Asset Pricing in a Low Rate Environment

Marlon Azinović¹ Harold Linh Cole¹ Felix Kübler^{2,3}

¹University of Pennsylvania

²University of Zurich

³Swiss Finance Institute

EEA-ESEM Conference 31.08.2023

Real interest rates are often low and below the growth rate of GDP

This paper

- 1. Develop a tractable model of a production economy that consistent with
 - 1.1 business cycle statistics
 - $1.1.1\,$ standard deviation of consumption growth
 - $1.1.2\,$ standard deviation of output growth
 - 1.2 asset prices
 - 1.2.1 low and smooth risk free rate, with r < g
 - 1.2.2 a high market price of risk
- 2. Investigate conditions for the possibility of infinite debt roll over by the government
 - $\rightarrow\,$ possibility of infinite debt roll over depends on aggregate risk
 - ightarrow impossible in our baseline calibrations, even with r-g=-3.5%
- 3. Provide a tractable and efficient way to solve the model with a simulated path version of Krusell and Smith (1998)
- X Not in this paper: Welfare. For welfare, see *e.g.* Brumm et al. (2021); Aguiar et al. (2021); Amol and Luttmer (2022)

Model ingredients

Our model combines

- Firm entry and exit
- Idiosyncratic income risk along the lines of Imrohoroğlu (1989); Aiyagari (1994); Huggett (1993); Bewley (1983)
- ▶ Limited stock market participation as Chien et al. (2011)
- X Our model does not need
 - habits or non-standard preferences (we have time separable expected utility preferences with CRRA utility)
 - huge levels of risk aversion (we have relative risk aversion $\gamma = 5.5$)

Literature

Limited stock market participation

e.g. Vissing-Jørgensen (2002); Vissing-Jørgensen and Attanasio (2003); Guvenen (2009); Chien et al. (2011)

- Production based asset pricing with idiosyncratic risk e.g. Storesletten et al. (2007), Favilukis (2013)
- Infinite debt roll over with r < g
 e.g. Blanchard (2019); Mian et al. (2021); Aguiar et al. (2021); Kocherlakota (2022); Bloise and Reichlin (2022)

Model

Firms entry and exit

- \blacktriangleright A fraction Γ of initial firm survive and the remainder exit losing their capital
- Surviving firms produce today and choose their capital for tomorrow
- New capital is subject to adjustment costs, so price of capital > 1
- Exiting firms are replaced by new startups who start producing next period
- Startup enter smaller; fraction s < 1 of average firm size next period
- New capital in startups is not subject to adjustment costs
- ▶ There are rents from creating capital, especially for startups
- measure Γ of incumbents and a measure 1Γ of startups
- Γ and *s* will determine growth rate of surviving firms

Firms technology

 continuum of firms produces single consumption good with identical production technology

$$y_t^i = \xi(z_t) (k_t^i)^{\alpha} (A_t I_t^t)^{1-\alpha}$$
(1)

- ▶ z_t : aggregate TFP shock. Discreticed first order Markov process
- $\xi(z_t)$: aggregate TFP (deviation from trend)
- \blacktriangleright k_t^i : capital input
- ► Iⁱ_t: labor input
- $A_t = (1 + g)^t$: deterministic trend growth in labor augmenting technology
- chooses investment subject to adjustment costs

$$k_{t+1}^{i*} = k_t^i (1 - \delta) + i_t^i \tag{2}$$

$$d_{t}^{i} = y_{t}^{i} - \omega_{t} l_{t}^{i} - i_{t}^{i} - \psi(k_{t+1}^{i*}, k_{t}^{i})$$
(3)

$$\psi(k',k) := \xi^{\operatorname{adj}} k \left(\frac{k'}{k} - (1 - \delta + x^{\operatorname{target}}) \right)^2$$
(4)

Firms problem

► A firm's Bellman equation is given by

$$v_t^i = \max_{k_{t+1}^{i*}} d_t^i + \Gamma \sum_{z_{t+1}} p_t^{z_{t+1}} v_{t+1}^{i*},$$
(5)

