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Strategic Network Formation

In an economic model of (directed) network formation agents
purposefully direct links to one another in order to maximize
utility.

A payoff function maps all possible network configurations into
agent utilities.

Agents use this payoff function to weigh the benefits of directing
any particular link against the costs of doing so.

A Nash Equilibrium (NE) network arises when all agents link
choices are individually optimal given the choices made by other
agents (Bala and Goyal, 2000).
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Models and data

Bringing structural models of network formation to data is very
challenging.

1. A directed network is the realization of a game with N players
each making N − 1 strategic decisions — extant tools from
econometrics of games don’t scale to problems of this size
(2N(N−1); computation);

2. Agents are heterogeneous, in ways observed and unobserved
(high dimensional parameterization);

3. Asymptotics of graphs + many players games challenging
(inference).
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Our paper

1. Researcher specifies a (non-strategic) null model that allows
for homophily on observed attributes as well as unobserved
variation in the costs of sending and receiving links (degree
heterogeneity);

2. Researcher also specifies an alternative strategic model (the
network benefit function is freely specified);

3. We construct an exact test for the null that is locally best
in the direction of the strategic alternative.
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What can you learn from our test?

1. Under the maintained assumption that the true model is ei-
ther in the null, or specified alternative model space, the
researcher learns the sign of a strategic interaction parame-
ter.

2. More generally, the test provides a valid assessment of null
model adequacy.

3. Our test involves a new simulation algorithm which is also
useful for exploratory data analysis in the networks setting.

4



Three technical challenges

1. size control (composite null: the null model includes K2+2N

parameters, a very high dimensional nuisance parameter);

2. finding the form of the locally best test (the model is incom-
plete under the alternative);

3. our test is exact, but in practice we need to simulate from
the null distribution.
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Basic Terms & Notation

• An directed graph G (N ,A) consists of a set of nodes
N = {1, . . . , N} and a list of ordered pairs of nodes called
arcs/edges A = {{i, j} , {k, l} , . . .} for i ̸= j, k ̸= l and
i, j, k, l ∈ N .

• A graph is conveniently represented by its adjacency matrix
D =

[
Dij

]
where

Dij =

{
1 if {i, j} ∈ E
0 otherwise . (1)

• No self-ties ⇒ D is a binary matrix with a diagonal of so-
called structural zeros.
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Preferences

Let d ∈ D be a feasible network.

The utility agent i gets from network d is

νi
(
di,d−i; θ,Ui

)
= γ0gi (d)︸ ︷︷ ︸

Network Benefit

−
∑
j

dijcij
(
Xi, Xj; δ, Uij

)
︸ ︷︷ ︸

Link Costs

where gi (d) a known, but not necessarily closed-form, function of
the network adjacency matrix (e.g., a measure of i′s centrality).

Agents weigh costs and benefits when deciding which links to
send.
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Network benefit example: “structural holes”

Inspired by formal model of Kleinberg et al (2008)...

Individuals that connect disparate groups gain “bridging” or in-
termediation benefits.

These benefits arise from lying on a (shortest) path connecting
two agents not directly connected themselves.

If dkidij
(
1− dkj

)
= 1, then i serves as a “bridge" between k and

j .
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Network benefit example: “structural holes” (continued)

The summation
∑

l dkldlj
(
1− dkj

)
yields a count of the total

number of bridging agents between k and j.

While agents benefit from serving as a bridge between two agents,
these benefits decline in the number of other agents also serving
as bridges for the same (directed) dyad.

