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Real interest rates are often low and below the
growth rate of GDP
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This paper

1. Develop a tractable model of a production economy that consistent with
1.1 business cycle statistics

1.1.1 standard deviation of consumption growth
1.1.2 standard deviation of output growth

1.2 asset prices

1.2.1 low and smooth risk free rate, with r < g
1.2.2 a high market price of risk

2. Investigate conditions for the possibility of infinite debt roll over by the
government

→ possibility of infinite debt roll over depends on aggregate risk
→ impossible in our baseline calibrations, even with r − g = −3.5%

3. Provide a tractable and efficient way to solve the model with a simulated path
version of Krusell and Smith (1998)

X Not in this paper: Welfare. For welfare, see e.g. Brumm et al. (2021); Aguiar
et al. (2021); Amol and Luttmer (2022)
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Model ingredients

▶ Our model combines
▶ Firm entry and exit
▶ Idiosyncratic income risk along the lines of Imrohoroğlu (1989); Aiyagari (1994);

Huggett (1993); Bewley (1983)
▶ Limited stock market participation as Chien et al. (2011)

X Our model does not need
▶ habits or non-standard preferences (we have time separable expected utility

preferences with CRRA utility)
▶ huge levels of risk aversion (we have relative risk aversion γ = 5.5)
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Literature

▶ Limited stock market participation
e.g. Vissing-Jørgensen (2002); Vissing-Jørgensen and Attanasio (2003); Guvenen
(2009); Chien et al. (2011)

▶ Production based asset pricing with idiosyncratic risk
e.g. Storesletten et al. (2007), Favilukis (2013)

▶ Infinite debt roll over with r < g
e.g. Blanchard (2019); Mian et al. (2021); Aguiar et al. (2021); Kocherlakota
(2022); Bloise and Reichlin (2022)
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Model
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Firms entry and exit

▶ A fraction Γ of initial firm survive and the remainder exit losing their capital

▶ Surviving firms produce today and choose their capital for tomorrow

▶ New capital is subject to adjustment costs, so price of capital > 1

▶ Exiting firms are replaced by new startups who start producing next period

▶ Startup enter smaller; fraction s < 1 of average firm size next period

▶ New capital in startups is not subject to adjustment costs

▶ There are rents from creating capital, especially for startups

▶ measure Γ of incumbents and a measure 1− Γ of startups

▶ Γ and s will determine growth rate of surviving firms
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Firms technology
▶ continuum of firms produces single consumption good with identical production

technology

y it = ξ(zt)(k
i
t)

α(At l
t
t )

1−α (1)

▶ zt : aggregate TFP shock. Discreticed first order Markov process
▶ ξ(zt): aggregate TFP (deviation from trend)
▶ k i

t : capital input
▶ l it : labor input
▶ At = (1 + g)t : deterministic trend growth in labor augmenting technology

▶ chooses investment subject to adjustment costs

k i∗t+1 = k it(1− δ) + i it (2)

d i
t = y it − ωt l

i
t − i it − ψ(k i∗t+1, k

i
t) (3)

ψ(k ′, k) := ξadjk

(
k ′

k
− (1− δ + x target)

)2

(4)
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Firms problem

▶ A firm’s Bellman equation is given by

v it = max
k i∗
t+1

d i
t + Γ

∑
zt+1

p
zt+1
t v i∗t+1, (5)

▶ p
zt+1
t := price of aggregate state-contingent security

▶ FOC

1 +
∂ψ(k i∗t+1, k

i
t)

∂k i∗t+1

= Γ
∑
zt+1

ptzt+1

(
rKt+1 + 1− δ −

∂ψ(k i∗∗t+2, k
i∗
t+1)

∂k i∗∗t+2

)
(6)
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Firm Aggregation
▶ value of producing firms

Vt = Dt +
∑
zt+1

p
zt+1
t

Vt+1
Γ

Γ + (1 − Γ)s︸ ︷︷ ︸
disc. from entry and exit

.