*p*_t<sup>z_{t+1} := price of aggregate state-contingent security
 FOC
</sup>

$$1 + \frac{\partial \psi(k_{t+1}^{i*}, k_t^{i})}{\partial k_{t+1}^{i*}} = \Gamma \sum_{z_{t+1}} p_{z_{t+1}}^t \left(r_{t+1}^{\mathcal{K}} + 1 - \delta - \frac{\partial \psi(k_{t+2}^{i**}, k_{t+1}^{i*})}{\partial k_{t+2}^{i**}} \right)$$
(6)

Firm Aggregation

value of producing firms

value of time t startups

$$V_{t} = D_{t} + \sum_{z_{t+1}} p_{t}^{z_{t+1}} \left(V_{t+1} \underbrace{\frac{\Gamma}{\Gamma + (1 - \Gamma)s}}_{\text{disc. from entry and exit}} \right)$$

 $V_t^{\text{startup}} := \sum_{z_{t+1}} p_t^{z_{t+1}} V_{t+1} \frac{s(1-\Gamma)}{\Gamma + (1-\Gamma)s},$

aggregate dividends

►

$$D_t = Y_t - \omega_t L_t - I_t^{\text{incumbent}} - \Xi_t$$

▶ aggregate adjustment costs

$$\Xi_t = \Gamma K_t \xi^{\mathrm{adj}} (g_k - (1 - \delta + x^{\mathrm{target}}))^2$$

▶ aggregate firm Euler equation

$$1 + 2\xi^{\mathsf{adj}} \Big(g_t^k - (1 - \delta + x^{\mathsf{target}}) \Big) = \Gamma \sum_{z_{t+1}} \rho_t^{z_{t+1}} \left(r_{t+1}^K + 1 - \delta + \xi^{\mathsf{adj}} \Big(\left(g_{t+1}^k \right)^2 - (1 - \delta + x^{\mathsf{target}})^2 \Big) \Big)$$

growth rate of capital in firms

$$g^k = rac{1}{\Gamma + (1 - \Gamma)s} rac{K_{t+1}}{K_t}$$

▶ aggregate rents from startup creation

$$\Omega_t = \frac{s(1-\Gamma)}{\Gamma + (1-\Gamma)s} \left(\sum_{z_{t+1}} \rho_t^{z_{t+1}} V_{t+1} - K_{t+1} \right)$$
(7)
10/27

Households

▶ identical, times-separable, vNM utility, where instantaneous utility is CRRA

$$U((c_t)_{t=0}^{\infty}) = E_0 \sum_{t=0}^{\infty} \beta^t u(c_t)$$
(8)

$$u(c_t) = \frac{c_t^{1-\gamma}}{1-\gamma} \tag{9}$$

- households face idiosyncratic income risk. Idiosyncratic shock: η_t , with transition probability $\pi_\eta(\eta_{t+1}|\eta_t)$ determines labor endowment $I(\eta_t)$
- two types of traders as in Chien et al. (2011)
 - measure 1μ of non-participants (aka bond traders), can only trade a one period bond with borrowing constraint $b_t \ge 0$, and budget constraint

$$c_{t} = \underbrace{l(\eta_{t})\omega(z^{t})}_{\text{labor inc.}} + \underbrace{b_{t-1}}_{\text{fin. wealth}} - \underbrace{b_{t}p^{b}(z^{t})}_{\text{savings}}$$
(10)

▶ measure µ of advanced traders (aka Arrow traders), can trade a full set of aggregate state-contingent securities, receive rents from startup creation, face borrowing constraint a^{zt}_{t-1} ≥ 0 and budget constraint

$$c_{t} = \underbrace{l^{A}(\eta_{t})\omega(z^{t})}_{\text{labor inc.}} + \underbrace{\frac{1-\Gamma}{\Gamma\mu}\zeta(z^{t})}_{\text{startup inc.}} + \underbrace{a_{t-1}^{z_{t}}}_{\text{fin. wealth}} - \underbrace{\sum_{z_{t+1}\in\mathcal{Z}}a_{t}^{z_{t+1}}p^{z_{t+1}}(z^{t})}_{\text{savings}}$$
(11)

the prices of the aggregate state-contingent securities, allow us to price all aggregate assets!