This suggests a network payoff function of the form

gi (d) =
∑
j

∑
k ̸=j

ϕ

dkidij (1− dkj
)
,
∑
l

dkldlj
(
1− dkj

)
with ϕ (0, k) ≡ 0 and ϕ (1, k) > ϕ (1, k +1) > 0 for k = 1, . . . , N−2.
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Link Costs

The “cost” function captures the net costs and benefits for i of
link ij that are invariant to other choices:

cij
(
Xi, Xj; δ, Uij

)
= −

{
Ai +Bj +X ′

iΛ0Xj − Uij

}

1. Ai and Bj capture out- and in-degree heterogeneity;

2. Xi is a vector of K community membership dummies; W ′
ijλ0 =

X ′
iΛ0Xj: benefits of sending links may vary systematically

with the sender and receiver types;

3. Uij is an iid logistic random utility component.
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Marginal Utility

Let νi (d) ≡ νi
(
di,d−i; θ,Ui

)
; the marginal utility of arc ij for

agent i equals

MUij (d) =

{
νi (d)− νi (d− ij) if dij = 1
νi (d+ ij)− νi (d) if dij = 0

Marginal utility measures the utility gain (loss) to agent i from
adding (subtracting) link ij holding the structure of all other
links in the network constant (including any other links agent i

directs).
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Marginal Utility (continued)

The component of marginal utility associated with the network
benefit function gi (d) plays an important role in our analysis:

sij (d) =

{
gi (d)− gi (d− ij) if dij = 1
gi (d+ ij)− gi (d) if dij = 0

Putting things together yields an expression for marginal utility
of

MUij (d) = Ai +Bj +W ′
ijλ0 + γ0sij (d)− Uij
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Equilibrium

We assume that the observed network D coincides with the
equilibrium outcome of an N-player complete information game.
Each agent

1. observes
{
(Ai, Bi, X

′
i)
}N
i=1

and
{
Uij

}
i ̸=j

and then

2. decides which, out of the N − 1 other agents, to send links
to.

3. Agents may play mixed strategies.
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Equilibrium (continued)

A mixed strategy profile σ∗ is a NE when θ = θ0 and U = u, if
for all i = 1, . . . , N ,

νi
(
σ∗i , σ

∗
−i; θ0,ui

)
≥ νi

(
di, σ

∗
−i; θ0,ui

)
for all possible pure strategy selections di.

We assume that the observed network D is either a pure strategy
NE or in the support of a mixed strategy NE.
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Notation Redux

Out- and in-degree sequences equal

S =

(
Sout
Sint

)′
=

(
D1+, . . . , DN+
D+1, . . . , D+N

)
.

Here D+i =
∑

j Dji and Di+ =
∑

j Dij equal the in- and out-
degree of agents i = 1, . . . , N .

The K ×K cross-link matrix equals

M =
∑
i

∑
j

DijXiX
′
j

This matrix summarizes the inter-group link structure in the net-
work (homophily).
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Notation Redux (continued)

Let S,M be a degree sequence and cross-link matrix.

We say S,M is graphical if there exists at least one arc set A such
that G (V,A) is a simple directed graph with degree sequence S

and cross link matrix M.

We call any such network a realization of S,M (open problem).

The set of all possible realizations of S,M is denoted by GS,M

(DS,M).
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Equilibrium selection mechanism

Let N (d,u; θ) be a function which assigns, for U = u, a proba-
bility weight to network d:

N (d,u; θ) : DN × Rn → [0,1]

In order for N (d, ·; θ) to be a valid NE selection function it must
satisfy some conditions.

For U = u the realized vector of logistic link preference shocks
and θ0 the payoff function parameter, let d∗ (u; θ0) be a pure
strategy NE (or a network contained in the support of a mixed
strategy NE) and D∗

N (u; θ0) be the set of all such networks.

17



Equilibrium selection mechanism (continued)

N (d, ·; θ) is such that:

1. N (d,u; θ0) ≥ 0 for all d ∈ D∗
N (u; θ0);

2.
∑

d∈D∗
N(u;θ0)N (d,u; θ0) = 1;

3. N (d,u; θ0) = 0 for all d ∈ DN\D∗
N (u; θ0).
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Model Parameters

θ =
(
γ, δ′

)′ with:

γ - parameter of interest (strategic interaction);

δ =
(
λ′,A′,B′)′ – homophily/heterogeneity;

we also have N , the equilibrium selection rule;

δ and N are (high dimensional) nuisance parameters.
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Likelihood

If N (d, ·; θ) satisfies the conditions above, then the likelihood of
observing network D = d is

P (d; θ,N ) =
∫
u∈Rn

N (d,u; θ)fu(u)du,

where fu(u) =
∏
i ̸=j fU(uij) with

fU(u) = eu/[1 + eu]2

the logistic density.