▶ value of time t startups

V startup
t :=

∑
zt+1

p
zt+1
t Vt+1

s(1 − Γ)

Γ + (1 − Γ)s
,

▶ aggregate dividends

Dt = Yt − ωtLt − I incumbent
t − Ξt

▶ aggregate adjustment costs

Ξt = ΓKtξ
adj(gk − (1 − δ + xtarget))2

▶ aggregate firm Euler equation

1 + 2ξadj
(
gkt − (1 − δ + xtarget)

)
= Γ

∑
zt+1

p
zt+1
t

(
rKt+1 + 1 − δ + ξ

adj
((

gkt+1

)2
− (1 − δ + xtarget)2

))
▶ growth rate of capital in firms

gk =
1

Γ + (1 − Γ)s

Kt+1

Kt

▶ aggregate rents from startup creation

Ωt =
s(1 − Γ)

Γ + (1 − Γ)s

∑
zt+1

p
zt+1
t Vt+1 − Kt+1

 (7)
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Households
▶ identical, times-separable, vNM utility, where instantaneous utility is CRRA

U((ct)
∞
t=0) = E0

∞∑
t=0

βtu(ct) (8)

u(ct) =
c1−γ
t

1− γ
(9)

▶ households face idiosyncratic income risk. Idiosyncratic shock: ηt , with transition probability πη(ηt+1|ηt)
determines labor endowment l(ηt)

▶ two types of traders as in Chien et al. (2011)
▶ measure 1− µ of non-participants (aka bond traders), can only trade a one period bond with

borrowing constraint bt ≥ 0, and budget constraint

ct = l(ηt)ω(z
t)︸ ︷︷ ︸

labor inc.

+ bt−1︸ ︷︷ ︸
fin. wealth

− btp
b(z t)︸ ︷︷ ︸

savings

(10)

▶ measure µ of advanced traders (aka Arrow traders), can trade a full set of aggregate
state-contingent securities, receive rents from startup creation, face borrowing constraint aztt−1 ≥ 0
and budget constraint

ct = lA(ηt)ω(z
t)︸ ︷︷ ︸

labor inc.

+
1− Γ

Γµ
ζ(z t)︸ ︷︷ ︸

startup inc.

+ aztt−1︸︷︷︸
fin. wealth

−
∑

zt+1∈Z
a
zt+1
t pzt+1 (z t)

︸ ︷︷ ︸
savings

(11)

▶ the prices of the aggregate state-contingent securities, allow us to price all aggregate assets!
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Asset Market Clearing

▶ Total HH assets must equal value of existing firms for each shock

whouseholds
t : = wA

t + wB
t = V firm

t

Intuition for the mechanism
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Calibration
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Exogenous parameters
▶ choose survival rate Γ = 96.5% and startups size s = 0.75 to obtain an exit rate

of 3.5% and employment growth of roughly 0.7%

▶ µ = 10% of advanced traders, as in Chien et al. (2011)

▶ relative risk aversion γ = 5.5

▶ capital share α = 0.33

▶ depreciation of capital δ = 0.1

▶ deterministic trend growth rate g = 2%

▶ AR(1) proces for TFP: ρtfp = 0.8145, following Guvenen (2009), standard
deviation of innovations σtfp = 2.47% to match a standard deviation of output
growth of 2.6% Why no random walk component in GDP?

▶ idiosyncratic shock process: estimate a two-state Markov process to the
non-permanent idiosyncratic component in Storesletten et al. (2004), abstracting
from CCV Details on the idiosyncratic shock process

l(ηt) =

(
0.463
1.537

)
πη =

(
0.892 0.108
0.108 0.892

)
(12)
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Endogenous parameters

We use the two remaining free parameters, time preference parameter β and
adjustment cost parameter ξadj to jointly match the average interest rate

r := E

[
1

pb(z t)

]
and the average market price of risk

mpr := E


√∑

zt+1∈Z π(zt+1|zt)( pzt+1

π(zt+1|zt) − pb(z t))2

pb(z t)


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Matching the two targets
In the benchmark calibration we target a interest rate of r = 0.8% and a market price
of risk of mpr = 50%.