Asset Market Clearing

► Total HH assets must equal value of existing firms for each shock

$$w_t^{\text{households}} := w_t^A + w_t^B = V_t^{\text{firm}}$$

Intuition for the mechanism

Calibration

Exogenous parameters

- choose survival rate Γ = 96.5% and startups size s = 0.75 to obtain an exit rate of 3.5% and employment growth of roughly 0.7%
- $\mu = 10\%$ of advanced traders, as in Chien et al. (2011)
- relative risk aversion $\gamma = 5.5$
- capital share $\alpha = 0.33$
- depreciation of capital $\delta = 0.1$
- deterministic trend growth rate g = 2%
- AR(1) proces for TFP: ρ^{tfp} = 0.8145, following Guvenen (2009), standard deviation of innovations σ^{tfp} = 2.47% to match a standard deviation of output growth of 2.6% Why no random walk component in GDP?

$$(\eta_t) = \begin{pmatrix} 0.463\\ 1.537 \end{pmatrix} \qquad \pi_\eta = \begin{pmatrix} 0.892 & 0.108\\ 0.108 & 0.892 \end{pmatrix}$$
(12)

We use the two remaining free parameters, time preference parameter β and adjustment cost parameter ξ^{adj} to jointly match the average interest rate

$$r := \mathsf{E}\left[rac{1}{p^b(z^t)}
ight]$$

and the average market price of risk

$$mpr := \mathsf{E}\left[\frac{\sqrt{\sum_{z_{t+1} \in \mathcal{Z}} \pi(z_{t+1}|z_t)(\frac{p^{z_{t+1}}}{\pi(z_{t+1}|z_t)} - p^b(z^t))^2}}{p^b(z^t)}\right]$$

Matching the two targets

In the benchmark calibration we target a interest rate of r = 0.8% and a market price of risk of mpr = 50%.

We use Gaussian Processes (see Scheidegger and Bilionis (2019)) to approximate the mapping from parameters to moments of interest.

Match and other moments

	Model	Data	Rep. agent
r ^{bond}	0.8 %	0.8 %	19 %
MPR	50 %	50 %	12 %
std output growth	2.6 %	2.6 %	2.6 %
std r ^{bond}	2.0 %	1.8-2.9 %	3.1 %
std agg. consumption growth	2.0 %	1.4-2.0 %	2.2 %
log V/E	2.8	2.8-3.0	1.8

Role of firm exit

We vary the death rate and recalibrate the patience and adjustment costs to hold the average interest rate and market price of risk constant

 \Rightarrow Firm exit is needed for a reasonable price earnings ratio

Very low interest rates

Lowering the interest rate

We vary the time preference parameter and the adjustment costs parameter to compare different interest rate levels, keeping the market price of risk at 50%.

β	ξ^{adj}	MPR	mean r ^{bond}	std r^{bond}	mean r ^{Firm, K}	std $r^{\text{Firm, }K}$	std Y_{t+1}/Y_t	std C_{t+1}/C_t
0.9740	8.300	49.9 %	-1.55 %	2.6 %	1.5 %	7.2 %	2.6 %	2.1 %
0.9600	7.000	50.4 %	-0.89 %	2.5 %	1.9 %	6.7 %	2.6 %	2.1 %
0.9551	6.333	49.9 %	-0.60 %	2.4 %	2.0 %	6.5 %	2.6 %	2.1 %
0.9494	5.814	49.8 %	-0.37 %	2.3 %	2.2 %	6.0 %	2.6 %	2.0 %
0.9425	5.449	50.1 %	-0.06 %	2.2 %	2.4 %	5.7 %	2.6 %	2.0 %
0.9365	5.082	50.1 %	0.33 %	2.2 %	2.6 %	5.5 %	2.6 %	2.0 %
0.9273	4.514	49.8 %	0.79 %	2.1 %	2.9 %	5.2 %	2.6 %	2.0 %
0.9126	3.922	49.8 %	1.47 %	1.9 %	3.4 %	4.8 %	2.6 %	2.0 %

Low interest rates and asset prices

• p^{console} : price of a console with a deterministic payout stream $A_t = (1+g)^t$