For the likelihood to be well-defined we require that N (d, ·; θ) is
measureable (Theorem 1).
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Likelihood (Incompleteness)

Note that sij (d) has finite range S!

Example: sij (d) = dji, such that agents prefer reciprocated links.
Here S = {0,1}.

Can use S to partition the range of Uij (R) in buckets:(
−∞, µij

]
∪
(
µij, µij + γ

]
∪
(
µij + γ,∞

)
with µij = Ai +Bj +W ′

ijλ0 the systematic “non-strategic” utility
generated by arc ij.

Comment: when γ0 is small the probability that Uij falls into the
inner bucket is low.
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Likelihood (Incompleteness)

Three types of Uij realizations:

1. If Uij falls into the first (outer) bucket, then agent i always
directs a link to j (irrespective of whether j reciprocates;
strongly dominant strategy).

2. If Uij falls into the inner bucket, then i sends a link only if j

reciprocates (
(
Dij, Dji

)
= (0,0) and/or (1,1) depending on

Uji).

3. If Uij falls into the last (outer) bucket, then agent i never
directs a link to j.

22



Testing for Strategic Interaction

Let ∆ denote a subset of the K2 + 2N dimensional Euclidean
space in which δ0 is, a priori, known to lie, and

Θ0 =
{(

γ, δ′
)
: γ = 0, δ ∈ ∆

}
.

Our null hypothesis is the composite one

H0 : θ ∈ Θ0 (2)

since δ may range freely over ∆ ⊂ RK2+2N under the null.
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Null Model

Null model is a variant of that studied by Charbonneau (2017),
Graham (2017), Jochmans (2018) and others.

Links are conditionally independent with P0 (d; δ)
def
≡ P

(
d;
(
0, δ′

)′ ,N0

)
equal to

P0 (d; δ) =
N∏

i=1

∏
j ̸=i

 exp
(
W ′

ijλ+R′
iA+R′

jB
)

1+ exp
(
W ′

ijλ+R′
iA+R′

jB
)
dij

×

 1

1+ exp
(
W ′

ijλ+R′
iA+R′

jB
)
1−dij

with Ri an N × 1 vector with 1 as its ith element and zeros
elsewhere.
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Null Model (continued)

Note that P0 (d; δ) equals

P0 (d; δ) =
∫
u∈Rn

N0 (d,u; θ) fu (u) du

with

N0 (d,u; θ) =
∏
i

∏
j

1
(
Ai +Bj +W ′

ijλ ≥ uij
)dij

× 1
(
Ai +Bj +W ′

ijλ < uij
)1−dij

.

Things are more involved under the alternative.
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Null Model: Exponential Family

The null model belongs to the exponential family:

P0 (d; δ) = c (δ) exp
(
t′δ
)

with a (minimally) sufficient statistic for δ of

t =
(
vec

(
m′
)′
, s′out, s

′
in

)′
.

In words, the K2 + N + N sufficient statistics are (i) the cross
link matrix, (ii) the out-degree sequence and (iii) the in-degree
sequence.
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Null Model: Conditional Likelihood

Under H0 the conditional likelihood of D = d is

P0 (d|T = t) =
1

|Ds,m|
.

To simulate the distribution of a statistic under H0 we need to
be able to draw adjacency matrices (i.e., networks) uniformly at
random from the set Ds,m.

