### A Behavioral Heterogeneous Agent New Keynesian Model

Oliver Pfäuti University of Mannheim Fabian Seyrich FU Berlin, DIW Berlin

EEA-ESEM 2023 August 30, 2023

Recent empirical evidence on monetary policy transmission:

### Recent empirical evidence on monetary policy transmission:

### 1. MP affects consumption largely through households' incomes (indirect effects).

[Ampudia et al. (2018), Holm et al. (2021), Slacalek et al. (2020)]

### Recent empirical evidence on monetary policy transmission:

1. MP affects consumption largely through households' incomes (indirect effects). [Ampudia et al. (2018), Holm et al. (2021), Slacalek et al. (2020)]

#### 2. High-MPC households tend to be more exposed to MP.

[Patterson (2023), Coibion et al. (2017), Auclert (2019), Slacalek et al. (2020)]

### Recent empirical evidence on monetary policy transmission:

- 1. MP affects consumption largely through households' incomes (indirect effects). [Ampudia et al. (2018), Holm et al. (2021), Slacalek et al. (2020)]
- 2. High-MPC households tend to be more exposed to MP. [Patterson (2023), Coibion et al. (2017), Auclert (2019), Slacalek et al. (2020)]

#### 3. Forward Guidance has weak effects on economic activity.

[Del Negro et al. (2015), D'Acunto et al. (2020), Coibion et al. (2020), Roth et al. (2021)]

### Recent empirical evidence on monetary policy transmission:

- 1. MP affects consumption largely through households' incomes (indirect effects). [Ampudia et al. (2018), Holm et al. (2021), Slacalek et al. (2020)]
- 2. High-MPC households tend to be more exposed to MP. [Patterson (2023), Coibion et al. (2017), Auclert (2019), Slacalek et al. (2020)]
- 3. Forward Guidance has weak effects on economic activity. [Del Negro et al. (2015), D'Acunto et al. (2020), Coibion et al. (2020), Roth et al. (2021)]

#### 4. Advanced economies remained stable at the lower bound.

[Debortoli et al. (2020), Cochrane (2018)]

Heterogeneous household model with cognitive discounting

accounts for facts 1-4 simultaneously

- accounts for facts 1-4 simultaneously
  - resolves tension in existing literature

- accounts for facts 1-4 simultaneously
  - resolves tension in existing literature
- novel amplification channel of supply shocks

- accounts for facts 1-4 simultaneously
  - resolves tension in existing literature
- novel amplification channel of supply shocks
  - inflation increase  $\approx$  2.5 times as strong

- accounts for facts 1-4 simultaneously
  - resolves tension in existing literature
- novel amplification channel of supply shocks
  - inflation increase  $\approx$  2.5 times as strong
- pronounced trade-off for monetary policy: (not today)
  - traditional targets: price stability, aggregate efficiency
  - side effects: fiscal and distributional consequences of MP

### Outline

### 1. Model

- 2. Monetary Policy
- 3. Amplification of Inflationary Supply Shocks

### **Model Overview**

### **Households:**

incomplete markets and cognitive discounting

### Firms:

- standard NK setup, monopolistic competition and nominal rigidities
  - → standard NK Philips Curve → Details

#### **Government:**

- ► fiscal policy: issues bonds, raises taxes → Details
- monetary policy rule + monetary policy shocks

### **Model Overview**

### Households:

incomplete markets and cognitive discounting

### Firms:

- standard NK setup, monopolistic competition and nominal rigidities
  - → standard NK Philips Curve → Details

#### **Government:**

- ► fiscal policy: issues bonds, raises taxes → Details
- monetary policy rule + monetary policy shocks

- continuum of ex-ante identical, infinitely lived households
- optimization problem:

$$\mathsf{V}_{t}\left(\mathsf{B}_{i,t}, \mathbf{e}_{i,t}\right) = \max_{\mathsf{C}_{i,t}, \mathsf{N}_{i,t}, \mathsf{B}_{i,t+1}} \left\{ \frac{(\mathsf{C}_{i,t})^{1-\gamma}}{1-\gamma} - \frac{(\mathsf{N}_{i,t})^{1+\varphi}}{1+\varphi} + \beta \mathbb{E}_{t}^{\mathsf{BR}} \mathsf{V}_{t+1}\left(\mathsf{B}_{i,t+1}, \mathbf{e}_{i,t+1}\right) \right\}$$

subject to

$$C_{i,t} + \frac{B_{i,t+1}}{R_t} = B_{i,t} + W_t z(e_{i,t}) N_{i,t} + d_t(e_{i,t}) - \tau_t(e_{i,t}), \quad B_{i,t+1} \ge 0.$$

- continuum of ex-ante identical, infinitely lived households
- optimization problem:

$$V_t\left(B_{i,t}, \boldsymbol{e}_{i,t}\right) = \max_{C_{i,t}, N_{i,t}, B_{i,t+1}} \left\{ \frac{(C_{i,t})^{1-\gamma}}{1-\gamma} - \frac{(N_{i,t})^{1+\varphi}}{1+\varphi} + \beta \mathbb{E}_t^{BR} V_{t+1}\left(B_{i,t+1}, \boldsymbol{e}_{i,t+1}\right) \right\}$$

subject to

$$C_{i,t} + \frac{B_{i,t+1}}{R_t} = B_{i,t} + W_t Z(e_{i,t}) N_{i,t} + d_t(e_{i,t}) - \tau_t(e_{i,t}), \quad B_{i,t+1} \ge 0.$$

• idiosync. risk  $e_{i,t}$  pins down productivity  $z(e_{i,t})$ , dividends  $d_t(e_{i,t})$ , taxes  $\tau_t(e_{i,t})$ 