$E\left[r^{bond}\right]$	$E[\log(V/E)]$	$E\left[p^{console} ight]$	E[pdv(Lw)]	E[pdv(V)]	$E\left[pdv(V^{start-ups})\right]$
-1.55 %	3.16	524	455	3.83	47.2
-0.89 %	3.05	195	171	3.62	19.3
-0.60 %	3.02	162	140	3.52	16.1
-0.37 %	2.99	133	115	3.45	13.6
-0.06 %	2.94	106	90.8	3.34	11.2
0.33 %	2.89	90	77.3	3.27	9.89
0.79 %	2.84	73	61.8	3.15	8.31
1.47 %	2.75	55	46.3	2.99	6.72

Iow interest rates and the wealth distribution

Infinite debt rollover

Simple example

- With certainty: if and only if $r \leq g$, is infinite debt rollover possible
- ▶ with uncertainty: E[r] ≤ E[g] is neither necessary nor sufficient (see Kocherlakota (2022), Bloise and Reichlin (2022))

Simple example

- With certainty: if and only if $r \leq g$, is infinite debt rollover possible
- ▶ with uncertainty: E[r] ≤ E[g] is neither necessary nor sufficient (see Kocherlakota (2022), Bloise and Reichlin (2022))
- consider an S-state Markov chain
- let Q denote the $S \times S$ matrix of Arrow prices
- value of an infinite payout stream of 1

$$\lim_{n\to\infty} (I+Q+\ldots+Q^n) \begin{pmatrix} 1\\ \vdots\\ 1 \end{pmatrix}$$
(13)

converges \Leftrightarrow value of largest eigenvalue of Q is $<1\Leftrightarrow$ infinite debt rollover impossible

Simple example continued

► Consider

$$Q_{\epsilon} = \begin{pmatrix} \frac{1}{R_1} & \epsilon & \dots & \epsilon \\ \frac{1}{R_2} & \epsilon & \dots & \epsilon \\ \vdots & \vdots & \ddots & \vdots \\ \frac{1}{R_S} & \epsilon & \dots & \epsilon \end{pmatrix}$$

- consider $\epsilon \rightarrow 0$, largest eigenvalue $< 1 \Leftrightarrow R_1 > 1$.
- this poses basically no restriction on the average interest rate.
- all we can say is

i) for debt rollover to be possible, there must be one state s for which $R_s < 1$

- ii) for debt rollover to be impossible there must be a state s' for which $R_{s'}>1$
- ► a model to investigate the possibility of infinite debt rollover requires a theory for state prices, allowing for E [r] < g ⇒ our model is ideally suited for this</p>

Infinite debt rollover in our model

 \Rightarrow infinite debt rollover impossible for our benchmark calibration \bullet Computational Method

Conclusion

- we provide a tractable model of a production economy with heterogeneous agents, which
 - 1. is consistent with business cycles statistics
 - 2. is consistent with a low interest rate and a high market price of risk
 - 3. allows for E[r] < E[g]
 - 4. provides a theory for state-prices
- we use this model to investigate the possibility of infinite debt roll-over \rightarrow benchmark calibration does not allow for infinite debt rollover

► More in the paper:

- ► Computational method for a simulated-path Krusell and Smith (1998) algorithm
- More on the wealth distribution and low interest rates

Thank you!

References I

- Aguiar, M. A., Amador, M., and Arellano, C. (2021). Micro risks and pareto improving policies with low interest rates. Technical report, National Bureau of Economic Research.
- Aiyagari, S. R. (1994). Uninsured idiosyncratic risk and aggregate saving. *The Quarterly Journal of Economics*, 109(3):659–684.
- Amol, A. and Luttmer, E. G. (2022). Permanent primary deficits, idiosyncratic long-run risk, and growth. Technical report.
- Auclert, A., Bardóczy, B., Rognlie, M., and Straub, L. (2021). Using the sequence-space jacobian to solve and estimate heterogeneous-agent models. *Econometrica*, 89(5):2375–2408.
- Bewley, T. (1983). A difficulty with the optimum quantity of money. *Econometrica: Journal of the Econometric Society*, pages 1485–1504.
- Blanchard, O. (2019). Public debt and low interest rates. American Economic Review, 109(4):1197-1229.
- Bloise, G. and Reichlin, P. (2022). Low safe interest rates: A case for dynamic inefficiency? *Available at SSRN* 4244152.
- Brumm, J., Feng, X., Kotlikoff, L. J., and Kubler, F. (2021). When interest rates go low, should public debt go high? Technical report, National Bureau of Economic Research.
- Carroll, C. D. (2006). The method of endogenous gridpoints for solving dynamic stochastic optimization problems. *Economics Letters*, 91(3):312–320.
- Chien, Y., Cole, H., and Lustig, H. (2011). A multiplier approach to understanding the macro implications of household finance. *The Review of Economic Studies*, 78(1):199–234.

