Aggregate Implications of Corporate Lending by Nonfinancial Firms

Miguel H. Ferreira Queen Mary University of London

ESEM, August 2023

Miguel H. Ferreira

Corporate Lending by Nonfinancial Firms

ESEM

1/15

Nonfinancial firms savings portfolio

"When you buy a share of Apple stock, you do not simply buy into a \$1 trillion technology company. You also buy a share of one of the world's largest investment companies: Braeburn Capital, a wholly owned subsidiary of Apple. Braeburn manages a \$244 billion financial portfolio — 70% of Apple's total book assets."

Wall Street Journal on August 23, 2018 "Apple is a Hedge Fund That Makes Phones"

伺 ト イヨト イヨト ヨヨ のくで

Nonfinancial firms financial assets

How does the portfolio composition affects:

- I Firms' investment decisions?
- Aggregate dynamics?

Miguel H. Ferreira

< ⊒ >

Nonfinancial firms financial assets

How does the portfolio composition affects:

- I Firms' investment decisions?
- Aggregate dynamics?

Miguel H. Ferreira

Nonfinancial firms financial assets

How does the portfolio composition affects:

- Firms' investment decisions?
- Aggregate dynamics?

• Empirical

- I use existing and collected data on portfolio composition by nonfinancial firms
- Characterize the heterogeneity in the portfolio composition across firms
- Establish if the portfolio composition affects firms' investment decisions
- Model
 - Heterogeneous firms using capital to produce
 - Portfolio of financial assets
 - Risk-free asset
 - Risky asset: Corporate bonds
 - Identify micro mechanisms and quantify macro outcomes

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目目 のへぐ

• Empirical

- I use existing and collected data on portfolio composition by nonfinancial firms
- Characterize the heterogeneity in the portfolio composition across firms
- Establish if the portfolio composition affects firms' investment decisions
- Model
 - Heterogeneous firms using capital to produce
 - Portfolio of financial assets
 - Risk-free asset
 - Risky asset: Corporate bonds
 - Identify micro mechanisms and quantify macro outcomes

Corporate Lending by Nonfinancial Firms

4/15

Empirical

- I use existing and collected data on portfolio composition by nonfinancial firms
- Characterize the heterogeneity in the portfolio composition across firms
- Establish if the portfolio composition affects firms' investment decisions
- Model
 - Heterogeneous firms using capital to produce
 - Portfolio of financial assets
 - Risk-free asset
 - Risky asset: Corporate bonds
 - Identify micro mechanisms and quantify macro outcomes

• Empirical

- I use existing and collected data on portfolio composition by nonfinancial firms
- Characterize the heterogeneity in the portfolio composition across firms
- Establish if the portfolio composition affects firms' investment decisions
- Model
 - Heterogeneous firms using capital to produce
 - Portfolio of financial assets
 - Risk-free asset
 - Risky asset: Corporate bonds
 - Identify micro mechanisms and quantify macro outcomes

• Empirical

- I use existing and collected data on portfolio composition by nonfinancial firms
- Characterize the heterogeneity in the portfolio composition across firms
- Establish if the portfolio composition affects firms' investment decisions

Model

- Heterogeneous firms using capital to produce
- Portfolio of financial assets
 - Risk-free asset
 - Risky asset: Corporate bonds
- Identify micro mechanisms and quantify macro outcomes

• Empirical

- I use existing and collected data on portfolio composition by nonfinancial firms
- Characterize the heterogeneity in the portfolio composition across firms
- Establish if the portfolio composition affects firms' investment decisions

Model

- Heterogeneous firms using capital to produce
- Portfolio of financial assets
 - Risk-free asset
 - Risky asset: Corporate bonds
- Identify micro mechanisms and quantify macro outcomes

• Empirical

- I use existing and collected data on portfolio composition by nonfinancial firms
- Characterize the heterogeneity in the portfolio composition across firms
- Establish if the portfolio composition affects firms' investment decisions

Model

- Heterogeneous firms using capital to produce
- Portfolio of financial assets
 - Risk-free asset
 - Risky asset: Corporate bonds
- Identify micro mechanisms and quantify macro outcomes

• Empirical

- I use existing and collected data on portfolio composition by nonfinancial firms
- Characterize the heterogeneity in the portfolio composition across firms
- Establish if the portfolio composition affects firms' investment decisions

Model

- Heterogeneous firms using capital to produce
- Portfolio of financial assets
 - Risk-free asset
 - Risky asset: Corporate bonds
- Identify micro mechanisms and quantify macro outcomes

Empirical

- I use existing and collected data on portfolio composition by nonfinancial firms
- Characterize the heterogeneity in the portfolio composition across firms
- Establish if the portfolio composition affects firms' investment decisions

Model

- Heterogeneous firms using capital to produce
- Portfolio of financial assets
 - Risk-free asset
 - Risky asset: Corporate bonds
- Identify micro mechanisms and quantify macro outcomes