- continuum of ex-ante identical, infinitely lived households
- optimization problem:

$$V_{t}\left(B_{i,t}, \boldsymbol{e}_{i,t}\right) = \max_{C_{i,t}, N_{i,t}, B_{i,t+1}} \left\{ \frac{(C_{i,t})^{1-\gamma}}{1-\gamma} - \frac{(N_{i,t})^{1+\varphi}}{1+\varphi} + \beta \mathbb{E}_{t}^{BR} V_{t+1}\left(B_{i,t+1}, \boldsymbol{e}_{i,t+1}\right) \right\}$$

subject to

$$C_{i,t} + \frac{B_{i,t+1}}{R_t} = B_{i,t} + W_t z(e_{i,t}) N_{i,t} + d_t(e_{i,t}) - \tau_t(e_{i,t}), \quad B_{i,t+1} \ge 0.$$

• idiosync. risk  $e_{i,t}$  pins down productivity  $z(e_{i,t})$ , dividends  $d_t(e_{i,t})$ , taxes  $\tau_t(e_{i,t})$ 

►  $d_t(e_{i,t})$  calibrated s.t.  $corr(MPC_i, \Delta Y_i) > 0$  after MP shock as in Patterson (2023)  $\rightarrow$  Fact 2  $\checkmark$ 

- continuum of ex-ante identical, infinitely lived households
- optimization problem:

$$V_t\left(B_{i,t}, e_{i,t}\right) = \max_{C_{i,t}, N_{i,t}, B_{i,t+1}} \left\{ \frac{(C_{i,t})^{1-\gamma}}{1-\gamma} - \frac{(N_{i,t})^{1+\varphi}}{1+\varphi} + \beta \mathbb{E}_t^{BR} V_{t+1}\left(B_{i,t+1}, e_{i,t+1}\right) \right\}$$

subject to

$$C_{i,t} + \frac{B_{i,t+1}}{R_t} = B_{i,t} + W_t z(e_{i,t}) N_{i,t} + d_t(e_{i,t}) - \tau_t(e_{i,t}), \quad B_{i,t+1} \ge 0.$$

• idiosync. risk  $e_{i,t}$  pins down productivity  $z(e_{i,t})$ , dividends  $d_t(e_{i,t})$ , taxes  $\tau_t(e_{i,t})$ 

- ►  $d_t(e_{i,t})$  calibrated s.t.  $corr(MPC_i, \Delta Y_i) > 0$  after MP shock as in Patterson (2023) → Fact 2  $\checkmark$
- cognitive discounting of future responses to aggregate shocks

$$\mathbb{E}_{t}^{BR}\left[X_{t+1}\right] = \mathbb{E}_{t}^{BR}\left[\bar{X} + \tilde{X}_{t+1}\right]$$

Cognitive discounting (following Gabaix (2020)):

$$\mathbb{E}_{t}^{BR} \Big[ X_{t+1} \Big] = \mathbb{E}_{t}^{BR} \Big[ \bar{X} + \tilde{X}_{t+1} \Big] = \frac{\bar{X}}{\underset{\text{anchor}}{\overset{} \longrightarrow}} + \bar{m} \underbrace{\mathbb{E}_{t} \left[ \tilde{X}_{t+1} \right]}_{\underset{\text{anchor}}{\overset{} \longrightarrow}}$$

•  $\overline{m} \in [0, 1]$ : cognitively discount expected deviations (myopia, underreaction)

▶ Euler equation ▶ Microfoundation

$$\mathbb{E}_{t}^{BR} \Big[ X_{t+1} \Big] = \mathbb{E}_{t}^{BR} \Big[ \bar{X} + \tilde{X}_{t+1} \Big] = \frac{\bar{X}}{\underset{\text{anchor}}{\text{anchor}}} + \bar{m} \quad \mathbb{E}_{t} \Big[ \tilde{X}_{t+1} \Big]$$

- $\bar{m} \in [0, 1]$ : cognitively discount expected deviations (myopia, underreaction)
  - ▶ Euler equation ▶ Microfoundation
- anchor expectations to stationary equilibrium outcome  $\bar{X}$

$$\mathbb{E}_{t}^{BR}\left[X_{t+1}\right] = \mathbb{E}_{t}^{BR}\left[\bar{X} + \tilde{X}_{t+1}\right] = \frac{\bar{X}}{\operatorname{anchor}} + \bar{m} \underbrace{\mathbb{E}_{t}\left[\tilde{X}_{t+1}\right]}_{\operatorname{anchor}}$$

- $\bar{m} \in [0, 1]$ : cognitively discount expected deviations (myopia, underreaction)
- anchor expectations to stationary equilibrium outcome  $\bar{X}$ 
  - ⇒ absent aggregate shocks households are rational (Pfäuti, Seyrich, and Zinman (2023): behavioral bias w.r.t. idiosyncratic shocks)

$$\mathbb{E}_{t}^{BR} \Big[ X_{t+1} \Big] = \mathbb{E}_{t}^{BR} \Big[ \bar{X} + \tilde{X}_{t+1} \Big] = \underbrace{\bar{X}}_{anchor} + \underbrace{\bar{m}}_{expected deviation} \mathbb{E}_{t} \Big[ \tilde{X}_{t+1} \Big]$$

- *m* ∈ [0, 1]: cognitively discount expected deviations (myopia, underreaction)
  Euler equation → Microfoundation
- anchor expectations to stationary equilibrium outcome  $\bar{X}$ 
  - ⇒ absent aggregate shocks households are rational (Pfäuti, Seyrich, and Zinman (2023): behavioral bias w.r.t. idiosyncratic shocks)
- Underreaction of household expectations in data:  $\bar{m} \in [0.6, 0.85]$  Data

