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Introduction

e Drawing causal inferences from correlational data:
— Professional empirical researchers do this for a living.
— Lay people perform this activity for everyday personal decisions.
e Nutrition — Health
e Education — Future income

e Social distancing — Viral disease



Introduction

e The challenge: Confounding variables

— Observed correlations do not represent causal effects.
e Professionals use various methods to cope with this problem.
e A basic method: Control variables

— Professionals distinguish between “good” and “bad” controls

(Angrist-Pischke 2009, Cinelli et al. 2022).



Introduction

e What about lay decision makers (DMs)? Two differences:

— They are less likely to use sound/sophisticated methods (more

likely to use bad controls).

— Their aggregate behavior affects the very correlations from

which they draw causal inferences.

e “Behavioral” causal inference: Addressing these two differences



Today’s Model

A DM makes a binary decision; tries to infer its causal effect on a binary

outcome from long-run correlational data.
Exogenous variables potentially confound this relation.
The DM’s “data type” is defined by his set of (exogenous) control variables.

In equilibrium, long-run data is consistent with each data type best-

replying to his causal belief (based on his subjective controls).

My question: What is the maximal expected welfare loss due to “bad

controls” that can be sustained in equilibrium?



Example |

a € {0,1}is an action.
y € {0,1} is an outcome.
The DM’s utility is y — ca, where ¢ € (0,1).

x € {0,1} is an exogenous variable that the DM may observe

prior to taking his action. It is the only true cause of y.

The DM’s type is defined by whether he conditions on or

adjusts for x.



Example I: Types’ Estimated Causal Effects

Conditioning on x:
p(y=1la=1,x)—ply=1la=0,x) =0

Adjusting for x:

2p(x)[p(y= lla=1,x)—ply=1]a=0,x)]=0

No controls:

p(y=1la=1)-ply=1la=0)=<1



Example |

e The types that do not condition on x will not vary their action

with x, by definition.

e The type that does condition on x could potentially vary his

action with x...

e ..but will choose a = 0 for every x, because he correctly

estimates a null causal effect.



Example |

Consequently, no data type varies his action with x in equilibrium.

Therefore, if p is consistent with equilibrium, a and x are

independent, and the confounding effect of x disappears!
= All types will estimate a null causal effect.

The equilibrium condition “protects” DMs from their causal

errors: It eliminates any welfare loss due to bad controls.

How general is this effect?



Some Background Literature

e The model here could be reformulated by adapting existing languages:

— Analogy-based expectations (Jehiel 2005), Bayesian networks (Spiegler

2016), Berk-Nash equilibrium (Esponda-Pouzo 2016)
— Earlier works rule out latent variables that directly cause DM actions.
e Behavioral implications of causal misperceptions: Spiegler 2016,2020
e Worst-case belief errors due to misspecified models: Eliaz-Spiegler-Weiss 2021

e “Non-Bayesian persuasion”: Hagenbach-Koessler 2020, Eliaz-Spiegler-Thysen

2021, Schwartzstein-Sunderam 2021, Levy-Moreno-Razin 2022



A Model

a € {0,1}is the DM'’s action.

y € {0,1} is an outcome.

t € {0,1}is the DM's preference type.

The DM’s vNM utility is u(t,a,y) =y —c - 1[a # t].
- ¢ € (0,1) is a constant cost.

x = (x4, ..., xg) is a collection of exogenous variables realized jointly with ¢,

before the realization of a and y.

Baseline model: a has no causal effect on y.



Data Types

There is a set of “data types” N, enumerated i = 1,..,n.
Each type i is defined by a distinct pair (C;, D;).
C;€D;c{1,..,K}
The type has data revealing the long-run joint distribution of x, a, y.
C; is the set of x variables the type conditions on.
D;\C; is the set of x variables the type adjusts for.

The DM never has long-run statistical data on t.