▲母 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ヨ ヨ ● ○ ○ ○

• Empirical - Three stylized facts

- Share of risky asset holdings increasing over the last 30 years
- Large heterogeneity in the portfolio composition across firms
- Investment drop during Great Recession twice as large for firms with high share of risky savings
- Model
 - Two important determinants of portfolio composition:
 - 1. Size
 - 2. Link between production and financial side of the firms
 - Decrease in interest rate fully explains increase in risky asset holdings over last 30 years
 - Portfolio composition amplifies the aggregate investment decrease by
 50% in response to large productivity shock

Miguel H. Ferreira

Corporate Lending by Nonfinancial Firms

5/15

• Empirical - Three stylized facts

- Share of risky asset holdings increasing over the last 30 years
- Large heterogeneity in the portfolio composition across firms
- Investment drop during Great Recession twice as large for firms with high share of risky savings
- Model
 - Two important determinants of portfolio composition:
 - 1. Size
 - 2. Link between production and financial side of the firms
 - Decrease in interest rate fully explains increase in risky asset holdings over last 30 years
 - Portfolio composition amplifies the aggregate investment decrease by
 50% in response to large productivity shock

Miguel H. Ferreira

Corporate Lending by Nonfinancial Firms

5/15

- Empirical Three stylized facts
 - Share of risky asset holdings increasing over the last 30 years
 - Large heterogeneity in the portfolio composition across firms
 - Investment drop during Great Recession twice as large for firms with high share of risky savings
- Model
 - Two important determinants of portfolio composition:
 - 1. Size
 - 2. Link between production and financial side of the firms
 - Decrease in interest rate fully explains increase in risky asset holdings over last 30 years
 - Portfolio composition amplifies the aggregate investment decrease by
 50% in response to large productivity shock

Miguel H. Ferreira

Corporate Lending by Nonfinancial Firms

5/15

- Empirical Three stylized facts
 - Share of risky asset holdings increasing over the last 30 years
 - Large heterogeneity in the portfolio composition across firms
 - Investment drop during Great Recession twice as large for firms with high share of risky savings
- Model
 - Two important determinants of portfolio composition:
 - 1. Size
 - 2. Link between production and financial side of the firms
 - Decrease in interest rate fully explains increase in risky asset holdings over last 30 years
 - Portfolio composition amplifies the aggregate investment decrease by
 50% in response to large productivity shock

Miguel H. Ferreira

Corporate Lending by Nonfinancial Firms

5/15

- Empirical Three stylized facts
 - Share of risky asset holdings increasing over the last 30 years
 - Large heterogeneity in the portfolio composition across firms
 - Investment drop during Great Recession twice as large for firms with high share of risky savings

Model

- Two important determinants of portfolio composition:
 - 1. Size
 - 2. Link between production and financial side of the firms
- Decrease in interest rate fully explains increase in risky asset holdings over last 30 years
- Portfolio composition amplifies the aggregate investment decrease by
 50% in response to large productivity shock

Miguel H. Ferreira

Corporate Lending by Nonfinancial Firms

5 / 15

- Empirical Three stylized facts
 - Share of risky asset holdings increasing over the last 30 years
 - Large heterogeneity in the portfolio composition across firms
 - Investment drop during Great Recession twice as large for firms with high share of risky savings

Model

- Two important determinants of portfolio composition:
 - 1. Size
 - 2. Link between production and financial side of the firms
- Decrease in interest rate fully explains increase in risky asset holdings over last 30 years
- Portfolio composition amplifies the aggregate investment decrease by
 50% in response to large productivity shock

Miguel H. Ferreira

Corporate Lending by Nonfinancial Firms

5 / 15

- Empirical Three stylized facts
 - Share of risky asset holdings increasing over the last 30 years
 - Large heterogeneity in the portfolio composition across firms
 - Investment drop during Great Recession twice as large for firms with high share of risky savings

Model

• Two important determinants of portfolio composition:

1. Size

- 2. Link between production and financial side of the firms
- Decrease in interest rate fully explains increase in risky asset holdings over last 30 years
- Portfolio composition amplifies the aggregate investment decrease by
 50% in response to large productivity shock

Miguel H. Ferreira

Corporate Lending by Nonfinancial Firms

5 / 15

- Empirical Three stylized facts
 - Share of risky asset holdings increasing over the last 30 years
 - Large heterogeneity in the portfolio composition across firms
 - Investment drop during Great Recession twice as large for firms with high share of risky savings

Model

- Two important determinants of portfolio composition:
 - 1. Size
 - 2. Link between production and financial side of the firms
- Decrease in interest rate fully explains increase in risky asset holdings over last 30 years
- Portfolio composition amplifies the aggregate investment decrease by
 50% in response to large productivity shock

Miguel H. Ferreira

Corporate Lending by Nonfinancial Firms

5 / 15

- Empirical Three stylized facts
 - Share of risky asset holdings increasing over the last 30 years
 - Large heterogeneity in the portfolio composition across firms
 - Investment drop during Great Recession twice as large for firms with high share of risky savings