### Outline

- 1. Model
- 2. **Monetary Policy:** What are the implications for **conventional MP** and for **forward guidance** shocks?
- 3. Amplification of Inflationary Supply Shocks

### Monetary Policy in RANK



## Monetary Policy in RANK



RANK: FG puzzle

## Monetary Policy in RANK



► RANK: FG puzzle and indirect effects negligible → GE VS. PE

### **Monetary Policy in HANK**



# Monetary Policy in HANK



HANK: indirect effects important

# Monetary Policy in HANK



► HANK: indirect effects important but exacerbates FG puzzle → GE vs. PE → χ < 1</p>

### Monetary Policy in behavioral HANK



# Monetary Policy in behavioral HANK



Behavioral HANK: resolves FG puzzle

# Monetary Policy in behavioral HANK



Behavioral HANK: resolves FG puzzle and indirect effects important > GE VS. PE

<sup>▶</sup> full model → IS equation

### Extensions

#### Results hold with...

- ... heterogeneous  $\bar{m}$  > Details
- ... over- or underreaction with respect to idiosyncratic risk > Details
- ... sticky wages instead of sticky prices > Details
- ... more extreme calibration of unequal exposure > Details

### Outline

- 1. Model
- 2. Monetary Policy
- 3. Amplification of Inflationary Supply Shocks

### Adverse Productivity Shock

Scenario:

- *potential output* drops by 1% on impact, with  $\rho = 0.9$
- monetary policy follows Taylor rule with  $\phi_{\pi} = 1.5$
### Negative Productivity Shock



▶ Procyclical HANK ► Other Variables

Behavioral HANK

# Amplification through Unequal Exposure



▶ Procyclical HANK ► Other Variables

# Further Amplification through Cognitive Discounting



les 

 Divine Coincidence

Procyclical HANK > Other Variables

### **Decomposition of Inflation Response**



### Conclusion

Develop new framework: the behavioral HANK model:

- consistent with empirical facts about the transmission of monetary policy
- accounting for these facts matters: new amplification channel of inflationary supply shocks
- pronounced trade-off: price stability vs. fiscal and distributional consequences > Details

Thank you!

Appendix

# Euler Equation with Cognitive Discounting

Notation:

- $\bar{C}_{i,t} = C(e_{i,t}, B_{i,t}, \bar{Z})$ : consumption in stationary equilibrium
- ► aggregate shock  $Z_t \neq \overline{Z} \Rightarrow C_{i,t} = C(e_{i,t}, B_{i,t}, Z_t) \neq \overline{C}_{i,t}$

Euler:

$$C_{i,t}^{-\gamma} \ge \beta R_t \mathbb{E}_t^{BR} \left[ C_{i,t+1}^{-\gamma} \right]$$
  
=  $\beta R_t \mathbb{E}_t^{BR} \left[ \bar{C}_{i,t+1}^{-\gamma} + \left( C_{i,t+1}^{-\gamma} - \bar{C}_{i,t+1}^{-\gamma} \right) \right]$   
=  $\beta R_t \mathbb{E}_t \left[ \bar{C}_{i,t+1}^{-\gamma} + \bar{m} \left( C_{i,t+1}^{-\gamma} - \bar{C}_{i,t+1}^{-\gamma} \right) \right]$ 

# Euler Equation with Cognitive Discounting

Notation:

- $\bar{C}_{i,t} = C(e_{i,t}, B_{i,t}, \bar{Z})$ : consumption in stationary equilibrium
- ► aggregate shock  $Z_t \neq \overline{Z} \Rightarrow C_{i,t} = C(e_{i,t}, B_{i,t}, Z_t) \neq \overline{C}_{i,t}$

Euler:

$$\begin{split} \mathbf{C}_{i,t}^{-\gamma} &\geq \beta \mathbf{R}_{t} \mathbb{E}_{t}^{BR} \left[ \mathbf{C}_{i,t+1}^{-\gamma} \right] \\ &= \beta \mathbf{R}_{t} \mathbb{E}_{t}^{BR} \left[ \bar{\mathbf{C}}_{i,t+1}^{-\gamma} + \left( \mathbf{C}_{i,t+1}^{-\gamma} - \bar{\mathbf{C}}_{i,t+1}^{-\gamma} \right) \right] \\ &= \beta \mathbf{R}_{t} \mathbb{E}_{t} \left[ \bar{\mathbf{C}}_{i,t+1}^{-\gamma} + \bar{m} \left( \mathbf{C}_{i,t+1}^{-\gamma} - \bar{\mathbf{C}}_{i,t+1}^{-\gamma} \right) \right], \end{split}$$

 $\Rightarrow$  with limited heterogeneity and in linearized terms:

$$\widehat{c}_{t}^{U} = s\overline{m}\mathbb{E}_{t}\left[\widehat{c}_{t+1}^{U}\right] + (1-s)\overline{m}\mathbb{E}_{t}\left[\widehat{c}_{t+1}^{H}\right] - \frac{1}{\gamma}\widehat{r}_{t}.$$

back

Pfäuti & Seyrich

### Monetary Policy in quantitative behavioral HANK



### Special calibration allows closed-form IS equation

#### Proposition 1

The aggregate IS equation is given by

$$\widehat{\mathbf{y}}_t = \psi_{\mathbf{f}} \mathbb{E}_t \widehat{\mathbf{y}}_{t+1} - \psi_{\mathbf{c}} \frac{1}{\gamma} \widehat{\mathbf{r}}_t,$$

#### where

$$\psi_f \equiv \bar{m} \left[ 1 + (\chi - 1) \frac{1 - s}{1 - \chi \lambda} \right]$$
 and  $\psi_c \equiv \frac{1 - \lambda}{1 - \chi \lambda}$ .

