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• Drawing causal inferences from correlational data:

– Professional empirical researchers do this for a living.

– Lay people perform this activity for everyday personal decisions. 

• Nutrition → Health

• Education → Future income

• Social distancing → Viral disease

Introduction



• The challenge: Confounding variables 

– Observed correlations do not represent causal effects.

• Professionals use various methods to cope with this problem.

• A basic method: Control variables

– Professionals distinguish between “good” and “bad” controls 

(Angrist-Pischke 2009, Cinelli et al. 2022).

Introduction



• What about lay decision makers (DMs)? Two differences:

– They are less likely to use sound/sophisticated methods (more 

likely to use bad controls).

– Their aggregate behavior affects the very correlations from 

which they draw causal inferences.

• “Behavioral” causal inference: Addressing these two differences

Introduction



• A DM makes a binary decision; tries to infer its causal effect on a binary 

outcome from long-run correlational data.

• Exogenous variables potentially confound this relation.

• The DM’s “data type” is defined by his set of (exogenous) control variables.

• In equilibrium, long-run data is consistent with each data type best-

replying to his causal belief (based on his subjective controls).

• My question: What is the maximal expected welfare loss due to “bad 

controls” that can be sustained in equilibrium?

Today’s Model



• 𝑎𝑎 ∈ {0,1} is an action.

• 𝑦𝑦 ∈ {0,1} is an outcome.

• The DM’s utility is 𝑦𝑦 − 𝑐𝑐𝑐𝑐, where 𝑐𝑐 ∈ (0,1).

• 𝑥𝑥 ∈ {0,1} is an exogenous variable that the DM may observe 

prior to taking his action. It is the only true cause of 𝑦𝑦.

• The DM’s type is defined by whether he conditions on or 

adjusts for 𝑥𝑥.

Example I



Conditioning on 𝑥𝑥: 

𝑝𝑝 𝑦𝑦 = 1 𝑎𝑎 = 1, 𝑥𝑥) − 𝑝𝑝 𝑦𝑦 = 1 𝑎𝑎 = 0, 𝑥𝑥) = 0

Adjusting for 𝑥𝑥: 

�
𝑥𝑥

𝑝𝑝 𝑥𝑥 [𝑝𝑝 𝑦𝑦 = 1 𝑎𝑎 = 1, 𝑥𝑥) − 𝑝𝑝 𝑦𝑦 = 1 𝑎𝑎 = 0, 𝑥𝑥)] = 0

No controls:

𝑝𝑝 𝑦𝑦 = 1 𝑎𝑎 = 1) − 𝑝𝑝 𝑦𝑦 = 1 𝑎𝑎 = 0) ≤ 1

Example I: Types’ Estimated Causal Effects



• The types that do not condition on 𝑥𝑥 will not vary their action 

with 𝑥𝑥, by definition.

• The type that does condition on 𝑥𝑥 could potentially vary his 

action with 𝑥𝑥…

• …but will choose 𝑎𝑎 = 0 for every 𝑥𝑥, because he correctly 

estimates a null causal effect.

Example I



• Consequently, no data type varies his action with 𝑥𝑥 in equilibrium.

• Therefore, if 𝑝𝑝 is consistent with equilibrium, 𝑎𝑎 and 𝑥𝑥 are 

independent, and the confounding effect of 𝑥𝑥 disappears!

⇒ All types will estimate a null causal effect.

• The equilibrium condition “protects” DMs from their causal 

errors: It eliminates any welfare loss due to bad controls.

• How general is this effect?

Example I



Some Background Literature

• The model here could be reformulated by adapting existing languages:

– Analogy-based expectations (Jehiel 2005), Bayesian networks (Spiegler 

2016), Berk-Nash equilibrium (Esponda-Pouzo 2016)

– Earlier works rule out latent variables that directly cause DM actions.

• Behavioral implications of causal misperceptions: Spiegler 2016,2020

• Worst-case belief errors due to misspecified models: Eliaz-Spiegler-Weiss 2021

• “Non-Bayesian persuasion”: Hagenbach-Koessler 2020, Eliaz-Spiegler-Thysen

2021, Schwartzstein-Sunderam 2021, Levy-Moreno-Razin 2022



A Model

• 𝑎𝑎 ∈ {0,1} is the DMʹs action.

• 𝑦𝑦 ∈ {0,1} is an outcome.

• 𝑡𝑡 ∈ {0,1} is the DMʹs preference type.