Model

- Two important determinants of portfolio composition:
 - 1. Size
 - 2. Link between production and financial side of the firms
- Decrease in interest rate fully explains increase in risky asset holdings over last 30 years
- Portfolio composition amplifies the aggregate investment decrease by
 50% in response to large productivity shock

- Empirical Three stylized facts
 - Share of risky asset holdings increasing over the last 30 years
 - Large heterogeneity in the portfolio composition across firms
 - Investment drop during Great Recession twice as large for firms with high share of risky savings

Model

- Two important determinants of portfolio composition:
 - 1. Size
 - 2. Link between production and financial side of the firms
- Decrease in interest rate fully explains increase in risky asset holdings over last 30 years
- Portfolio composition amplifies the aggregate investment decrease by **50%** in response to large productivity shock

Related Literature

- Firm dynamics and propagation of shocks: Hopenhayn (1992), Khan and Thomas (2008), Jermann and Quadrini(2012), Khan and Thomas (2013), Clementi and Palazzo (2016), Carvalho and Grassi (2019)
 - $\Rightarrow\,$ Novel channel via the propagation from borrowers to nonfinancial lending firms
- Firms' balance sheet compositon: Crouzet (2017); Buera and Karmakar (2018); Lanteri (2018); Jeenas (2018); Xiao (2018); Melcangi (2018); Ottonello and Winberry (2018); Salomao and Begenau (2018)
 - $\Rightarrow\,$ Implications of portfolio composition on firms decisions and aggregate outcomes
- Firms' savings composition: Almeida et al. (2004); Bates et al. (2009); Riddick and Whited (2009); Nikolov and Whited (2014); Bigio (2015); Cardella et al. (2015); Lyandres and Palazzo (2016); Begenau and Palazzo (2017); Chen et al. (2017); Cunha and Pollet (2017); Duchin et al. (2017); Darmouni and Mota (2020)
 - ⇒ Idiosyncratic and aggregate determinants of the composition of savings across the firm distribution

Miguel H. Ferreira

Corporate Lending by Nonfinancial Firms

ESEM

6/15

Roadmap

- 1. Stylized Facts
- 2. Model
- 3. Calibration
- 4. Results and mechanism
- 5. Conclusion

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Roadmap

1. Stylized Facts

- 2. Model
- 3. Calibration
- 4. Results and mechanism
- 5. Conclusion

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

1. Share of risky assets increasing over the last 30 years

- Risky securities: Non-money-like assets (Corporate bonds, equity, etc)
- Share of risky assets grew from 26% to above 40% in 30-years

<<p>A 目 > A 目 > A 目 > 目 = のQQ

- 1. Share of risky assets increasing over the last 30 years
 - Risky securities: Non-money-like assets (Corporate bonds, equity, etc)
 - Share of risky assets grew from 26% to above 40% in 30-years

A = A = A = A = A = A = A

- 1. Share of risky assets increasing over the last 30 years
 - Risky securities: Non-money-like assets (Corporate bonds, equity, etc)
 - $\bullet\,$ Share of risky assets grew from 26% to above 40% in 30-years

SIN NOR

- 1. Share of risky assets increasing over the last 30 years
 - Risky securities: Non-money-like assets (Corporate bonds, equity, etc)
 - Share of risky assets grew from 26% to above 40% in 30-years

- 2. Share of risky assets increasing on firm size
 - Micro data on U.S. publicly listed firms during the 2000-2018 period
 - Proxy for risky assets Long-term financial investments
 - Larger firms hold on average a riskier portfolio Stylized fact 2
 - Robustness: QFR data, which is representative of the universe of U.S. firms Robustness
- 3. Firms with a riskier portfolio dropped investment by more during Great Recession
 - Investment of firms with high vs low share of risky asset holdings during great recession
 - Firms in control group dropped investment on average 9.7%
 - Firms in treatment group dropped investment 7 p.p. more Stylized fact 3
 - Robustness: Replicate exercise using only corporate bond holdings data
 Robustness

9/15

- 2. Share of risky assets increasing on firm size
 - Micro data on U.S. publicly listed firms during the 2000-2018 period
 - Proxy for risky assets Long-term financial investments
 - Larger firms hold on average a riskier portfolio Stylized fact 2
 - Robustness: QFR data, which is representative of the universe of U.S. firms Robustness
- 3. Firms with a riskier portfolio dropped investment by more during Great Recession
 - Investment of firms with high vs low share of risky asset holdings during great recession
 - Firms in control group dropped investment on average 9.7%
 - Firms in treatment group dropped investment 7 p.p. more Stylized fact 3
 - Robustness: Replicate exercise using only corporate bond holdings data
 Robustness

- 2. Share of risky assets increasing on firm size
 - Micro data on U.S. publicly listed firms during the 2000-2018 period
 - Proxy for risky assets Long-term financial investments
 - Larger firms hold on average a riskier portfolio (Stylized fact 2)
 - Robustness: QFR data, which is representative of the universe of U.S. firms Robustness
- 3. Firms with a riskier portfolio dropped investment by more during Great Recession
 - Investment of firms with high vs low share of risky asset holdings during great recession
 - Firms in control group dropped investment on average 9.7%
 - Firms in treatment group dropped investment 7 p.p. more Stylized fact 3
 - Robustness: Replicate exercise using only corporate bond holdings data
 Robustness