### Microfounding m

Law of motion of (de-meaned)  $X_t$ :  $X_{t+1} = \Gamma X_t + \varepsilon_{t+1}$ Household *j* receives a noisy signal of  $X_{t+1}$ ,  $S_{t+1}^j$ , given by

$$S_{t+1}^{j} = egin{cases} X_{t+1} & ext{with probability } p \ X_{t+1}' & ext{with probability } 1-p \end{cases}$$

where  $X'_{t+1}$  is an i.i.d. draw from the unconditional distribution of  $X_{t+1}$ , which has an unconditional mean of zero.

### Microfounding m

Mental simulation of the future: the *average* expectation of  $X_{t+1}$  is:

$$\mathbb{E}\left[X_{t+1}^{e}(S_{t+1})|X_{t+1}\right] = \mathbb{E}\left[p \cdot S_{t+1}|X_{t+1}\right]$$
$$= p \cdot \mathbb{E}\left[S_{t+1}|X_{t+1}\right]$$
$$= p^{2}X_{t+1}.$$

Defining  $\overline{m} \equiv p^2$  and since  $X_{t+1} = \Gamma X_t + \varepsilon_{t+1}$ , we have that the perceived law of motion of X equals

$$X_{t+1} = \bar{m} \left( \Gamma X_t + \varepsilon_{t+1} \right). \tag{1}$$

The boundedly-rational expectation of  $X_{t+1}$  is then given by

$$\mathbb{E}_{t}^{BR}\left[X_{t+1}\right] = \bar{m}\mathbb{E}_{t}\left[X_{t+1}\right].$$

▶ back

Pfäuti & Seyrich

### Limited-Heterogeneity Setup: Optimality Conditions

Euler:

$$\left(C_{t}^{U}\right)^{-\gamma} \geq \beta \mathbb{E}_{t}^{BR}\left[R_{t}\left(s\left(C_{t+1}^{U}\right)^{-\gamma}+(1-s)\left(C_{t+1}^{H}\right)^{-\gamma}\right)\right],$$

where  $R_t \equiv \frac{1+i_t}{1+\pi_{t+1}}$ .

Labor-leisure:

$$\left(\mathsf{N}_{t}^{i}
ight)^{arphi}=\mathsf{W}_{t}\left(\mathsf{C}_{t}^{i}
ight)^{-\gamma}$$

### **Decomposition: Direct vs. Indirect Effects**

### Consumption function:

$$\widehat{\mathbf{c}}_{t} = \left[\mathbf{1} - \beta(\mathbf{1} - \lambda\chi)\right]\widehat{\mathbf{y}}_{t} - \frac{(\mathbf{1} - \lambda)\beta}{\gamma}\widehat{\mathbf{r}}_{t} + \beta\overline{\mathbf{m}}\delta(\mathbf{1} - \lambda\chi)\mathbb{E}_{t}\widehat{\mathbf{c}}_{t+1}.$$

Indirect effects  $\Xi^{GE}$ : change in total consumption due to changes in total income for fixed real rates:

$$\Xi^{GE} = \frac{1 - \beta(1 - \lambda\chi)}{1 - \beta \bar{m} \delta \rho(1 - \lambda\chi)}.$$

 $\Rightarrow$  about 63%, consistent with larger quantitative models (Kaplan et al. (2018)))  $\cdot$  back

### **Procyclical Inequality**



### **Procyclical Inequality**



• HANK ( $\chi$  < 1):  $\psi_f$  < 1: no FG puzzle

### **Procyclical Inequality**



HANK (χ < 1): ψ<sub>f</sub> < 1: no FG puzzle but ψ<sub>c</sub> < 1 : GE effects dampen response → GE vs. PE</li>
 back

Pfäuti & Seyrich

#### Behavioral HANK

### **Calibration Full Model**

| Parameter                    | Description                           | Value                                    |
|------------------------------|---------------------------------------|------------------------------------------|
| R                            | Steady State Real Rate (annualized)   | 2%                                       |
| $\gamma$                     | Risk aversion                         | 2                                        |
| arphi                        | Inverse of Frisch elasticity          | 2                                        |
| $\mu$                        | Markup                                | 1.2                                      |
| $\theta$                     | Calvo Price Stickiness                | 0.15                                     |
| $ ho_{e}$                    | Autocorrelation of idiosyncratic risk | 0.966                                    |
| $\sigma_e^2$                 | Variance of idiosyncratic risk        | 0.033                                    |
| $\tau(\boldsymbol{e}_{i,t})$ | Tax shares                            | [0, 0, 1]                                |
| $d(e_{i,t})$                 | Dividend shares                       | $[0, \frac{0.4}{0.5}, \frac{0.6}{0.25}]$ |
| $\frac{B^{G}}{4Y}$           | Government Debt                       | 0.5                                      |

▶ back ▶ Fiscal Policy

### Robustness



▶ back

### Robustness



▶ back

### ELB in Full Model



Economy more stable at ELB in Behavioral HANK Differences across models increase with ELB length > back

### **Fiscal Policy: Details**

Debt rule:

$$T_t - \overline{T} = \vartheta \frac{B_{t+1} - \overline{B}}{\overline{B}}$$
, with  $\vartheta = 0.05$ 