• The DM’s vNM utility is 𝑢𝑢 𝑡𝑡,𝑎𝑎, 𝑦𝑦 = 𝑦𝑦 − 𝑐𝑐 � 𝟏𝟏[𝑎𝑎 ≠ 𝑡𝑡].

– 𝑐𝑐 ∈ (0,1) is a constant cost.

• 𝑥𝑥 = (𝑥𝑥1, … , 𝑥𝑥𝐾𝐾) is a collection of exogenous variables realized jointly with 𝑡𝑡, 

before the realization of 𝑎𝑎 and 𝑦𝑦.

• Baseline model: 𝑎𝑎 has no causal effect on 𝑦𝑦.



Data Types

• There is a set of “data types” 𝑁𝑁, enumerated 𝑖𝑖 = 1, . . ,𝑛𝑛.

• Each type 𝑖𝑖 is defined by a distinct pair (𝐶𝐶𝑖𝑖 ,𝐷𝐷𝑖𝑖). 

𝐶𝐶𝑖𝑖 ⊆ 𝐷𝐷𝑖𝑖 ⊆ {1, … ,𝐾𝐾}

• The type has data revealing the long−run joint distribution of 𝑥𝑥𝐷𝐷𝑖𝑖 ,𝑎𝑎,𝑦𝑦.

• 𝐶𝐶𝑖𝑖 is the set of 𝑥𝑥 variables the type conditions on.

• 𝐷𝐷𝑖𝑖\𝐶𝐶𝑖𝑖 is the set of 𝑥𝑥 variables the type adjusts for.

• The DM never has long-run statistical data on 𝑡𝑡.



Strategies

• 𝜆𝜆 ∈ ∆(𝑁𝑁) is an independent distribution over data types.

• A strategy for type (𝑡𝑡, 𝑖𝑖) is a strategy 𝜎𝜎𝑡𝑡,𝑖𝑖:𝑋𝑋 → ∆{0,1}.

– 𝜎𝜎𝑡𝑡,𝑖𝑖 is measurable w.r.t 𝑥𝑥𝐶𝐶𝑖𝑖.

• 𝑝𝑝 is a long-run distribution over 𝑥𝑥, 𝑡𝑡,𝑎𝑎,𝑦𝑦:

𝑝𝑝 𝑡𝑡, 𝑥𝑥,𝑎𝑎,𝑦𝑦 = 𝑝𝑝 𝑡𝑡, 𝑥𝑥 𝑝𝑝 𝑎𝑎 𝑡𝑡, 𝑥𝑥)𝑝𝑝 𝑦𝑦 𝑡𝑡, 𝑥𝑥)

𝑝𝑝 𝑎𝑎 𝑡𝑡, 𝑥𝑥) = �
𝑖𝑖∈𝑁𝑁

𝜆𝜆𝑖𝑖𝜎𝜎𝑡𝑡,𝑖𝑖 𝑎𝑎 𝑡𝑡, 𝑥𝑥)



Subjective Causal Belief

• Data type 𝑖𝑖’s estimated consequence of choosing 𝑎𝑎:

�𝑝𝑝 𝑦𝑦 𝑑𝑑𝑑𝑑(𝑎𝑎), 𝑥𝑥𝐶𝐶𝑖𝑖) = �
𝑥𝑥𝐷𝐷𝑖𝑖\𝐶𝐶𝑖𝑖

𝑝𝑝 𝑥𝑥𝐷𝐷𝑖𝑖\𝐶𝐶𝑖𝑖|𝑥𝑥𝐶𝐶𝑖𝑖 𝑝𝑝 𝑦𝑦 𝑎𝑎, 𝑥𝑥𝐷𝐷𝑖𝑖

• Pearl’s do notation emphasizes that the conditioning represents a 

causal quantity, rather than a purely probabilistic one

• This formula would be correct if the DM employed “good controls”.

• “Bad controls”: Failing to control for confounders, or wrongly 

controlling for certain non-confounders.



Equilibrium

• A strategy profile 𝜎𝜎 with full support is an 𝜀𝜀-equilibrium if for every 

𝑥𝑥, 𝑎𝑎 and every (𝑡𝑡, 𝑖𝑖),  𝜎𝜎𝑡𝑡,𝑖𝑖 𝑎𝑎 𝑡𝑡, 𝑥𝑥) > 𝜀𝜀 only if 𝑎𝑎 maximizes

�
𝑦𝑦

�𝑝𝑝 𝑦𝑦 𝑑𝑑𝑑𝑑(𝑎𝑎), 𝑥𝑥𝐶𝐶𝑖𝑖)𝑢𝑢(𝑡𝑡,𝑎𝑎,𝑦𝑦)

• An equilibrium is a limit of 𝜀𝜀-equilibria for some sequence of 𝜀𝜀 → 0.