We use Gaussian Processes (see Scheidegger and Bilionis (2019)) to approximate the
mapping from parameters to moments of interest.
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Match and other moments

Model Data Rep. agent

rbond 0.8 % 0.8 % 19 %
MPR 50 % 50 % 12 %
std output growth 2.6 % 2.6 % 2.6 %

std rbond 2.0 % 1.8-2.9 % 3.1 %
std agg. consumption growth 2.0 % 1.4-2.0 % 2.2 %
log V/E 2.8 2.8-3.0 1.8
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Role of firm exit

We vary the death rate and recalibrate the patience and adjustment costs to hold the
average interest rate and market price of risk constant

1 2 3 4 5 6
firm exit rate [%]

2.5

2.6

2.7

2.8

2.9

3.0

3.1

3.2

3.3

E[
lo

g(
V/

E)
]

⇒ Firm exit is needed for a reasonable price earnings ratio
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Very low interest rates
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Lowering the interest rate

We vary the time preference parameter and the adjustment costs parameter to
compare different interest rate levels, keeping the market price of risk at 50%.

β ξadj MPR mean rbond std rbond mean rFirm, K std rFirm, K std Yt+1/Yt std Ct+1/Ct

0.9740 8.300 49.9 % -1.55 % 2.6 % 1.5 % 7.2 % 2.6 % 2.1 %
0.9600 7.000 50.4 % -0.89 % 2.5 % 1.9 % 6.7 % 2.6 % 2.1 %
0.9551 6.333 49.9 % -0.60 % 2.4 % 2.0 % 6.5 % 2.6 % 2.1 %
0.9494 5.814 49.8 % -0.37 % 2.3 % 2.2 % 6.0 % 2.6 % 2.0 %
0.9425 5.449 50.1 % -0.06 % 2.2 % 2.4 % 5.7 % 2.6 % 2.0 %
0.9365 5.082 50.1 % 0.33 % 2.2 % 2.6 % 5.5 % 2.6 % 2.0 %
0.9273 4.514 49.8 % 0.79 % 2.1 % 2.9 % 5.2 % 2.6 % 2.0 %
0.9126 3.922 49.8 % 1.47 % 1.9 % 3.4 % 4.8 % 2.6 % 2.0 %
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Low interest rates and asset prices

▶ pconsole: price of a console with a deterministic payout stream At = (1 + g)t

E
[
rbond

]
E [log(V /E)] E

[
pconsole

]
E [pdv(Lw)] E [pdv(V )] E

[
pdv(V start-ups)

]
-1.55 % 3.16 524 455 3.83 47.2
-0.89 % 3.05 195 171 3.62 19.3
-0.60 % 3.02 162 140 3.52 16.1
-0.37 % 2.99 133 115 3.45 13.6
-0.06 % 2.94 106 90.8 3.34 11.2
0.33 % 2.89 90 77.3 3.27 9.89
0.79 % 2.84 73 61.8 3.15 8.31
1.47 % 2.75 55 46.3 2.99 6.72

low interest rates and the wealth distribution
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Infinite debt rollover
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Simple example

▶ With certainty: if and only if r ≤ g , is infinite debt rollover possible

▶ with uncertainty: E [r ] ≤ E [g ] is neither necessary nor sufficient (see Kocherlakota
(2022), Bloise and Reichlin (2022))

▶ consider an S-state Markov chain

▶ let Q denote the S × S matrix of Arrow prices

▶ value of an infinite payout stream of 1

lim
n→∞

(I + Q + . . .+ Qn)

 1
...
1

 (13)

converges ⇔ value of largest eigenvalue of Q is < 1 ⇔ infinite debt rollover
impossible
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Simple example continued

▶ Consider

Qϵ =


1
R1

ϵ . . . ϵ
1
R2

ϵ . . . ϵ
...

...
. . .