Household budget constraint:

$$C_{i,t} + \frac{B_{i,t+1}}{R_t} = B_{i,t} + W_t e_{i,t} N_{i,t} + d_t(e_{i,t}) - \tau_t(e_{i,t}),$$

with

- progressive tax system:  $\tau_t(e_{i,t}) = \frac{T_t}{0.25}$  if  $e_{i,t} = e_{high}$  and 0 otherwise
- less-progressive taxes:  $\tau_t(e_{i,t}) = e_{i,t}T_t$

▶ Model Overview ▶ back

Pfäuti & Seyrich

# Supply Shock: Procyclical Inequality



▶ back

### **Sticky Wages**



### More Unequal Exposure



### Over- or underreaction w.r.t. idiosyncratic risk



### **Robustness: Heterogeneous Cognitive Discounting**

We show that in the data:

- households of all income groups underreact
- ▶ but households with higher income slightly less → Heterogeneous m in the data
- $\Rightarrow$  model:  $\overline{m} \in [0.8, 0.9]$  increasing function of individual productivity

### Heterogeneous *m*: Monetary Policy



Forward guidance is slightly more effective, but FG puzzle still resolved

### Heterogeneous *m*: Monetary Policy



Forward guidance is slightly more effective, but FG puzzle still resolved Also true if subset fully rational! > subset fully rational > back

### Heterogeneous *m*: Extreme Calibration



# Policy Implications with Heterogeneous $ar{m}$

#### Heterogeneity in $\bar{m}$ : Heterogeneous $\bar{m}$

- expectation channels are more powerful than with homogeneous  $ar{m}$ 
  - $\Rightarrow$  trade-off is slightly smaller
- $\blacktriangleright$  more productive households are less behavioral  $\Rightarrow$  decrease consumption more in expectation of future tax increases
  - $\Rightarrow$  more relevant with progressive taxes
- overall results are robust

Estimate  $b^{e,CG}$  for different income groups  $e \in \{L, M, H\}$  using Coibion and Gorodnichenko (2015)-regressions:

$$\underbrace{X_{t+4} - \mathbb{E}_{t}^{e,BR} X_{t+4}}_{\text{Forecast error}} = c^{e} + b^{e,CG} \underbrace{\left(\mathbb{E}_{t}^{e,BR} X_{t+4} - \mathbb{E}_{t-1}^{e,BR} X_{t+3}\right)}_{\text{Forecast revision}} + \epsilon_{t}^{e}, \tag{2}$$

Estimate  $b^{e,CG}$  for different income groups  $e \in \{L, M, H\}$  using Coibion and Gorodnichenko (2015)-regressions:

$$\underbrace{\mathbf{X}_{t+4} - \mathbb{E}_{t}^{e,BR} \mathbf{X}_{t+4}}_{\text{Forecast error}} = \mathbf{c}^{e} + \underbrace{\mathbf{b}^{e,CG}}_{\text{Forecast revision}} \left( \underbrace{\left( \mathbb{E}_{t}^{e,BR} \mathbf{X}_{t+4} - \mathbb{E}_{t-1}^{e,BR} \mathbf{X}_{t+3} \right)}_{\text{Forecast revision}} + \epsilon_{t}^{e}, \tag{2}$$

 $b^{e,CG} >$ o: underreaction

Estimate  $b^{e,CG}$  for different income groups  $e \in \{L, M, H\}$  using Coibion and Gorodnichenko (2015)-regressions:

$$\underbrace{X_{t+4} - \mathbb{E}_{t}^{e,BR} X_{t+4}}_{\text{Forecast error}} = c^{e} + b^{e,CG} \underbrace{\left(\mathbb{E}_{t}^{e,BR} X_{t+4} - \mathbb{E}_{t-1}^{e,BR} X_{t+3}\right)}_{\text{Forecast revision}} + \epsilon_{t}^{e}, \tag{2}$$

 $b^{e,CG} >$ o: underreaction

$$\bar{m}^e = \left(\frac{1}{1+b^{e,CG}}\right)^{1/4}$$

Estimate  $b^{e,CG}$  for different income groups  $e \in \{L, M, H\}$  using Coibion and Gorodnichenko (2015)-regressions:

$$\underbrace{\mathbf{X}_{t+4} - \mathbb{E}_{t}^{e,BR} \mathbf{X}_{t+4}}_{\text{Forecast error}} = \mathbf{c}^{e} + \underbrace{\mathbf{b}^{e,CG}}_{\text{Forecast revision}} \left( \underbrace{\left( \mathbb{E}_{t}^{e,BR} \mathbf{X}_{t+4} - \mathbb{E}_{t-1}^{e,BR} \mathbf{X}_{t+3} \right)}_{\text{Forecast revision}} + \epsilon_{t}^{e}, \tag{2}$$

 $b^{e,CG} >$ o: underreaction

$$\bar{m}^e = \left(\frac{1}{1+b^{e,CG}}\right)^{1/4} \Rightarrow \bar{m}^e < 1 \text{ if } b^{e,CG} > 0 \tag{3}$$
# Estimating $\bar{m}$

Estimate  $b^{e,CG}$  for different income groups  $e \in \{L, M, H\}$  using Coibion and Gorodnichenko (2015)-regressions:

$$\underbrace{\mathbf{X}_{t+4} - \mathbb{E}_{t}^{e,BR} \mathbf{X}_{t+4}}_{\text{Forecast error}} = \mathbf{c}^{e} + \underbrace{\mathbf{b}^{e,CG}}_{\text{Forecast revision}} \left( \underbrace{\left( \mathbb{E}_{t}^{e,BR} \mathbf{X}_{t+4} - \mathbb{E}_{t-1}^{e,BR} \mathbf{X}_{t+3} \right)}_{\text{Forecast revision}} + \epsilon_{t}^{e}, \tag{2}$$