Strategies

e A€ A(N)isanindependent distribution over data types.
e Astrategy for type (¢, 1) is a strategy o; ;: X — A{0,1}.
- 0O, is measurable w.rt x..

e pisalong-run distribution over x,t, a, y:

p(t,x,a,y) =p(t,x)plal|t,x)p(y |t x)

plaltx)= ) Aoyalt)
LEN



Subjective Causal Belief

Data type i’s estimated consequence of choosing a:

P Ido(@)xc) = ) popclrc)p(v]axn)

XDi\C;
Pearl’s do notation emphasizes that the conditioning represents a

causal quantity, rather than a purely probabilistic one

”

This formula would be correct if the DM employed “good controls”.

“Bad controls”: Failing to control for confounders, or wrongly

controlling for certain non-confounders.



Equilibrium

e A strategy profile o with full support is an e-equilibrium if for every

x, a and every (t,1), o ;(a |t,x) > € only if a maximizes

D B ldo(@), x)u(t, a,7)
y

e An equilibrium is a limit of e-equilibria for some sequence of € — 0.



The Case of Constant ¢

Suppose t = 0 with certainty.

The DM’s type consists entirely of his data type i.

The rational benchmark: Always play a = 0.

The DM’s expected welfare lossis ¢ - Pr(a = 1).

What is the largest Pr(a = 1) we can sustain in equilibrium?

In the Introduction’s example, this probability was zero.



Example Il

K = 2 (two x variables, both take values in {0,1})
p(y =1]x1,x2) = x1%,

n = 2 (two data types), 4, = 41, = 0.5

C; = D; = {i} (type i conditions on X;)

Story: Business analysts with different expertise



Example Il

Suppose type i plays a; = x; with certainty.

Let’s calculate type 1’s estimated causal effect for every x;.

Note that p(y = 1| a,x; = 0) = 0 for every a.

— This conditional probability is based on “aggregate data” (across types).

Therefore, A (x; = 0) =0 < c.

— When x; = 0, type 1 prefers to play a = 0.



Example I

M =D =ply=1la=1Lx=1)-py=1la=0x = 1)

p(y:lld:l,xlzl):p(xz=1|a:1’x1=1)

— p(XZ :1|X1:1)
p(x; =1lx; =1) +p(xy = 0] x; = DAy

p(y=1la=0x=1)=plx;=1la=0,x,=1)=0



Example Il

p(x; =1]x; = 1)

= A(x;=1) =
B p(xy; =1|x1 =1) +0.5p(x, = 0] x; = 1)

e Ifp(x, =1|x;,=1)=1,thenA;(x; =1) > c.

= When x; = 1, type 1 prefers to play a = 1.



Example Il

Type 1’s strategy is consistent with equilibrium if p(x, = 1| x, = 1) = 1.
The same reasoning works for type 2.
If p(x; = x, = 1) = 1, the expected welfare loss is close to c.

The equilibrium condition does not protect the DM from his erroneous

causal inference due to “bad controls”.

The behavior of one type creates a confounding pattern for the other.



A Binary Relation

e Define a binary relation P over the set of data types N:
- PjifD; 2 (;
— l.e., type i controls for every variable that type j conditions on.

e A binary relation is quasitransitive (Sen 1969) if its asymmetric part

is transitive.



First Set of Characterization Results

Proposition 1: Suppose P is complete and quasitransitive. Then, the

DM’s equilibrium expected welfare loss is zero.

Proposition 2: Suppose P violates completeness or quasitransitivity.
Then, there exist 4 and (p(x, y)) that sustain Pr(a = 1) = 1in

equilibrium.



First Set of Characterization Results

Proposition 1: Suppose P is complete and quasitransitive. Then, the

DM’s equilibrium expected welfare loss is zero.

Idea of proof:

e P partitions types into layers. At the top layer, types control for all relevant

confounders.

e Therefore, top-layer types don’t generate variation in a. This effectively

removes confounders for the 29 layer...

e ..and by induction, this argument “infects” all layers.



First Set of Characterization Results

Proposition 2: Suppose P violates completeness or quasitransitivity.
Then, there exist 4 and (p(x, y)) that sustain Pr(a = 1) = 1in
equilibrium.

Idea of proof:

e When P is incomplete, we can construct something like Example Il.

e When P violates quasitransitivity, we can construct a more elaborate

version of Example Il that involves three types.