This is a non-trivial problem. See Blitzstein & Diaconis (2010)
and Tao (2016).
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Test Formulation

In our setting, a test ϕ (D), will have size α if its null rejection
probability (NRP) is less than or equal to α for all values of the
nuisance parameter:

sup
θ∈Θ0

Eθ [ϕ (D)] = sup
γ=0,δ∈△

Eθ [ϕ (D)] = α.

Since δ is high dimensional, size control is non-trivial.

Intuition: transitivity/clustering example.

This motivates proceeding conditionally on T vs. using a single
critical value.

Let T = {(s,m) : s,m is graphical} be the set of possible T.
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Test Formulation (continued)

For each t ∈ T we form a test with the property that, for all
θ ∈ Θ0,

Eθ [ϕ (D)|T = t] = α.

Such an approach ensures similarity of our test since, by iterated
expectations

Eθ [ϕ (D)] = Eθ [Eθ [ϕ (D)|T]] = α

for any θ ∈ Θ0 (cf. Ferguson, 1967).

By proceeding conditionally we ensure the NRP is unaffected by
the value of δ.
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Test Formulation (continued)

By Ferguson (1967, Lemma 1, Section 3.6) T is a boundedly
complete sufficient statistic for θ under the null.

By Ferguson (1967, Theorem 2, Section 5.4) every similar test
will therefore take the form

Eθ [ϕ (D)|T = t] = α

for t ∈ T.

Therefore, if we desire similarity we can/must take the condi-
tional approach.
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A Conditional Test: Heuristic Approach

Let R (D) be some statistics of the adjacency matrix, for exam-
ple, the reciprocity index.

R (D) =
2P̂ ( )

2P̂ ( ) + P̂ ( )
. (3)

A conditional test based upon R (d) will have the critical function:

ϕ (d) =


1 R (d) > cα (t)

gα (t) R (d) = cα (t)
0 R (d) < cα (t)

where cα (t) and gα (t) are chosen to ensure correct size.

The null distribution of R (D) corresponds to the one induced by
a discrete uniform distribution on Ds,m.
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A Conditional Test: Heuristic Approach

Two remaining challenges:

Its possible that the test based upon R (d) will have good power
to detect violations of the null in the direction of the alternative
of interest, but there are no guarantees.

The cardinality of Ds,m is generally intractably large – need a
method for constructing uniform random draws from this set in
order to approximate null distribution.
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Locally Best Test

Under the alternative of strategic interaction the conditional like-
lihood is

P (d|T = t; θ,N ) =
P (d; θ,N )∑

v∈Ds,m P (v; θ,N )
.

This likelihood is complicated and (logically) cannot be evaluated
without specifying an explicit equilibrium selection mechanism.

Even then, it is not typically feasible to evaluate (see Graham
and Pelican, 2022).
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Locally Best Test

For each t ∈ T, we choose the critical function, ϕ (D) to maximize
the derivative of the (conditional) power function

β (γ, t) = E [ϕ (D)|T = t]

evaluated at γ = 0 subject to the (conditional) size constraint

Eθ [ϕ (D)|T = t] = α. (4)

Such a ϕ (D) is locally best (Ferguson, 1967, Section 5.5).
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Locally Best Test (continued)

Differentiating the power function we get

∂β (γ, t)

∂γ

∣∣∣∣∣
γ=0

= E [ϕ (D) Sγ (D|T; θ)|T = t] (5)

with Sγ (d| t; θ) the conditional score function

Sγ (d| t; θ) =
1

P0 (d; δ)

∂P (d; θ)

∂γ

∣∣∣∣∣
γ=0

−
∑

v∈Ds,m

∂P (v; θ)

∂γ

∣∣∣∣∣
γ=0

=
1

P0 (d; δ)

∂P (d; θ)

∂γ

∣∣∣∣∣
γ=0

+ k (t)

and k (t) only depending on the data through T = t.
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Locally Best Test (continued)

By the Neyman-Pearson lemma the test with critical function

ϕ (d) =


1 1

P0(d;δ)
∂P (d;θ)