 $b^{e,CG} >$ o: underreaction

$$\bar{m}^e = \left(\frac{1}{1+b^{e,CG}}\right)^{1/4} \Rightarrow \bar{m}^e < 1 \text{ if } b^{e,CG} > 0 \tag{3}$$

Data: Survey of Consumers, University of Michigan, unemployment and inflation expectations, 1979Q4 - 2020Q1, FRED for actual unemployment and inflation

# Estimating *m*: Results

|                      | Unemployment |            |         | ΔUnemployment |            |         |
|----------------------|--------------|------------|---------|---------------|------------|---------|
|                      | Bottom 25%   | Middle 50% | Top 25% | Bottom 25%    | Middle 50% | Top 25% |
| $\widehat{b}^{e,CG}$ | 1.22         | 1.10       | 0.90    | 1.87          | 1.49       | 0.82    |
| s.e.                 | (0.264)      | (0.282)    | (0.247) | (0.721)       | (0.648)    | (0.430) |
| N                    | 157          | 157        | 157     | 157           | 157        | 157     |

 $\hat{b}^{e,CG} > 0$ : underreaction of all income groups (robust to IV, inflation exp., monthly data)

# Estimating *m*: Results

|                      | Unemployment |            |         | ∆Unemployment |            |         |
|----------------------|--------------|------------|---------|---------------|------------|---------|
|                      | Bottom 25%   | Middle 50% | Top 25% | Bottom 25%    | Middle 50% | Top 25% |
| $\widehat{b}^{e,CG}$ | 1.22         | 1.10       | 0.90    | 1.87          | 1.49       | 0.82    |
| s.e.                 | (0.264)      | (0.282)    | (0.247) | (0.721)       | (0.648)    | (0.430) |
| N                    | 157          | 157        | 157     | 157           | 157        | 157     |

 $\hat{b}^{e,CG} > 0$  : underreaction of all income groups (robust to IV, inflation exp., monthly data)

Implied  $\bar{m}$ : 0.82, 0.83 and 0.85 for unemployment, 0.77, 0.8, 0.86 for unemployment changes (lower with IV or for inflation, as low as 0.57)  $\rightarrow$  Overview  $\rightarrow$  Behavioral setup

# Amplification vs. Forward Guidance Puzzle

#### Proposition

*In the behavioral HANK model, there is amplification of contemporaneous monetary policy relative to RANK if and only if* 

$$\psi_{\mathsf{C}} > \mathsf{1} \Leftrightarrow \chi > \mathsf{1},$$
 (4)

and the forward guidance puzzle is ruled out if

$$\psi_f + \frac{\kappa}{\gamma}\psi_c < 1.$$
 (5)

Holds in behavioral HANK for  $\bar{m}$  < 0.95. Cannot hold simultaneously under rational expectations!  $\rightarrow$  back

### Stability at ELB

Consider natural rate shocks  $\hat{r}_t^n$ :

$$\widehat{\mathbf{y}}_t = \psi_f \mathbb{E}_t \widehat{\mathbf{y}}_{t+1} - \psi_c \left( \widehat{\mathbf{i}}_t - \mathbb{E}_t \pi_{t+1} - \widehat{\mathbf{r}}_t^n \right).$$

Negative natural rate shock brings economy to ELB for *k* periods. Output in at time 0 is then given by

$$\widehat{\mathbf{y}}_{\mathbf{o}} = -\frac{1}{\gamma} \psi_{\mathbf{c}} \underbrace{\left(\widehat{\mathbf{i}}_{ELB} - \widetilde{\mathbf{r}}^{\mathbf{n}}\right)}_{>\mathbf{o}} \sum_{j=\mathbf{o}}^{k} \left(\psi_{f} + \frac{\kappa}{\gamma} \psi_{\mathbf{c}}\right)^{j},$$

## Stability at ELB, Continued



▶ back

## **Taylor Principle Revisited**

Taylor rule:

$$i_t = \phi \pi_t + \varepsilon_t^{MP}$$

Condition for determinacy:

$$\phi > \mathbf{1} + \frac{\psi_{f} - \mathbf{1}}{\frac{\kappa}{\gamma}\psi_{c}}$$

- RANK/TANK:  $ar{m}=\psi_f=$  1:  $\phi>$  1
- ho
  ight. THANK  $ar{m}=$  1,  $\chi=$  1.35,  $\psi_{f}>$  1 :  $\phi>$  2.4
- Behavioral HANK:

▶ 
$$\chi =$$
 1.35,  $\bar{m} =$  0.85 :  $\phi >$  −4 (determinacy under a peg)

▶ back

# Negative Productivity Shock: Heterogeneous $\bar{m}$



Pfäuti & Seyrich

# Negative Productivity Shock - Taylor Rule: Heterogeneous $\bar{m}$



Pfäuti & Seyrich

# Negative Productivity Shock: Heterogeneous $\bar{m}$ , "Flat" Taxes



Pfäuti & Seyrich

## Negative Prod. Shock - Taylor: Heterogeneous $\bar{m}$ , "Flat" Taxes $\rightarrow$ back



back to conclusion

Pfäuti & Seyrich

# Introducing Sticky Wages

- Labor union allocates hours of households to firms and makes sure that U and H households work the same amount.
- Sticky wages: labor union faces Calvo friction  $\Rightarrow$  wage Phillips Curve:

$$\pi_t^{\mathsf{w}} = \beta \mathbb{E}_t \pi_{t+1}^{\mathsf{w}} + \kappa_{\mathsf{w}} \widehat{\mu}_t^{\mathsf{w}}$$