Cochrane, J. H. (1988). How big is the random walk in gnp? Journal of political economy, 96(5):893-920.

References II

- Favilukis, J. (2013). Inequality, stock market participation, and the equity premium. *Journal of Financial Economics*, 107(3):740–759.
- Fernald, J. (2014). A quarterly, utilization-adjusted series on total factor productivity. Federal Reserve Bank of San Francisco.
- Guvenen, F. (2009). A parsimonious macroeconomic model for asset pricing. Econometrica, 77(6):1711-1750.
- Huggett, M. (1993). The risk-free rate in heterogeneous-agent incomplete-insurance economies. *Journal of economic Dynamics and Control*, 17(5-6):953–969.
- Imrohoroğlu, A. (1989). Cost of business cycles with indivisibilities and liquidity constraints. *Journal of Political* economy, 97(6):1364–1383.
- Kocherlakota, N. R. (2022). Infinite debt rollover in stochastic economies. Technical report, National Bureau of Economic Research.
- Krusell, P. and Smith, Jr, A. A. (1998). Income and wealth heterogeneity in the macroeconomy. Journal of political Economy, 106(5):867–896.
- Kubler, F. and Scheidegger, S. (2019). Self-justified equilibria: Existence and computation. Available at SSRN 3494876.
- Mian, A., Straub, L., and Sufi, A. (2021). A goldilocks theory of fiscal policy. NBER Working Paper, (29351).
- Rouwenhorst, K. G. (1995). Asset pricing implications of equilibrium business cycle models. Frontiers of business cycle research, 1:294–330.
- Scheidegger, S. and Bilionis, I. (2019). Machine learning for high-dimensional dynamic stochastic economies. Journal of Computational Science, 33:68 – 82.

References III

- Storesletten, K., Telmer, C. I., and Yaron, A. (2004). Cyclical dynamics in idiosyncratic labor market risk. Journal of political Economy, 112(3):695–717.
- Storesletten, K., Telmer, C. I., and Yaron, A. (2007). Asset pricing with idiosyncratic risk and overlapping generations. *Review of Economic Dynamics*, 10(4):519–548.
- Vissing-Jørgensen, A. (2002). Limited asset market participation and the elasticity of intertemporal substitution. *Journal of political Economy*, 110(4):825–853.
- Vissing-Jørgensen, A. and Attanasio, O. P. (2003). Stock-market participation, intertemporal substitution, and risk-aversion. American Economic Review, 93(2):383–391.

Intuition for the mechanism in Chien et al. (2011)

Low interest rates and the wealth distribution

- λ^A : wealth share held by advanced traders
- $C^{A/B}$: aggregate consumption by each group of traders
- $\mu(\hat{a/b}_t = 0)$: fraction of constrained households