∂γ

∣∣∣
γ=0

> cα (t)

gα (t) 1
P0(d;δ)

∂P (d;θ)
∂γ

∣∣∣
γ=0

= cα (t)

0 1
P0(d;δ)

∂P (d;θ)
∂γ

∣∣∣
γ=0

< cα (t)

where the values of cα(t) and gα (t) ∈ [0,1] are chosen to satisfy
(4), will be locally best.
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Locally Best Test (continued)

Several (serious) implementation challenges:

1. Form of the likelihood gradient ∂P (d;θ)
∂γ

∣∣∣
γ=0

(incompleteness

is an issue)?

2. Locally best test statistic may depend on nuisance parame-
ters δ (manageable) and N (problematic)?

3. To find cα(t) and gα (t) we need to be able to simulate the
(null) distribution of 1

P0(D;δ)
∂P (D;θ)

∂γ

∣∣∣
γ=0

conditional on T = t.
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Derivative Calculation: Buckets

Recall that S = {s, s1, . . . , sM , s} equals the set of possible values
for the network benefit part of marginal utility, sij (d), ordered
from smallest to largest.

S induces a partition of R. We call each element b ∈ B of this
partition a bucket, buckets are naturally ordered:

R =
(
−∞, µij + γs

]
∪
(
µij + γs, µij + γs1

]
∪ · · ·

∪
(
µij + γsM , µij + γs

]
∪
(
µij + γs,∞

)
.

All buckets, with the exception of the first and the last, we call
inner buckets.

For any draw of the utility shifter we have Uij ∈ b, b ∈ B.
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Derivative Calculation: Buckets (continued)

If a realization of Uij is in bucket b, we say Uij falls in (or is in)
b.

We suppress the dependence of the partition on ij in the nota-
tion.

Observe that for γ ≈ 0, the probability that Uij falls into an inner
bucket is close to zero.
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Derivative Calculation: Buckets (continued)

Let the boldface subscripts i = 1, 2, . . . index the n = N (N − 1)

directed dyads in arbitrary order (e.g., i maps to some ij and
vice-versa).

Let b ∈ Bn = B× · · · × B and U = (U1, . . . , Un)′.

We have that U ∈ b for b ∈ Bn so that each element of the
n-vector of utility shifters U falls into a bucket.
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Derivative Calculation: Likelihood (continued)

Using our bucket notation we can re-write the likelihood as:

P (d; θ,N ) =
∑

b∈Bn

∫
u∈b

N (d,u; θ) fU (u) du (6)

For a given bucket combination b ∈ Bn,
∫
u∈bN (d,u; θ) fu (u) du

gives the associated contribution to the likelihood of observing
D = d.

Summation over all possible bucket combinations gives the over-
all likelihood of observing D = d.
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Derivative Calculation: Likelihood (continued)

Let B̃n be the set of bucket configurations with two or more
inner buckets. Define

P̃ (d; θ,N ) =
∑

b∈Bn\B̃n

∫
u∈b

N (d,u; θ) fU (u) du

Q (d; θ,N ) =
∑

b∈B̃n

∫
u∈b

N (d,u; θ) fU (u) du.

Trivially we have the decomposition

P (d; θ,N ) = P̃ (d; θ,N ) +Q (d; θ,N ) .
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Derivative Calculation

To calculate ∂P (d; θ,N ) /∂γ we show that for γ → 0

P (d; θ,N ) = P̃ (d; θ,N ) +O
(
γ2
)
.

Furthermore we show that

∂P (d; θ,N )

∂γ

∣∣∣∣∣
γ=0

=
∂P̃ (d; θ,N )

∂γ

∣∣∣∣∣
γ=0

. (7)

Hence to derive the form of ∂P (d;θ,N )
∂γ

∣∣∣
γ=0

we need only calculate

∂P̃ (d;θ,N )
∂γ

∣∣∣∣
γ=0

.