- 2. Share of risky assets increasing on firm size
 - Micro data on U.S. publicly listed firms during the 2000-2018 period
 - Proxy for risky assets Long-term financial investments
 - Larger firms hold on average a riskier portfolio Stylized fact 2
 - Robustness: QFR data, which is representative of the universe of U.S. firms Robustness
- 3. Firms with a riskier portfolio dropped investment by more during Great Recession
 - Investment of firms with high vs low share of risky asset holdings during great recession
 - Firms in control group dropped investment on average 9.7%
 - Firms in treatment group dropped investment 7 p.p. more Stylized fact 3
 - Robustness: Replicate exercise using only corporate bond holdings data
 Robustness

9/15

- 2. Share of risky assets increasing on firm size
 - Micro data on U.S. publicly listed firms during the 2000-2018 period
 - Proxy for risky assets Long-term financial investments
 - Larger firms hold on average a riskier portfolio Stylized fact 2
 - Robustness: QFR data, which is representative of the universe of U.S. firms Robustness
- 3. Firms with a riskier portfolio dropped investment by more during Great Recession
 - Investment of firms with high vs low share of risky asset holdings during great recession
 - Firms in control group dropped investment on average 9.7%
 - Firms in treatment group dropped investment 7 p.p. more Stylized fact 3
 - Robustness: Replicate exercise using only corporate bond holdings data
 Robustness

- 2. Share of risky assets increasing on firm size
 - Micro data on U.S. publicly listed firms during the 2000-2018 period
 - Proxy for risky assets Long-term financial investments
 - Larger firms hold on average a riskier portfolio Stylized fact 2
 - Robustness: QFR data, which is representative of the universe of U.S. firms Robustness

3. Firms with a riskier portfolio dropped investment by more during Great Recession

- Investment of firms with high vs low share of risky asset holdings during great recession
- Firms in control group dropped investment on average 9.7%
- Firms in treatment group dropped investment 7 p.p. more Stylized fact 3
- Robustness: Replicate exercise using only corporate bond holdings data
 Robustness

ESEM

9/15

- 2. Share of risky assets increasing on firm size
 - Micro data on U.S. publicly listed firms during the 2000-2018 period
 - Proxy for risky assets Long-term financial investments
 - Larger firms hold on average a riskier portfolio Stylized fact 2
 - Robustness: QFR data, which is representative of the universe of U.S. firms Robustness
- 3. Firms with a riskier portfolio dropped investment by more during Great Recession
 - Investment of firms with high vs low share of risky asset holdings during great recession
 - Firms in control group dropped investment on average 9.7%
 - Firms in treatment group dropped investment 7 p.p. more Stylized fact 3
 - Robustness: Replicate exercise using only corporate bond holdings data
 Robustness

- 2. Share of risky assets increasing on firm size
 - Micro data on U.S. publicly listed firms during the 2000-2018 period
 - Proxy for risky assets Long-term financial investments
 - Larger firms hold on average a riskier portfolio Stylized fact 2
 - Robustness: QFR data, which is representative of the universe of U.S. firms Robustness
- 3. Firms with a riskier portfolio dropped investment by more during Great Recession
 - Investment of firms with high vs low share of risky asset holdings during great recession
 - $\bullet\,$ Firms in control group dropped investment on average 9.7%
 - Firms in treatment group dropped investment 7 p.p. more Stylized fact 3
 - Robustness: Replicate exercise using only corporate bond holdings data
 Robustness

- 2. Share of risky assets increasing on firm size
 - Micro data on U.S. publicly listed firms during the 2000-2018 period
 - Proxy for risky assets Long-term financial investments
 - Larger firms hold on average a riskier portfolio Stylized fact 2
 - Robustness: QFR data, which is representative of the universe of U.S. firms Robustness
- 3. Firms with a riskier portfolio dropped investment by more during Great Recession
 - Investment of firms with high vs low share of risky asset holdings during great recession
 - Firms in control group dropped investment on average 9.7%
 - Firms in treatment group dropped investment 7 p.p. more Stylized fact 3
 - Robustness: Replicate exercise using only corporate bond holdings data
 Robustness

- 2. Share of risky assets increasing on firm size
 - Micro data on U.S. publicly listed firms during the 2000-2018 period
 - Proxy for risky assets Long-term financial investments
 - Larger firms hold on average a riskier portfolio Stylized fact 2
 - Robustness: QFR data, which is representative of the universe of U.S. firms Robustness
- 3. Firms with a riskier portfolio dropped investment by more during Great Recession
 - Investment of firms with high vs low share of risky asset holdings during great recession
 - $\bullet\,$ Firms in control group dropped investment on average 9.7%
 - Firms in treatment group dropped investment 7 p.p. more Stylized fact 3
 - Robustness: Replicate exercise using only corporate bond holdings data
 Robustness