...
1
RS

ϵ . . . ϵ


▶ consider ϵ→ 0, largest eigenvalue < 1 ⇔ R1 > 1.
▶ this poses basically no restriction on the average interest rate.
▶ all we can say is

i) for debt rollover to be possible, there must be one state s for which Rs < 1
ii) for debt rollover to be impossible there must be a state s ′ for which Rs′ > 1

▶ a model to investigate the possibility of infinite debt rollover requires a theory for
state prices, allowing for E [r ] < g ⇒ our model is ideally suited for this
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Infinite debt rollover in our model

1 0 1 2
r

0.25
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m
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price console [log]
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6.00

6.25

Solved
Solved, inf. price
Solved, instable price

⇒ infinite debt rollover impossible for our benchmark calibration Computational Method
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Conclusion

▶ we provide a tractable model of a production economy with heterogeneous agents,
which

1. is consistent with business cycles statistics
2. is consistent with a low interest rate and a high market price of risk
3. allows for E [r ] < E [g ]
4. provides a theory for state-prices

▶ we use this model to investigate the possibility of infinite debt roll-over →
benchmark calibration does not allow for infinite debt rollover

▶ More in the paper:
▶ Computational method for a simulated-path Krusell and Smith (1998) algorithm
▶ More on the wealth distribution and low interest rates
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Thank you!
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Intuition for the mechanism in Chien et al. (2011)

Asset Markt Clearing
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Low interest rates and the wealth distribution

▶ λA: wealth share held by advanced traders

▶ CA/B : aggregate consumption by each group of traders

▶ µ( ˆa/bt = 0): fraction of constrained households

E
[
rbond

]
E
[
λA

]
Std

(
λA

) E
[
λA|zt=good

]
E[λA|zt=bad]

Std

(
CA
t+1

CA
t

)
Std

(
CB
t+1

CB
t

)
E [µ(ât = 0)] E

[
µ(b̂t = 0)

]
-1.55 % 35.5 % 12.9 % 2.8 8.5 % 1.0 % 1.1 % 10.7 %
-0.89 % 33.4 % 12.1 % 2.8 8.6 % 1.0 % 1.3 % 10.8 %
-0.60 % 32.0 % 11.6 % 2.8 8.7 % 1.0 % 1.4 % 10.7 %
-0.37 % 31.0 % 11.2 % 2.7 8.5 % 1.0 % 1.5 % 10.8 %
-0.06 % 30.5 % 10.6 % 2.7 8.3 % 1.0 % 1.7 % 10.9 %
0.33 % 29.0 % 10.6 % 2.8 8.3 % 1.0 % 1.8 % 10.9 %
0.79 % 27.6 % 9.9 % 2.7 8.3 % 1.0 % 2.0 % 11.0 %
1.47 % 26.2 % 9.0 % 2.6 8.4 % 1.0 % 2.1 % 11.3 %
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Low interest rates and the wealth distribution

Back to low interest rates and asset prices
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Computational Method
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Challenges I

▶ rich wealth distribution, within and across types

⇒ summarize the wealth distribution in the spirit of Krusell and Smith (1998) and
Kubler and Scheidegger (2019), with (detrended) aggregate capital and the
wealth share of advanced traders, (K̂t , λ

A
t )

▶ wealth distribution is moving a lot, affecting prices in a non-linear way

⇒ allow for non-linear dependence of policy functions on (K̂t , λ
A
t )

35 / 27



Challenges II

▶ summarizing endogenous aggregate state variables, K̂t and λ
A
t , are heavily

correlated

⇒ solve everything on simulated paths of aggregate variables

⇒ iterate between simulation and updating of all approximating functions
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Challenges III

▶ need to have some extrapolation in the K̂t , λ
A
t , space

▶ easier for aggregates
▶ harder for households’ consumption functions, which also depend on the asset

holdings czt ,ηt (ât , K̂t , λ
A
t )

⇒ fit different simple functions for different wealth levels, which then only depend on
K̂t , λ

A
t : c

zt ,ηt ,ât (K̂t , λ
A
t ), for ât on a grid

▶ naturally combines with the endogenous grid method by Carroll (2006)
▶ captures wealth dependent relative importance of (K̂t , λ

A
t )
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Functions to approximate