 $\pi_t^{\mathsf{w}}$ : wage inflation,  $\kappa_{\mathsf{w}}$ : slope,  $\widehat{\mu}_t^{\mathsf{w}}$ : wage markup, given by

$$\widehat{\mu}_t^{\mathsf{w}} = \gamma \widehat{\mathsf{c}}_t + \varphi \widehat{\mathsf{n}}_t - \widehat{\mathsf{w}}_t.$$

Interest-rate smoothing in Taylor rule (as in Auclert et al. (2020)):

$$\hat{\mathbf{i}}_{t} = \rho_{i}\hat{\mathbf{i}}_{t-1} + (\mathbf{1} - \rho_{i})\phi\pi_{t} + \varepsilon_{t}^{MP}$$

 $\Rightarrow$  How does the economy respond to an expansionary monetary policy shock?

## Monetary Policy Shock



## Why hump shapes?

Hump-shaped responses due to interaction of household heterogeneity, bounded rationality and sticky wages!

- 1. Calvo wage setting leads to hump-shape responses of real wage (in all models)
- 2. In HANK models, this causes hump-shape consumption of a subgroup of households
- 3. Cognitive discounting flattens consumption profile of unconstrained households:
  - impact response less strong because it dampens the FG component of persistent decline in interest rates
  - going forward, they learn that their idiosyncratic risk is still (or even more) relaxed

### **Forecast Error Dynamics**

• 1-period ahead forecast error in period t + h is defined as:

$$FE_{t+h+1|t+h}^{\hat{x}} \equiv \hat{x}_{t+h+1} - \bar{m}\mathbb{E}_{t+h}\left[\hat{x}_{t+h+1}\right].$$

- ⇒ How do forecast errors evolve after shock?
  - Full-info rational expectations: equal to zero in all periods after shock occurs
  - Empirical evidence: persistent deviations from zero with initial underreaction, followed by delayed overshooting (Angeletos et al. (2021))

### Forecast Error Dynamics - back



## **i**MPCs

#### Proposition

The intertemporal MPCs in the behavioral HANK model, i.e., the aggregate consumption response in period k to a one-time change in aggregate disposable income in period 0, are given by

$$\begin{split} MPC_{o} &\equiv \frac{d\widehat{c}_{o}}{d\widetilde{y}_{o}} = 1 - \frac{1 - \lambda\chi}{s\overline{m}}\mu_{2}^{-1} \\ MPC_{k} &\equiv \frac{d\widehat{c}_{k}}{d\widetilde{y}_{o}} = \frac{1 - \lambda\chi}{s\overline{m}}\mu_{2}^{-1}\left(\beta^{-1} - \mu_{1}\right)\mu_{1}^{k-1}, \quad \text{for } k > 0, \end{split}$$

where the parameters  $\mu_{\rm 1}$  and  $\mu_{\rm 2}$  depend on the underlying parameters, including  $\bar{m}$  and  $\chi.$ 

## **iMPCs** Results



## iMPCs for Longer Horizons



# iMPCs for higher idiosyncratic risk 1 - s



## **Firms**

- aggregate basket of individual goods,  $j \in [0, 1]$ ,  $C_t = (\int_0^1 C_t(j)^{(\epsilon-1)/\epsilon} dj)^{\epsilon/(\epsilon-1)}$ ;  $\epsilon > 1$ : elasticity of substition
- demand of each firm:  $C_t(j) = (P_t(j)/P_t)^{-\epsilon}$  with  $P_t(j)/P_t$  being the individual price relative to the aggregate price index  $P_t^{1-\epsilon} = \int_0^1 P_t(j)^{1-\epsilon} dj$
- ▶ production technology:  $Y_t(j) = N_t(j)$ ; real marginal cost:  $W_t$ .
- assuming standard NK optimal subsidy financed by a lump-sum tax on firms yields total profits  $D_t = Y_t W_t N_t$  which are zero in steady state  $\Rightarrow$  full-insurance steady state
- Linearized Phillips Curve:

$$\pi_t = \kappa \widehat{\mathbf{y}}_t + \beta \mathbb{E}_t \pi_{t+1}$$

▶ back

# **Calibration Tractable Model**

| Parameter | Description                     | Value              |
|-----------|---------------------------------|--------------------|
| $\gamma$  | Risk Aversion                   | 1                  |
| $\kappa$  | Slope of NKPC                   | 0.02               |
| $\chi$    | Business-Cycle Exposure of H    | 1.35               |
| $\lambda$ | Share of H                      | 0.33               |
| S         | Type-Switching Probability      | 0.8 <sup>1/4</sup> |
| eta       | Time Discount Factor            | 0.99               |
| m         | Cognitive Discounting Parameter | 0.85               |

▶ back

## **Fiscal Multipliers**

The fiscal multiplier in the behavioral HANK model is given by

$$\frac{\partial \hat{\mathbf{y}}_{t}}{\partial g_{t}} = \mathbf{1} + \frac{1}{1 - \nu \mu} \frac{\zeta}{\mathbf{1} + \frac{1}{\gamma} \frac{1 - \lambda}{1 - \lambda \chi} \phi \kappa} \left[ \frac{\chi - \mathbf{1}}{1 - \lambda \chi} \left[ \lambda + \bar{m} \mu (\mathbf{1} - \mathbf{s} - \lambda) \right] - \kappa \frac{1}{\gamma} \frac{1 - \lambda}{1 - \lambda \chi} \left( \phi - \mu \right) \right],$$

where

$$\nu \equiv \frac{\bar{m}\delta + \frac{1}{\gamma}\kappa\frac{1-\lambda}{1-\lambda\chi}}{1 + \frac{1}{\gamma}\frac{1-\lambda}{1-\lambda\chi}\phi\kappa}.$$
(6)