The Case of Variable t

Suppose t is the sole cause of y; the x variables are proxies of .

Denote §; = p(y =1|t). W.lo.g, §; = §,.

Denote Pr(t = 1) =y € (0,1).

The DM’s expected welfare loss is
c.ly-Pra=0|t=1)+1—-y)-Pr(a=1]|t=0)]

Restrict attention to “simple” data types: C; = D; for every L.

— If P is complete, it is a linear ordering.



Example Il

e Suppose y = t deterministically.

e No x variables; the DM uses no controls:

A=Pr(y=1|la=1)—Pr(y=1|a=0)

Prt=1|a=1)—-Pr(t=1|a=0)
e The DM’s best-reply to his belief increases with t.

= A= 0. The DM always playsa = 1 whent = 1.



Example Il

e The DM’s expected welfare lossisc - (1 —y) - oi—g(a = 1).
e TheDMplaysa =1att =0onlyifc < A.

e Therefore, the welfare loss is bounded from above by

[Pr(t:1|a=1)—£’r(t=1|a=02]-(1—y)-0t=0(a=1)
0

yor=1(a=1)
yoi=1(@a=1)+ (1 —y)oiz(a=1)

(1=y)-0r=0(a=1)



Example Il

Yoi=1(a=1)
yoi=1(a=1)+ (1 —y)oz(a=1)

(1-y)-0r=o(a=1)

0;—1(a = 1) = 1; the expression increases with ;,_,(a = 1).

This gives an upper bound of y(1 — y), which can be approximated

arbitrarily well by selecting c = v.

Intuition: Error size (due to strong a-y correlation) is negatively

related to error frequency.



Second Set of Characterization Results

e Recall C = D for all data types; P is complete iff it is a linear order.

e Recall t is the only cause of y.

Proposition 3: Suppose P is complete. The DM’s maximal expected

equilibrium welfare loss is y (1 — y).

Proposition 4: Suppose P is incomplete. The DM’s maximal expected

equilibrium welfare loss is max{y, 1 — y}.



Proposition 3: A Few Words about the Proof

The proof is based on an inductive argument that for every x and every
typei =1,..,n, Aj(x) = 0and gp=q;(a = 1]x) = 1.

— All types agree on the causal effect’s sign. This feature is crucial for

the upper bound y (1 — y).

The argument holds for i = 1, fundamentally because this type controls

for every x variable the other types condition on.

But unlike the constant t case, type 1 does vary his behavior, and thus

exerts a “confounding externality” on the other types.



Proposition 3: A Few Words about the Proof

e This externality across types makes the inductive argument trickier.
* In particular, the way Pr(a = 1|t,x¢,) and Pr(a = 1|t, x¢,, ) vary with ¢
could in principle exhibit “Simpson’s paradox” (recall C;,; < C;):
- Pr(a = 1]¢t, x¢,) increases in t for every x., yet the coarser
conditional probability Pr(a = 1|t, x¢,, ) decreases in t.

— The subtle part of the proof is showing this anomaly does not arise

when P is complete.



More Stuff

When P is incomplete and we relax the assumption that y L x | t,

the upper bound on the equilibrium welfare loss is 1.

Open problem: Completing the characterization of upper bounds

for general type spaces and data-generating processes
Extension to non-null causal effects
— Additively separable formulation: Results essentially intact

— An “application”: Partying in a pandemic



Summary

DMs commit errors of causal inference from correlational data due

to “bad controls”.

The behavioral consequences of these errors shape the confounding

patterns that lead to causal errors in the first place.
Yet, equilibrium forces can drastically lower the cost of these errors.

This equilibrium effect depends on the structure of the sets of

control variables that different types of DMs employ.



Summary

e When the differentiation between data types is “vertical”, the
maximal welfare loss is substantially lower than in the non-

equilibrium benchmark.
— In some cases, the welfare loss can disappear entirely.

e When the differentiation is “horizontal”, the “protective”

equilibrium effect is much weaker (in the worst-case analysis).
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