$E\left[r^{bond}\right]$	$E\left[\lambda^{\mathcal{A}}\right]$	$Std\left(\lambda^{A}\right)$	$\frac{E\!\left[\lambda^A z_t = good\right]}{E\!\left[\lambda^A z_t = bad\right]}$	$Std\left(rac{C^{A}_{t+1}}{C^{A}_{t}} ight)$	$Std\left(rac{C^B_{t+1}}{C^B_t} ight)$	$E\left[\mu(\hat{a}_t=0)\right]$	$E\left[\mu(\hat{b}_t=0)\right]$
-1.55 %	35.5 %	12.9 %	2.8	8.5 %	1.0 %	1.1 %	10.7 %
-0.89 %	33.4 %	12.1 %	2.8	8.6 %	1.0 %	1.3 %	10.8 %
-0.60 %	32.0 %	11.6 %	2.8	8.7 %	1.0 %	1.4 %	10.7 %
-0.37 %	31.0 %	11.2 %	2.7	8.5 %	1.0 %	1.5 %	10.8 %
-0.06 %	30.5 %	10.6 %	2.7	8.3 %	1.0 %	1.7 %	10.9 %
0.33 %	29.0 %	10.6 %	2.8	8.3 %	1.0 %	1.8 %	10.9 %
0.79 %	27.6 %	9.9 %	2.7	8.3 %	1.0 %	2.0 %	11.0 %
1.47 %	26.2 %	9.0 %	2.6	8.4 %	1.0 %	2.1 %	11.3 %

Low interest rates and the wealth distribution

Computational Method

Challenges I

- rich wealth distribution, within and across types
- ⇒ summarize the wealth distribution in the spirit of Krusell and Smith (1998) and Kubler and Scheidegger (2019), with (detrended) aggregate capital and the wealth share of advanced traders, (\hat{K}_t, λ_t^A)
- wealth distribution is moving a lot, affecting prices in a non-linear way
- \Rightarrow allow for non-linear dependence of policy functions on $(\hat{K}_t, \lambda_t^{\mathcal{A}})$

Challenges II

▶ summarizing endogenous aggregate state variables, \hat{K}_t and λ_t^A , are heavily correlated

- \Rightarrow solve everything on simulated paths of aggregate variables
- \Rightarrow iterate between simulation and updating of all approximating functions

Challenges III

- need to have some extrapolation in the \hat{K}_t , λ_t^A , space
 - easier for aggregates
 - ► harder for households' consumption functions, which also depend on the asset holdings c^{z_t,η_t}(â_t, K̂_t, λ^A_t)
 - ⇒ fit different simple functions for different wealth levels, which then only depend on \hat{K}_t, λ_t^A : $c^{z_t, \eta_t, \hat{a}_t}(\hat{K}_t, \lambda_t^A)$, for \hat{a}_t on a grid
 - naturally combines with the endogenous grid method by Carroll (2006)
 - captures wealth dependent relative importance of (\hat{K}_t, λ_t^A)

Functions to approximate

We denote our approximations with $g_x(\cdot)$, where the index x denotes what is approximated. The approximations we need are

$$g_{\mathcal{K}}\left(z_{t},\hat{\mathcal{K}}_{t},\lambda_{t}^{\mathcal{A}}\right)\approx\hat{\mathcal{K}}_{t+1}$$
 (14)

$$g_{V^{\text{firm}}}\left(z_{t},\hat{K}_{t},\lambda_{t}^{\mathcal{A}}\right)\approx\hat{V}_{t}^{\text{firm}}$$
 (15)

$$g_{\lambda^{A}}\left(z_{t},\hat{K}_{t},\lambda_{t}^{A},z_{t+1}\right)\approx\lambda_{t+1|z_{t+1}}^{A}$$
(16)

$$g_{c^{A}}\left(z_{t},\hat{K}_{t},\lambda_{t}^{A},\eta_{t},\frac{\hat{a}_{t-1}^{z_{t}}}{1+g}\right)\approx\hat{c}_{t}^{A}$$
(17)

$$g_{c^B}\left(z_t, \hat{K}_t, \lambda_t^A, \eta_t, \frac{\hat{b}_{t-1}}{1+g}\right) \approx \hat{c}_t^B.$$
(18)

Necessity of the wealth share of advanced traders

Relative importance of (\hat{K}_t, λ_t^A) by wealth

Accuracy of policies

	ĉ ^A [%]	ĉ ^B [%]	\hat{c}^{A} [%]	ĉ ^B [%]	ĉ ^A [%]	ĉ ^B [%]	Ŵ ^{firm} [%]
	C [/0]	ر (/ J	η_1	η_1	η_2	η_2	• [/•]
Mean	0.01	0.00	0.01	0.00	0.01	0.00	0.01
90th percentile	0.02	0.00	0.02	0.00	0.02	0.00	0.01
99th percentile	0.06	0.01	0.07	0.01	0.04	0.01	0.02