## Fiscal Multiplier II

Consider case with completely sticky prices:  $\kappa = 0$ 

$$\frac{\partial \hat{\mathbf{y}}_{\mathbf{t}}}{\partial g_{\mathbf{t}}} = \mathbf{1} + \frac{\zeta}{\mathbf{1} - \bar{m}\delta\mu} \left[ \frac{\chi - \mathbf{1}}{\mathbf{1} - \lambda\chi} \left[ \lambda + \bar{m}\mu(\mathbf{1} - \mathbf{s} - \lambda) \right] \right]$$

 $\Rightarrow$  larger than 1 if and only if  $\chi >$  1!

▶ back

## **Backward-Looking Anchor**

Backward-looking anchor  $X_t^d = X_{t-1}$  yields:

$$\mathbb{E}_{t}^{BR}\left[\widehat{x}_{t+1}\right] = (1 - \bar{m})\widehat{x}_{t-1} + \bar{m}\mathbb{E}_{t}\widehat{x}_{t+1}$$

Backward-looking behavioral IS equation (with myopia and anchoring):

$$\widehat{y}_{t} = \underbrace{\overline{m}}_{=\psi_{f}} \mathbb{E}_{t} \widehat{y}_{t+1} - \frac{\psi_{c}}{\gamma} \left( \widehat{i}_{t} - \mathbb{E}_{t} \pi_{t+1} \right) + (1 - \overline{m}) \delta \widehat{y}_{t-1}.$$

 $\Rightarrow$  reduced-form equivalence with models of incomplete information and learning

Angeletos and Huo (2021), Gallegos (2021)

▶ back

# High Initial Debt



▶ back

Pfäuti & Seyrich

Adverse Productivity Shock II

Scenario:

- *potential output* drops by 1% on impact, with  $\rho = 0.9$
- Now: monetary policy fully stabilizes inflation

# **Divine Coincidence**



▶ Procyclical HANK ► Other Variables

# Divine Coincidence But Stronger Monetary Policy Response Needed



▶ Procyclical HANK ▶ Other Variables

# **Distributional and Fiscal Consequences**



Procyclical HANK > Other Variables > Back to Taylor Rule > Conclusion

## **Cost-Push Shock**



▶ back

Pfäuti & Seyrich

## Literature I

AMPUDIA, M., D. GEORGARAKOS, J. SLACALEK, O. TRISTANI, P. VERMEULEN, AND G. VIOLANTE (2018): "Monetary policy and household inequality," .

- ANGELETOS, G.-M. AND Z. HUO (2021): "Myopia and anchoring," American Economic Review, 111, 1166–1200.
- ANGELETOS, G.-M., Z. HUO, AND K. A. SASTRY (2021): "Imperfect macroeconomic expectations: Evidence and theory," NBER Macroeconomics Annual, 35, 1–86.
   AUCLERT, A. (2019): "Monetary policy and the redistribution channel," American Economic Review, 109, 2333–67.
- AUCLERT, A., M. ROGNLIE, AND L. STRAUB (2020): "Micro jumps, macro humps: Monetary policy and business cycles in an estimated HANK model," Tech. rep., National Bureau of Economic Research.
- COCHRANE, J. H. (2018): "Michelson-Morley, Fisher, and Occam: The radical implications of stable quiet inflation at the zero bound," *NBER Macroeconomics Annual*, 32, 113–226.

- Literature II Coibion, O., D. Georgarakos, Y. Gorodnichenko, and M. Weber (2020): "Forward guidance and household expectations." Tech. rep., National Bureau of Economic Research.
  - COIBION, O. AND Y. GORODNICHENKO (2015): "Information rigidity and the expectations formation process: A simple framework and new facts," American Economic Review, 105, 2644-78.
  - COIBION, O., Y. GORODNICHENKO, L. KUENG, AND J. SILVIA (2017): "Innocent Bystanders? Monetary policy and inequality." *Journal of Monetary Economics*. 88.70-89.
  - DEBORTOLI, D., J. GALÍ, AND L. GAMBETTI (2020): "On the empirical (ir) relevance of the zero lower bound constraint," NBER Macroeconomics Annual, 34, 141–170. DEL NEGRO, M., M. GIANNONI, AND C. PATTERSON (2015): "The forward guidance puzzle,".
  - D'ACUNTO, F., D. HOANG, AND M. WEBER (2020): "Managing households' expectations with unconventional policies," Tech. rep., National Bureau of Economic Research.

## Literature III

GABAIX, X. (2020): "A behavioral New Keynesian model," American Economic Review, 110, 2271–2327.

GALLEGOS, J.-E. (2021): "HANK beyond FIRE," .

- HOLM, M. B., P. PAUL, AND A. TISCHBIREK (2021): "The transmission of monetary policy under the microscope," *Journal of Political Economy*, 129, 2861–2904.
- KAPLAN, G., B. MOLL, AND G. L. VIOLANTE (2018): "Monetary Policy According to HANK," American Economic Review, 108, 697–743.
- ROTH, C., M. WIEDERHOLT, AND J. WOHLFART (2021): "The Effects of Forward Guidance: Theory with Measured Expectations," Tech. rep.
- SLACALEK, J., O. TRISTANI, AND G. L. VIOLANTE (2020): "Household balance sheet channels of monetary policy: A back of the envelope calculation for the euro area," *Journal of Economic Dynamics and Control*, 115, 103879.