The Case of Constant 𝑡𝑡

• Suppose 𝑡𝑡 = 0 with certainty. 

• The DM’s type consists entirely of his data type 𝑖𝑖.

• The rational benchmark: Always play 𝑎𝑎 = 0.

• The DM’s expected welfare loss is 𝑐𝑐 � Pr(𝑎𝑎 = 1).

• What is the largest Pr(𝑎𝑎 = 1) we can sustain in equilibrium?

• In the Introduction’s example, this probability was zero.



Example II

• 𝐾𝐾 = 2 (two 𝑥𝑥 variables, both take values in {0,1})

• 𝑝𝑝 𝑦𝑦 = 1 | 𝑥𝑥1, 𝑥𝑥2 = 𝑥𝑥1𝑥𝑥2

• 𝑛𝑛 = 2 (two data types), 𝜆𝜆1 = 𝜆𝜆2 = 0.5

• 𝐶𝐶𝑖𝑖 = 𝐷𝐷𝑖𝑖 = {𝑖𝑖} (type 𝑖𝑖 conditions on 𝑥𝑥𝑖𝑖)

• Story: Business analysts with different expertise



Example II

• Suppose type 𝑖𝑖 plays 𝑎𝑎𝑖𝑖 = 𝑥𝑥𝑖𝑖 with certainty.

• Let’s calculate type 1’s estimated causal effect for every 𝑥𝑥1.

• Note that 𝑝𝑝 𝑦𝑦 = 1 𝑎𝑎, 𝑥𝑥1 = 0) = 0 for every 𝑎𝑎.

– This conditional probability is based on “aggregate data” (across types).

• Therefore, ∆1 𝑥𝑥1 = 0 = 0 < 𝑐𝑐.

– When 𝑥𝑥1 = 0, type 1 prefers to play 𝑎𝑎 = 0.



Example II

∆1 𝑥𝑥1 = 1 = 𝑝𝑝 𝑦𝑦 = 1 𝑎𝑎 = 1, 𝑥𝑥1 = 1) − 𝑝𝑝 𝑦𝑦 = 1 𝑎𝑎 = 0, 𝑥𝑥1 = 1)

𝑝𝑝 𝑦𝑦 = 1 𝑎𝑎 = 1, 𝑥𝑥1 = 1) = 𝑝𝑝 𝑥𝑥2 = 1 𝑎𝑎 = 1, 𝑥𝑥1 = 1)

=
𝑝𝑝 𝑥𝑥2 = 1| 𝑥𝑥1 = 1

𝑝𝑝 𝑥𝑥2 = 1| 𝑥𝑥1 = 1 + 𝑝𝑝 𝑥𝑥2 = 0| 𝑥𝑥1 = 1 𝜆𝜆1

𝑝𝑝 𝑦𝑦 = 1 𝑎𝑎 = 0, 𝑥𝑥1 = 1) = 𝑝𝑝 𝑥𝑥2 = 1 𝑎𝑎 = 0, 𝑥𝑥1 = 1) = 0



Example II

⟹ ∆1 𝑥𝑥1 = 1 =
𝑝𝑝 𝑥𝑥2 = 1| 𝑥𝑥1 = 1

𝑝𝑝 𝑥𝑥2 = 1| 𝑥𝑥1 = 1 + 0.5𝑝𝑝 𝑥𝑥2 = 0| 𝑥𝑥1 = 1

• If 𝑝𝑝 𝑥𝑥2 = 1| 𝑥𝑥1 = 1 ≈ 1, then ∆1 𝑥𝑥1 = 1 > 𝑐𝑐.

⇒ When 𝑥𝑥1 = 1, type 1 prefers to play 𝑎𝑎 = 1.



Example II

• Type 1’s strategy is consistent with equilibrium if 𝑝𝑝 𝑥𝑥2 = 1| 𝑥𝑥1 = 1 ≈ 1. 

• The same reasoning works for type 2.

• If 𝑝𝑝 𝑥𝑥1 = 𝑥𝑥2 = 1 ≈ 1, the expected welfare loss is close to 𝑐𝑐.

• The equilibrium condition does not protect the DM from his erroneous 

causal inference due to “bad controls”.

• The behavior of one type creates a confounding pattern for the other.