Roadmap

- 1. Stylized Facts
- 2. Model
- 3. Calibration
- 4. Results and mechanism
- 5. Conclusion

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• Heterogeneous firms business-cycle model Firm's problem

- Firms invest in productive capital k, subject to convex adjustment costs and capital irreversibility Production
- Firms save in Financial side
 - Risk-free assets a^{rf} at a guaranteed rate r^{rf}
 - Corporate bonds a^r at uncertain rate
- Firms borrow b at a given interest rate r^{b} Liabilities
 - If a firm fails to pay back its debt b, it will default and leave the market
- Idiosyncratic ϵ and aggregate z productivity shocks
- Continuum of potential entrants, draw productivity signal and enter if value of entering larger than cost of entry Entrants

• Heterogeneous firms business-cycle model Firm's problem

- Firms invest in productive capital k, subject to convex adjustment costs and capital irreversibility Production
- Firms save in Financial side
 - Risk-free assets a^{rf} at a guaranteed rate r^{rf}
 - Corporate bonds *a^r* at uncertain rate
- Firms borrow b at a given interest rate r^{b} Liabilities
 - If a firm fails to pay back its debt b, it will default and leave the market
- Idiosyncratic ϵ and aggregate z productivity shocks
- Continuum of potential entrants, draw productivity signal and enter if value of entering larger than cost of entry Entrants

• Heterogeneous firms business-cycle model Firm's problem

- Firms invest in productive capital k, subject to convex adjustment costs and capital irreversibility Production
- Firms save in Financial side
 - Risk-free assets a^{rf} at a guaranteed rate r^{rf}
 - Corporate bonds *a^r* at uncertain rate
- Firms borrow b at a given interest rate r^{b} Liabilities
 - If a firm fails to pay back its debt b, it will default and leave the market
- Idiosyncratic ϵ and aggregate z productivity shocks
- Continuum of potential entrants, draw productivity signal and enter if value of entering larger than cost of entry Entrants

- Heterogeneous firms business-cycle model Firm's problem
 - Firms invest in productive capital k, subject to convex adjustment costs and capital irreversibility **Production**
 - Firms save in Financial side
 - Risk-free assets a^{rf} at a guaranteed rate r^{rf}
 - Corporate bonds a^r at uncertain rate
 - Firms borrow b at a given interest rate r^{b} Liabilities
 - If a firm fails to pay back its debt b, it will default and leave the market
 - Idiosyncratic ϵ and aggregate z productivity shocks
 - Continuum of potential entrants, draw productivity signal and enter if value of entering larger than cost of entry Entrants

- Heterogeneous firms business-cycle model Firm's problem
 - Firms invest in productive capital k, subject to convex adjustment costs and capital irreversibility **Production**
 - Firms save in Financial side
 - Risk-free assets a^{rf} at a guaranteed rate r^{rf}
 - Corporate bonds a^r at uncertain rate
 - Firms borrow b at a given interest rate r^{b} Liabilities
 - If a firm fails to pay back its debt b, it will default and leave the market
 - Idiosyncratic ϵ and aggregate z productivity shocks
 - Continuum of potential entrants, draw productivity signal and enter if value of entering larger than cost of entry Entrants

- Heterogeneous firms business-cycle model Firm's problem
 - Firms invest in productive capital k, subject to convex adjustment costs and capital irreversibility **Production**
 - Firms save in Financial side
 - Risk-free assets a^{rf} at a guaranteed rate r^{rf}
 - Corporate bonds a^r at uncertain rate
 - Firms borrow b at a given interest rate r^{b} Liabilities
 - If a firm fails to pay back its debt b, it will default and leave the market
 - Idiosyncratic ϵ and aggregate z productivity shocks
 - Continuum of potential entrants, draw productivity signal and enter if value of entering larger than cost of entry Entrants

- Heterogeneous firms business-cycle model Firm's problem
 - Firms invest in productive capital k, subject to convex adjustment costs and capital irreversibility **Production**
 - Firms save in Financial side
 - Risk-free assets a^{rf} at a guaranteed rate r^{rf}
 - Corporate bonds a^r at uncertain rate
 - Firms borrow b at a given interest rate r^{b} Liabilities
 - If a firm fails to pay back its debt b, it will default and leave the market
 - Idiosyncratic ϵ and aggregate z productivity shocks
 - Continuum of potential entrants, draw productivity signal and enter if value of entering larger than cost of entry Entrants

10/15

1 Intra-period stage: After observing $\epsilon_{
m s}$ firms can adjust assets

- 2 Production stage: After observing *z* and *r^r*, firms either produce or default
- 3 Inter-period stage: Conditional on surviving exit shock, firm adjust debt and assets

Variables with a hat are intra-period decisions, whereas the non-hat variables are inter-period

(4回) (三) (三) (三) (三) (○) (○)

1 Intra-period stage: After observing ϵ , firms can adjust assets

- 2 Production stage: After observing z and r^r, firms either produce or default
- 3 Inter-period stage: Conditional on surviving exit shock, firm adjust debt and assets