Accuracy of forecasting functions

		$\lambda^{\mathcal{A}}$ [%]	λ^A [%]	λ^A [%]	λ^{A} [%]
	<i>ĥA</i> [%]		$z_1 \rightarrow z_1$	$z_2 \rightarrow z_1$	$z_3 \rightarrow z_1$
	// [/J]		$z_1 \rightarrow z_2$	$z_2 \rightarrow z_2$	$z_3 \rightarrow z_2$
			$z_1 \rightarrow z_3$	$z_2 \rightarrow z_3$	$z_3 \rightarrow z_3$
			0.01	0.01	0.01
Mean	0.00	0.01	0.01	0.01	0.01
			0.01	0.01	0.01
			0.02	0.02	0.02
90th percentile	0.00	0.02	0.02	0.02	0.02
			0.02	0.02	0.01
99th percentile		0.03	0.03	0.04	0.03
	0.00		0.03	0.04	0.03
			0.03	0.04	0.03

Why no random walk component for TFP?

Following Cochrane (1988), we look at

Left: for "Business Sector TFP" data from Fernald (2014), 1960 - 2018. Right: for "Total Factor Productivity at Constant National Prices" data from FRED, 1960 - 2018. Exogenous Parameters

Idiosyncratic shock process I

Storesletten et al. (2004) estimate a process for log earnings of the form

$$y_{it} = g(x_{it}^{h}, Y_{t}) + u_{it}^{h}$$
 (19)

$$u_{it} = \alpha_i + z_{it}^h + \epsilon_{it} \tag{20}$$

$$z_{it}^{h} = \rho z_{i,t-1}^{h-1} + \eta_{it}$$
(21)

$$\alpha_i \sim \text{iid } N(0, \sigma_{\alpha}^2)$$
 (22)

$$\epsilon_{it} \sim \text{iid } N(0, \sigma_{\epsilon}^2)$$
 (23)

$$\eta_{it} \sim \text{iid } N(0, \sigma_t^2)$$
 (24)

$$\sigma_t^2 = \begin{cases} \sigma_E^2 & \text{in agg. expansions} \\ \sigma_C^2 & \text{in agg. contractions} \end{cases}$$
(25)

Storesletten et al. (2004) estimate $\sigma_{\epsilon} = 0.25$, $\rho = 0.95$ and frequency weighted average of E [σ_t] = 0.17.

We abstract from age and the CCV mechanism and focus on the non-permanent idiosyncratic component of log earnings.

$$x_{it} = \epsilon_{it} + z_{it} \tag{26}$$

$$z_{it} = \rho z_{it-1} + \eta_{it} \tag{27}$$

$$\epsilon_{it} \sim \text{iid } N(0, \sigma_{\epsilon}^2)$$
 (28)

$$\eta_{it} \sim \text{iid } N(0, \sigma_{\eta}^2),$$
 (29)

where we take $\rho = 0.95$, $\sigma_{\epsilon} = 0.25$, and $\sigma_{\eta} = 0.17$ from Storesletten et al. (2004).

Idiosyncratic shock process III

Fit an AR(1) process of the form

$$\begin{aligned} x_{it} &= \bar{x} + \rho_x x_{i,t-1} + \sigma_x \epsilon_{it} \\ \epsilon_t &\sim \text{iid } N(0,1), \end{aligned} \tag{30}$$

Discretize the AR(1) process into a two-state Markov chain using Rouwenhorst (1995) algorithm. Exponentiate the resulting state values and normalize them. We obtain

$$X = \begin{pmatrix} 0.463\\ 1.537 \end{pmatrix}$$
(32)
$$\pi^{X} = \begin{pmatrix} 0.892 & 0.108\\ 0.108 & 0.892 \end{pmatrix}$$
(33)

The resulting cross-sectional standard deviation of log earnings is 0.60 and matches the standard deviation of the process simulated in equations (19) - (25) and is in the ballpark of values typically used in the heterogeneous agents literature (see, *e.g.* Auclert et al., 2021). • Exogenous Parameters