We denote our approximations with gx(·), where the index x denotes what is
approximated. The approximations we need are

gK

(
zt , K̂t , λ

A
t

)
≈ K̂t+1 (14)

gV firm

(
zt , K̂t , λ

A
t

)
≈ V̂ firm

t (15)

gλA

(
zt , K̂t , λ

A
t , zt+1

)
≈ λAt+1|zt+1

(16)

gcA

(
zt , K̂t , λ

A
t , ηt ,

âztt−1

1 + g

)
≈ ĉAt (17)

gcB

(
zt , K̂t , λ

A
t , ηt ,

b̂t−1

1 + g

)
≈ ĉBt . (18)
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Necessity of the wealth share of advanced traders
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Relative importance of (K̂t, λ
A
t ) by wealth
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Accuracy of policies

ĉA [%] ĉB [%]
ĉA [%]
η1

ĉB [%]
η1

ĉA [%]
η2

ĉB [%]
η2

V̂ firm [%]

Mean 0.01 0.00 0.01 0.00 0.01 0.00 0.01
90th percentile 0.02 0.00 0.02 0.00 0.02 0.00 0.01
99th percentile 0.06 0.01 0.07 0.01 0.04 0.01 0.02
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Accuracy of forecasting functions

K̂A [%] λA [%]

λA [%]
z1 → z1
z1 → z2
z1 → z3

λA [%]
z2 → z1
z2 → z2
z2 → z3

λA [%]
z3 → z1
z3 → z2
z3 → z3

Mean 0.00 0.01
0.01
0.01
0.01

0.01
0.01
0.01

0.01
0.01
0.01

90th percentile 0.00 0.02
0.02
0.02
0.02

0.02
0.02
0.02

0.02
0.02
0.01

99th percentile 0.00 0.03
0.03
0.03
0.03

0.04
0.04
0.04

0.03
0.03
0.03

back to infinite debt rollover
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Why no random walk component for TFP?
Following Cochrane (1988), we look at

1

k
var(log(TFPt)− log(TFPt−k))

k increasing︷︸︸︷→

{
0 if: TFP is trend-stationary.

const. if: TFP follows a random walk.
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Left: for “Business Sector TFP” data from Fernald (2014), 1960 - 2018.
Right: for “Total Factor Productivity at Constant National Prices” data from FRED, 1960 - 2018.
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Idiosyncratic shock process I

Storesletten et al. (2004) estimate a process for log earnings of the form

yit = g(xhit ,Yt) + uhit (19)

uit = αi + zhit + ϵit (20)

zhit = ρzh−1
i ,t−1 + ηit (21)

αi ∼ iid N(0, σ2α) (22)

ϵit ∼ iid N(0, σ2ϵ ) (23)

ηit ∼ iid N(0, σ2t ) (24)

σ2t =

{
σ2E in agg. expansions

σ2C in agg. contractions
. (25)

Storesletten et al. (2004) estimate σϵ = 0.25, ρ = 0.95 and frequency weighted
average of E [σt ] = 0.17.

44 / 27



Idiosyncratic shock process II

We abstract from age and the CCV mechanism and focus on the non-permanent
idiosyncratic component of log earnings.

xit = ϵit + zit (26)

zit = ρzit−1 + ηit (27)

ϵit ∼ iid N(0, σ2ϵ ) (28)

ηit ∼ iid N(0, σ2η), (29)

where we take ρ = 0.95, σϵ = 0.25, and ση = 0.17 from Storesletten et al. (2004).
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Idiosyncratic shock process III

Fit an AR(1) process of the form

xit = x̄ + ρxxi ,t−1 + σxϵit (30)

ϵt ∼ iid N(0, 1), (31)

Discretize the AR(1) process into a two-state Markov chain using Rouwenhorst (1995)
algorithm. Exponentiate the resulting state values and normalize them. We obtain

X =

(
0.463
1.537

)
(32)

πX =

(
0.892 0.108
0.108 0.892

)
(33)

The resulting cross-sectional standard deviation of log earnings is 0.60 and matches the
standard deviation of the process simulated in equations (19) - (25) and is in the
ballpark of values typically used in the heterogeneous agents literature (see, e.g.
Auclert et al., 2021). Exogenous Parameters
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