Variables with a hat are intra-period decisions, whereas the non-hat variables are inter-period

(日本)

- 1 Intra-period stage: After observing ϵ , firms can adjust assets
- 2 Production stage: After observing z and r^r , firms either produce or default
- 3 Inter-period stage: Conditional on surviving exit shock, firm adjust debt and assets

Variables with a hat are intra-period decisions, whereas the non-hat variables are inter-period

<<p>A 目 > A 目 > A 目 > 目 = のQQ

- 1 Intra-period stage: After observing ϵ , firms can adjust assets
- 2 Production stage: After observing z and r^r , firms either produce or default
- 3 Inter-period stage: Conditional on surviving exit shock, firm adjust debt and assets

Variables with a hat are intra-period decisions, whereas the non-hat variables are inter-period

JOC ELE

A B M A B M

- 1 Intra-period stage: After observing ϵ , firms can adjust assets
- 2 Production stage: After observing z and r^r , firms either produce or default
- 3 Inter-period stage: Conditional on surviving exit shock, firm adjust debt and assets

Variables with a hat are intra-period decisions, whereas the non-hat variables are inter-period

Roadmap

- 1. Stylized Facts
- 2. Model
- 3. Calibration
- 4. Results and mechanism
- 5. Conclusion

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• Two objectives

- 1. Discipline portfolio composition across firms
- 2. Discipline return on risky assets
- 6 free parameters: C_f , F_e , ω , ρ_z , σ_z , σ_ϵ
- 6 moments to match:
 - Average share of risky savings
 - Standard deviation of share risky savings
 - Mean share risky $k \geq Q3_k/{
 m mean}$ share risky $k \leq Q1_k$
 - Default rate
 - Share of debt in firms age=1
 - Entrants average leverage

12/15

< ロ > < 同 > < 三 > < 三 > < 三 > < 三 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• Two objectives

1. Discipline portfolio composition across firms

2. Discipline return on risky assets

• 6 free parameters: C_f , F_e , ω , ρ_z , σ_z , σ_ϵ

• 6 moments to match:

- Average share of risky savings
- Standard deviation of share risky savings
- Mean share risky $k \geq Q3_k$ /mean share risky $k \leq Q1_k$
- Default rate
- Share of debt in firms age=1
- Entrants average leverage

< ロ > < 同 > < 三 > < 三 > < 三 > < 三 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Two objectives
 - 1. Discipline portfolio composition across firms
 - 2. Discipline return on risky assets
- 6 free parameters: C_f , F_e , ω , ρ_z , σ_z , σ_ϵ
- 6 moments to match:
 - Average share of risky savings
 - Standard deviation of share risky savings
 - Mean share risky $k \geq Q3_k/{
 m mean}$ share risky $k \leq Q1_k$
 - Default rate
 - Share of debt in firms age=1
 - Entrants average leverage

12/15

< ロ > < 同 > < 三 > < 三 > < 三 > < 三 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Two objectives
 - 1. Discipline portfolio composition across firms
 - 2. Discipline return on risky assets
- 6 free parameters: C_f , F_e , ω , ρ_z , σ_z , σ_ϵ
- 6 moments to match:
 - Average share of risky savings
 - Standard deviation of share risky savings
 - Mean share risky $k \geq Q3_k$ /mean share risky $k \leq Q1_k$
 - Default rate
 - Share of debt in firms age=1
 - Entrants average leverage

12/15

< ロ > < 同 > < 三 > < 三 > < 三 > < 三 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Two objectives
 - 1. Discipline portfolio composition across firms
 - 2. Discipline return on risky assets
- 6 free parameters: C_f , F_e , ω , ρ_z , σ_z , σ_ϵ
- 6 moments to match:
 - Average share of risky savings
 - Standard deviation of share risky savings
 - Mean share risky $k \geq Q3_k/{
 m mean}$ share risky $k \leq Q1_k$
 - Default rate
 - Share of debt in firms age=1
 - Entrants average leverage

12 / 15

A = A = A = A = A = A = A

Calibration Fit

Moment	Source	Data	Model
Average share of risky savings	Flow of Funds	0.2918	0.2925
Standard deviation of share risky savings	Compustat	0.3504	0.4096
Mean share risky $k \geq Q3_k/$ mean share risky $k \leq Q1_k$	Compustat	4.3758	4.7373
Default rate	LBD	0.0824	0.0819
Share of debt in firms age=1	Compustat	0.1097	0.0682
Entrants average leverage	Compustat	0.2160	0.2207

Table: Calibration fit

ESEM

13 / 15

Roadmap

- 1. Stylized Facts
- 2. Model
- 3. Calibration
- 4. Results and mechanism
- 5. Conclusion

13/15

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

1. Two main determinants of portfolio composition Result 1

- Link between production and financial sides
- Firm size
- Increase in risky savings fully explained by drop in risk-free interest rate - Lower cost of debt shifts firm size distribution to the right Result 2
 - Direct impact: Large firms hold more risky assets explains 13.2%
 - Indirect impact: Share defaulted debt $\downarrow \to$ Risky asset excess returns \uparrow explains 86.8%
- 3. Portfolio of savings affects firms' investment and generates large non-linearities at the macro level Result 3
 - Minimizes the impact of small shocks
 - Amplifies the effects of large shocks