A Binary Relation

• Define a binary relation 𝑃𝑃 over the set of data types 𝑁𝑁:

– 𝑖𝑖𝑖𝑖𝑖𝑖 if 𝐷𝐷𝑖𝑖 ⊇ 𝐶𝐶𝑗𝑗

– I.e., type 𝑖𝑖 controls for every variable that type 𝑗𝑗 conditions on.

• A binary relation is quasitransitive (Sen 1969) if its asymmetric part 

is transitive.



First Set of Characterization Results

Proposition 1: Suppose 𝑃𝑃 is complete and quasitransitive. Then, the 

DM’s equilibrium expected welfare loss is zero.

Proposition 2: Suppose 𝑃𝑃 violates completeness or quasitransitivity. 

Then, there exist 𝜆𝜆 and (𝑝𝑝(𝑥𝑥,𝑦𝑦)) that sustain Pr(𝑎𝑎 = 1) ≈ 1 in 

equilibrium.



First Set of Characterization Results

Proposition 1: Suppose 𝑃𝑃 is complete and quasitransitive. Then, the 

DM’s equilibrium expected welfare loss is zero.

Idea of proof:

• 𝑃𝑃 partitions types into layers. At the top layer, types control for all relevant 

confounders.

• Therefore, top-layer types don’t generate variation in 𝑎𝑎. This effectively 

removes confounders for the 2nd layer…

• …and by induction, this argument “infects” all layers.



First Set of Characterization Results

Proposition 2: Suppose 𝑃𝑃 violates completeness or quasitransitivity. 

Then, there exist 𝜆𝜆 and (𝑝𝑝(𝑥𝑥,𝑦𝑦)) that sustain Pr(𝑎𝑎 = 1) ≈ 1 in 

equilibrium.

Idea of proof:

• When 𝑃𝑃 is incomplete, we can construct something like Example II.

• When 𝑃𝑃 violates quasitransitivity, we can construct a more elaborate 

version of Example II that involves three types.



The Case of Variable 𝑡𝑡

• Suppose 𝑡𝑡 is the sole cause of 𝑦𝑦; the 𝑥𝑥 variables are proxies of 𝑡𝑡. 

• Denote 𝛿𝛿𝑡𝑡 = 𝑝𝑝 𝑦𝑦 = 1 𝑡𝑡). W.l.o.g, 𝛿𝛿1 ≥ 𝛿𝛿0.

• Denote Pr 𝑡𝑡 = 1 = 𝛾𝛾 ∈ (0,1).

• The DM’s expected welfare loss is

𝑐𝑐 � 𝛾𝛾 � Pr 𝑎𝑎 = 0 𝑡𝑡 = 1 + (1 − 𝛾𝛾) � Pr 𝑎𝑎 = 1 𝑡𝑡 = 0)]

• Restrict attention to “simple” data types: 𝐶𝐶𝑖𝑖 = 𝐷𝐷𝑖𝑖 for every 𝑖𝑖.

– If 𝑃𝑃 is complete, it is a linear ordering.



Example III

• Suppose 𝑦𝑦 = 𝑡𝑡 deterministically.

• No 𝑥𝑥 variables; the DM uses no controls:

∆= Pr 𝑦𝑦 = 1 𝑎𝑎 = 1) − Pr 𝑦𝑦 = 1 𝑎𝑎 = 0)

=

Pr 𝑡𝑡 = 1 𝑎𝑎 = 1) − Pr 𝑡𝑡 = 1 𝑎𝑎 = 0)

• The DM’s best-reply to his belief increases with 𝑡𝑡.

⇒ ∆≥ 0. The DM always plays 𝑎𝑎 = 1 when 𝑡𝑡 = 1.



Example III

• The DM’s expected welfare loss is 𝑐𝑐 � (1 − 𝛾𝛾) � σ𝑡𝑡=0(𝑎𝑎 = 1).

• The DM plays 𝑎𝑎 = 1 at 𝑡𝑡 = 0 only if 𝑐𝑐 ≤ ∆.

• Therefore, the welfare loss is bounded from above by

[Pr 𝑡𝑡 = 1 𝑎𝑎 = 1) − Pr 𝑡𝑡 = 1 𝑎𝑎 = 0)
0

] � 1 − 𝛾𝛾 � σ𝑡𝑡=0 𝑎𝑎 = 1

𝛾𝛾σ𝑡𝑡=1 𝑎𝑎 = 1
𝛾𝛾σ𝑡𝑡=1 𝑎𝑎 = 1 + (1 − 𝛾𝛾)σ𝑡𝑡=0 𝑎𝑎 = 1

� 1 − 𝛾𝛾 � σ𝑡𝑡=0 𝑎𝑎 = 1



Example III

𝛾𝛾σ𝑡𝑡=1 𝑎𝑎 = 1
𝛾𝛾σ𝑡𝑡=1 𝑎𝑎 = 1 + (1 − 𝛾𝛾)σ𝑡𝑡=0 𝑎𝑎 = 1

� 1 − 𝛾𝛾 � σ𝑡𝑡=0 𝑎𝑎 = 1

• σ𝑡𝑡=1 𝑎𝑎 = 1 = 1; the expression increases with σ𝑡𝑡=0(𝑎𝑎 = 1).