This calculation is non-trivial, but doable (i.e., it is tedious).
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Derivative Calculation

Only need to worry about cases where (i) no draws of Uij are in
inner buckets or (ii) just one draw (out of n) is.

In the first case every player has a strictly dominating strategy
profile.

Strong preferences: regardless of other players’ action it is either
optimal, or not, to form specific links.

Network is uniquely defined: N (d,u; θ) is either zero or one.
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Derivative Calculation

Second case: if all but one component of U falls into the first or
last bucket, then the resulting network is uniquely defined except
for the presence or absence of one edge, say, ij.

For any such draw of U, since all other links are formed according
to a strictly dominating strategy, player i will either benefit from
forming the link ij or not.

Hence N (d,u; θ) is also either zero or one in this case as well.
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Derivative Calculation

For small values of γ the derivative is driven by summands where
the precise details of the (unspecified) equilibrium selection mech-
anism are not relevant.

Those summands where the form of N (d,u; θ) is germane con-
tribute very little to the derivative when γ is small.

We are able to differentiate the likelihood with respect to the
strategic interaction parameter and evaluate that derivative for
small γ (specifically for γ = 0).
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Derivative Calculation: Likelihood (continued)

Lemma: P (d; θ) is twice differentiable with respect to γ at
γ = 0. Its first derivative at γ = 0 is

∂P (d; θ)

∂γ

∣∣∣∣∣
γ=0

=P0 (d; δ)

×

∑
i ̸=j

sij (d)

dij fU
(
µij
)

∫ µij
−∞ fU (u) du

−
(
1− dij

) fU
(
µij
)

∫∞
µij

fU (u) du


 .

With a little manipulation we can simplify:

1

P0 (d; δ)

∂P (d; θ)

∂γ

∣∣∣∣∣
γ=0

=
∑
i ̸=j

[
dij − FU

(
µij
)]

sij (d)

where FU (u) = eu/ [1 + eu] is the logistic CDF.
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Operational Details

Locally best test statistic is large when links which have low
probability under the null, tend to form precisely where their
“strategic utility” is high.

Controlling for heterogeneity appears to be important for power.

Lots of triangles vs. “surprising” triangles.
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Operational Details

Although the form of the locally optimal statistic does not de-
pend on N (equilibrium selection; phew!) it does depend on δ

(heterogeneity).

Plugging in any δ ∈ ∆ results in an admissible test.

We take a “best guess” approach, replacing µij = Ai+Bj +W ′
ijλ

with its JMLE µ̂ij (cf., Graham, 2017; Dzemski, 2018; Yan et
al., 2018).

This is ad hoc, but appears to work well in practice.
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Operational Details (continued)

For s = 1, . . . , S we draw (uniformly at random) Vs ∈ Ds,m and

calculate 1
P0(Vs;δ̂)

∂P(Vs;(γ,δ̂′))
∂γ

∣∣∣∣
γ=0

.

If 1
P0(D;δ̂)

∂P
(
D;(γ,δ̂′)′

)
∂γ

∣∣∣∣∣∣
γ=0

, observed in the network in hand, is

greater than 95 percent of our simulated statistics we reject the
null (and, possibly, “accept” the alternative).

50



Simulation Algorithm

We begin with D and randomly rewire it, preserving the cross
link structure and degree sequence at each step.

Our MCMC converges to the null distribution, generating a uni-
form random draw from DS,M.

Key references: Rao et al. (1996) and Tao (2015).

Our contribution is to also account for the cross-link group struc-
ture.

Importance sampling approach not possible (cf., Blitzstein and
Diaconis, 2010).
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Alternating Walks

52



Alternating Cycles
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Schlaufen Sequences
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Testing for strategic interaction in diplomatic relations
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Wrapping-Up

We provide a method for assessing whether a specific form of
strategic interaction characterizes the network in hand (under
assumptions).

More generally we provide an exact test of model adequacy for
the null model.

Our simulation algorithm also facilitates CMLE, exploratory data
analysis etc.

Many open questions.
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