Miguel H. Ferreira

Corporate Lending by Nonfinancial Firms

14 / 15

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨヨ ののべ

- 1. Two main determinants of portfolio composition Result 1
 - Link between production and financial sides
 - Firm size
- Increase in risky savings fully explained by drop in risk-free interest rate - Lower cost of debt shifts firm size distribution to the right Result 2
 - $\bullet\,$ Direct impact: Large firms hold more risky assets explains 13.2%
 - Indirect impact: Share defaulted debt $\downarrow \rightarrow$ Risky asset excess returns \uparrow explains 86.8%
- 3. Portfolio of savings affects firms' investment and generates large non-linearities at the macro level Result 3
 - Minimizes the impact of small shocks
 - Amplifies the effects of large shocks

Miguel H. Ferreira

Corporate Lending by Nonfinancial Firms

14 / 15

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨヨ ののべ

- 1. Two main determinants of portfolio composition Result 1
 - Link between production and financial sides
 - Firm size
- Increase in risky savings fully explained by drop in risk-free interest rate - Lower cost of debt shifts firm size distribution to the right Result 2
 - Direct impact: Large firms hold more risky assets explains 13.2%
 - Indirect impact: Share defaulted debt $\downarrow \rightarrow$ Risky asset excess returns \uparrow explains 86.8%
- 3. Portfolio of savings affects firms' investment and generates large non-linearities at the macro level Result 3
 - Minimizes the impact of small shocks
 - Amplifies the effects of large shocks

Miguel H. Ferreira

Corporate Lending by Nonfinancial Firms

14 / 15

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨヨ ののべ

- 1. Two main determinants of portfolio composition Result 1
 - Link between production and financial sides
 - Firm size
- Increase in risky savings fully explained by drop in risk-free interest rate - Lower cost of debt shifts firm size distribution to the right Result 2
 - Direct impact: Large firms hold more risky assets explains 13.2%
 - Indirect impact: Share defaulted debt $\downarrow \rightarrow$ Risky asset excess returns \uparrow explains 86.8%

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨヨ ののべ

14 / 15

ESEM

- 3. Portfolio of savings affects firms' investment and generates large non-linearities at the macro level Result 3
 - Minimizes the impact of small shocks
 - Amplifies the effects of large shocks

Miguel H. Ferreira

- 1. Two main determinants of portfolio composition Result 1
 - Link between production and financial sides
 - Firm size
- Increase in risky savings fully explained by drop in risk-free interest rate - Lower cost of debt shifts firm size distribution to the right Result 2
 - $\bullet\,$ Direct impact: Large firms hold more risky assets explains 13.2%
 - Indirect impact: Share defaulted debt $\downarrow \rightarrow$ Risky asset excess returns \uparrow explains 86.8%

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨヨ ののべ

14 / 15

ESEM

- 3. Portfolio of savings affects firms' investment and generates large non-linearities at the macro level Result 3
 - Minimizes the impact of small shocks
 - Amplifies the effects of large shocks

Miguel H. Ferreira

- 1. Two main determinants of portfolio composition Result 1
 - Link between production and financial sides
 - Firm size
- Increase in risky savings fully explained by drop in risk-free interest rate - Lower cost of debt shifts firm size distribution to the right Result 2
 - $\bullet\,$ Direct impact: Large firms hold more risky assets explains 13.2%
 - Indirect impact: Share defaulted debt $\downarrow \to$ Risky asset excess returns \uparrow explains 86.8%

14 / 15

ESEM

- 3. Portfolio of savings affects firms' investment and generates large non-linearities at the macro level Result 3
 - Minimizes the impact of small shocks
 - Amplifies the effects of large shocks

Miguel H. Ferreira

- 1. Two main determinants of portfolio composition Result 1
 - Link between production and financial sides
 - Firm size
- Increase in risky savings fully explained by drop in risk-free interest rate - Lower cost of debt shifts firm size distribution to the right Result 2
 - $\bullet\,$ Direct impact: Large firms hold more risky assets explains 13.2%
 - Indirect impact: Share defaulted debt $\downarrow \to$ Risky asset excess returns \uparrow explains 86.8%

14 / 15

ESEM

- 3. Portfolio of savings affects firms' investment and generates large non-linearities at the macro level Result 3
 - Minimizes the impact of small shocks
 - Amplifies the effects of large shocks

Miguel H. Ferreira

- 1. Two main determinants of portfolio composition Result 1
 - Link between production and financial sides
 - Firm size
- Increase in risky savings fully explained by drop in risk-free interest rate - Lower cost of debt shifts firm size distribution to the right Result 2
 - $\bullet\,$ Direct impact: Large firms hold more risky assets explains 13.2%
 - Indirect impact: Share defaulted debt $\downarrow \to$ Risky asset excess returns \uparrow explains 86.8%

