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Introduction

Epidemiological models have revealed their usefulness to the
general public during the COVID-19 epidemic.

I precious tools to predict the number of cases, to assess the
risk of hospital saturation, to declare a lockdown...

I Difficulties:
”These scenarios are made on the basis of incomplete data
and uncertain assumptions.[...] changes in behavior are
difficult to predict”. (october 2021, Pasteur Institute)
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Farboodi & al (2021) show that people responded to the WHO
announcement in March 2020:
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Infection risk −→ social distancing choice
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What we do in this paper

We amend the classical epidemiological model (SIR) :

1. individuals choose a level of social distancing.

I Toxvoerd (2021), Phelan and Todda (2021), Dasaratha (2022),
Farboodi (2021), ..., Baril-Tremblay, Marlats, Ménager (2021).

2. individuals are uncertain about the prevalence rate.
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The model : Epidemiological part.
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The level of social interaction chosen by individuals who have
never developed symptoms :

ki (t) ∈ [0, 1]

The average social interaction level of those who are Susceptible is

k̄S(t) =
1

s(t)

∫
i∈S(t)

kidi

.
The average social interaction level of those who are Infected
Asymptomatic is

k̄A(t) =
1

a(t)

∫
i∈A(t)

kidi
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Given a strategy profile {ki (t)}i ,t ,

initial conditions
C (0) = {s(0), a(0), i(0), r(0), d(0)}, the compartiments evolve
deterministically:

ṡ(t) = −βs(t)a(t)k̄S(t)k̄A(t) (1)

ȧ(t) = αβs(t)a(t)k̄S(t)k̄A(t)− γaa(t) (2)

i̇(t) = (1− α)βs(t)a(t)k̄S(t)k̄A(t)− (γs + ν)i(t) (3)

ṙ(t) = γaa(t) + γs i(t) (4)

ḋ(t) = νi(t) (5)

A state is a vector ω of initial conditions C (0).
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The model : Economic part.
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What is unknown?

Individuals do not know:

1. Own type (Asymptomatic or Symptomatic type), absent
developing symptoms

→ pi (t|ω) is the belief at t of being of the symptomatic type
conditional on ω.

2. The epidemiological state ω :

→ µi (t;ω) is the belief at t that the true state is ω
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What is observed?

Individuals only observe whether they have symptoms or not.

Bayesian updating gives:

I ṗi (t|ω) = −(1− pi (t|ω))pi (t|ω) ki (t)βk̄A(t)a(t|ω)︸ ︷︷ ︸
Probability of being in-
fected at t.

I µi (t;ω) =
µ0(ω)/(1− pi (t|ω))∑
ω′ µ

0(ω′)/(1− pi (t|ω′))
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Discounted payoffs

If an agent is infected at t and develops symptoms, then the game
stops.

→ the continuation payoff is vI .
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Discounted payoffs

Given a discount factor r > 0 and a state ω, player i discounted
payoff, conditional on ω is:

vi (ki , (kj)j 6=i , ω) =

∫ T

0
e−rte−

∫ t
0 pi (s,ω)ki (s)βk̄A(s)a(s,ω)ds×

− (1− ki (t))cSD︸ ︷︷ ︸
cost of social dis-
tancing

+ pi (t, ω)ki (t)βk̄A(t)a(t)︸ ︷︷ ︸
proba of developing
symptoms

vI︸︷︷︸
continuation
if symptoms

dt
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The expected discounted payoff is :∑
ω∈Ω

µ0(ω)vi (ki , (kj)j 6=i ;ω) ≡ Eµ0 [vi (ki , (kj)j 6=i , .)]

s.t.

ṗi (t|ω) = −(1− pi (t|ω))pi (t|ω)ki (t)βk̄A(t)a(t|ω), ∀ω
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Equilibrium
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Bellman equation

Let p = {p(.|ω)}ω.

rV (t, p) = Vt(t, p)− cSD + max
k∈[0,1]

k×

(
cSD−β

∑
ω

µ(t, ω)p(t | ω)k̄A(t)a(t | ω)(V (t, p)− vI +
1− p(t | ω)

µ(t, ω)
Vp(t|ω)(t, p)︸ ︷︷ ︸

expected net cost of social activity

)
.
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Proposition (Best response)

k∗i is a best response ⇐⇒ k∗i (t)


= 1 if cSD > expected cost of social interaction

∈ [0, 1] if cSD = expected cost of social interaction,

= 0 if cSD < expected cost of social interaction,

(6)



20

Proposition (Best response)

k∗i is a best response ⇐⇒ k∗i (t)


= 1 if cSD > expected cost of social interaction

∈ [0, 1] if cSD = expected cost of social interaction,

= 0 if cSD < expected cost of social interaction,

(6)



21

Proposition (The symmetric equilibrium)

Let
k̂(t) =

cSD∑
ω βa(t|ω)µ(t|ω)p(t|ω)(ψ(t|ω)− vI )

where:

ṗ(t|ω) = −p(t|ω)(1− p(t|ω))βk̂2(t)a(t|ω),

ṡ(t|ω) = −βk̂2(t)s(t|ω)a(t|ω),

ȧ(t|ω) = −αṡ(t|ω)− γa(ω)a(t|ω),

ψ̇(t|ω)− rψ(t|ω) = k̂2(t)βa(t|ω)(ψ(t|ω)− vI ) + (1− k̂(t))cSD ,

ψ(T |ω) = 0

(7)
If k̂(t) ∈ (0, 1), ∀t then the strategy profile ki (t) = k̂(t), ∀i , t is
an equilibrium.
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Simulations
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Simulations

We assume that at date 20, individuals are informed that a
pandemics has started.

I State ωL : a(0) = 0.1/100

I State ωH : a(0) = 0.5/100
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Simulations

Without uncertainty:



25

Simulations

Under uncertainty: µ0(ωL) ∈ {0, 0.25, 1}.

Result 1: a second wave may arise under uncertainty.
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Simulations
Average social activity level: (1/T )

∫ T
0 k̂tdt.

Result 2: average social activity may be lower under uncertainty.
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Simulations
Information value in terms of deaths.

IVDµ̄ = − µ̄TD1(ωL) + (1− µ̄)TD0(ωH )︸ ︷︷ ︸
Ex-ante fraction of deaths without uncertainty

+ µ̄TDµ̄(ωL) + (1− µ̄)TDµ̄(ωH )︸ ︷︷ ︸
Expected fraction of deaths with uncertainty

Result 3: Uncertainty can reduce the ex-ante number of deaths.
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Simulations
Information value in terms of payoffs.

IVPµ̄ = µ̄v(k̂1 | ωL) + (1− µ̄)v(k̂0 | ωH )︸ ︷︷ ︸
Ex-ante payoff without uncertainty

− µ̄v(k̂µ̄ | ωL)− (1− µ̄)v(k̂µ̄ | ωH )︸ ︷︷ ︸
Expected payoff with uncertainty

Result 4: Uncertainty can be welfare improving.
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Conclusion

We introduce uncertainty in a SIR model in which individuals
choose their social interaction level.

I We give conditions for a symmetric equilibrium to exist.

I On simulations, we show that:

I Uncertainty may create a second wave of infections.

I Average social activity is lower under uncertainty.

I Uncertainty may reduce the “ex-ante” expected number of
deaths

I Information value is negative for some priors.
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Many thanks for your attention!