• This gives an upper bound of 𝛾𝛾(1 − 𝛾𝛾), which can be approximated 

arbitrarily well by selecting 𝑐𝑐 ≈ 𝛾𝛾.

• Intuition: Error size (due to strong 𝑎𝑎-𝑦𝑦 correlation) is negatively 

related to error frequency.



Second Set of Characterization Results

• Recall 𝐶𝐶 = 𝐷𝐷 for all data types; 𝑃𝑃 is complete iff it is a linear order.

• Recall 𝑡𝑡 is the only cause of 𝑦𝑦.

Proposition 3: Suppose 𝑃𝑃 is complete. The DM’s maximal expected 

equilibrium welfare loss is 𝛾𝛾(1 − 𝛾𝛾).

Proposition 4: Suppose 𝑃𝑃 is incomplete. The DM’s maximal expected 

equilibrium welfare loss is max{𝛾𝛾, 1 − 𝛾𝛾}. 



Proposition 3: A Few Words about the Proof

• The proof is based on an inductive argument that for every 𝑥𝑥 and every 

type 𝑖𝑖 = 1, … ,𝑛𝑛,  ∆𝑖𝑖 𝑥𝑥 ≥ 0 and 𝜎𝜎𝑡𝑡=1,𝑖𝑖 𝑎𝑎 = 1 𝑥𝑥 = 1.

– All types agree on the causal effect’s sign. This feature is crucial for 

the upper bound 𝛾𝛾(1 − 𝛾𝛾).

• The argument holds for 𝑖𝑖 = 1, fundamentally because this type controls 

for every 𝑥𝑥 variable the other types condition on.

• But unlike the constant 𝑡𝑡 case, type 1 does vary his behavior, and thus 

exerts a “confounding externality” on the other types.



Proposition 3: A Few Words about the Proof

• This externality across types makes the inductive argument trickier.

• In particular, the way Pr(𝑎𝑎 = 1|𝑡𝑡, 𝑥𝑥𝐶𝐶𝑖𝑖) and Pr(𝑎𝑎 = 1|𝑡𝑡, 𝑥𝑥𝐶𝐶𝑖𝑖+1) vary with 𝑡𝑡

could in principle exhibit “Simpson’s paradox” (recall 𝐶𝐶𝑖𝑖+1 ⊂ 𝐶𝐶𝑖𝑖):

– Pr(𝑎𝑎 = 1|𝑡𝑡, 𝑥𝑥𝐶𝐶𝑖𝑖) increases in 𝑡𝑡 for every 𝑥𝑥𝐶𝐶𝑖𝑖 , yet the coarser

conditional probability Pr(𝑎𝑎 = 1|𝑡𝑡, 𝑥𝑥𝐶𝐶𝑖𝑖+1) decreases in 𝑡𝑡.

– The subtle part of the proof is showing this anomaly does not arise

when 𝑃𝑃 is complete.



More Stuff

• When 𝑃𝑃 is incomplete and we relax the assumption that 𝑦𝑦 ⊥ 𝑥𝑥 | 𝑡𝑡, 

the upper bound on the equilibrium welfare loss is 1.

• Open problem: Completing the characterization of upper bounds 

for general type spaces and data-generating processes

• Extension to non-null causal effects

– Additively separable formulation: Results essentially intact 

– An “application”: Partying in a pandemic



Summary

• DMs commit errors of causal inference from correlational data due 

to “bad controls”.

• The behavioral consequences of these errors shape the confounding 

patterns that lead to causal errors in the first place.

• Yet, equilibrium forces can drastically lower the cost of these errors.

• This equilibrium effect depends on the structure of the sets of 

control variables that different types of DMs employ.



Summary

• When the differentiation between data types is “vertical”, the 

maximal welfare loss is substantially lower than in the non-

equilibrium benchmark.

– In some cases, the welfare loss can disappear entirely.

• When the differentiation is “horizontal”, the “protective” 

equilibrium effect is much weaker (in the worst-case analysis).
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