C_t)}{u'(C_0)} \cdot \Pi_t \tag{6}$$

Bank's problem 🕩 🔤 🕬

Given prices $\{i_t, r_t, \rho_t\}_{t=0}^{+\infty}$ and init. cond. N_0 , bank sets $\{D_t, K_t, M_t, j_t, N_{t+1}, \Pi_{t+1}, \}_{t=0}^{+\infty}$ to maximize

$$\sum_{t=0}^{+\infty} \beta^t \frac{u'(C_t)}{u'(C_0)} \cdot \Pi_t \tag{6}$$

subject to:

$$D_t + N_t = K_t + M_t, \tag{7}$$

$$N_{t+1} = (1+r_t)K_t + (1+i_t)M_t - (1+j_t)D_t - \Pi_{t+1},$$
(8)

$$j_t \ge \rho_t,$$
 (9)

15/16

One-off 5% capital destruction shock - additional