14 / 15

- 3. Portfolio of savings affects firms' investment and generates large non-linearities at the macro level Result 3
 - Minimizes the impact of small shocks
 - Amplifies the effects of large shocks

- 1. Two main determinants of portfolio composition Result 1
 - Link between production and financial sides
 - Firm size
- Increase in risky savings fully explained by drop in risk-free interest rate - Lower cost of debt shifts firm size distribution to the right Result 2
 - $\bullet\,$ Direct impact: Large firms hold more risky assets explains 13.2%
 - Indirect impact: Share defaulted debt $\downarrow \to$ Risky asset excess returns \uparrow explains 86.8%
- 3. Portfolio of savings affects firms' investment and generates large non-linearities at the macro level Result 3
 - Minimizes the impact of small shocks
 - Amplifies the effects of large shocks

Conclusion

• Two determinants of the nonfinancial firms savings portfolio

- Size
- Real production frictions
- Nonfinancial firms risky asset holdings have been increasing since early 1990s
 - Real interest rate decrease fully accounts for this increase
- Firms holding corporate bonds creates a financial link between nonfinancial firms
- Financial link propagates large shocks from defaulting borrowers to lenders, amplifying aggregate investment drop by 50% more

• Two determinants of the nonfinancial firms savings portfolio

Size

- Real production frictions
- Nonfinancial firms risky asset holdings have been increasing since early 1990s
 - Real interest rate decrease fully accounts for this increase
- Firms holding corporate bonds creates a financial link between nonfinancial firms
- Financial link propagates large shocks from defaulting borrowers to lenders, amplifying aggregate investment drop by 50% more

- Two determinants of the nonfinancial firms savings portfolio
 - Size
 - Real production frictions
- Nonfinancial firms risky asset holdings have been increasing since early 1990s
 - Real interest rate decrease fully accounts for this increase
- Firms holding corporate bonds creates a financial link between nonfinancial firms
- Financial link propagates large shocks from defaulting borrowers to lenders, amplifying aggregate investment drop by 50% more

15 / 15

- Two determinants of the nonfinancial firms savings portfolio
 - Size
 - Real production frictions
- Nonfinancial firms risky asset holdings have been increasing since early 1990s
 - Real interest rate decrease fully accounts for this increase
- Firms holding corporate bonds creates a financial link between nonfinancial firms
- Financial link propagates large shocks from defaulting borrowers to lenders, amplifying aggregate investment drop by 50% more

15 / 15

- Two determinants of the nonfinancial firms savings portfolio
 - Size
 - Real production frictions
- Nonfinancial firms risky asset holdings have been increasing since early 1990s
 - Real interest rate decrease fully accounts for this increase
- Firms holding corporate bonds creates a financial link between nonfinancial firms
- Financial link propagates large shocks from defaulting borrowers to lenders, amplifying aggregate investment drop by 50% more

- Two determinants of the nonfinancial firms savings portfolio
 - Size
 - Real production frictions
- Nonfinancial firms risky asset holdings have been increasing since early 1990s
 - Real interest rate decrease fully accounts for this increase
- Firms holding corporate bonds creates a financial link between nonfinancial firms
- Financial link propagates large shocks from defaulting borrowers to lenders, amplifying aggregate investment drop by 50% more

15 / 15

- Two determinants of the nonfinancial firms savings portfolio
 - Size
 - Real production frictions
- Nonfinancial firms risky asset holdings have been increasing since early 1990s
 - Real interest rate decrease fully accounts for this increase
- Firms holding corporate bonds creates a financial link between nonfinancial firms
- Financial link propagates large shocks from defaulting borrowers to lenders, amplifying aggregate investment drop by 50% more

• Aggregate data from U.S. flow of funds between 1980 and 2019

• Financial assets:

- Risk-free securities: Money-like assets (Treasuries, commercial paper, etc)
- Risky securities: Non-money-like assets (Corporate bonds, equity, etc)

うかん 正正 ヘビト・モー・ ふんし

- Aggregate data from U.S. flow of funds between 1980 and 2019
- Financial assets:
 - Risk-free securities: Money-like assets (Treasuries, commercial paper, etc)
 - Risky securities: Non-money-like assets (Corporate bonds, equity, etc)

A 回 > A E > A E > E E < のQの</p>

- Aggregate data from U.S. flow of funds between 1980 and 2019
- Financial assets:
 - Risk-free securities: Money-like assets (Treasuries, commercial paper, etc)
 - Risky securities: Non-money-like assets (Corporate bonds, equity, etc)

- Aggregate data from U.S. flow of funds between 1980 and 2019
- Financial assets:
 - Risk-free securities: Money-like assets (Treasuries, commercial paper, etc)
 - Risky securities: Non-money-like assets (Corporate bonds, equity, etc)

- Risky assets as a percentage of total financial assets
- Share of risky assets grew from 26% to above 40% in 30-years
- Represents almost 20% of nonfinancial firms' total assets

< ⊒ >

ESEM

Back

- Risky assets as a percentage of total financial assets
- Share of risky assets grew from 26% to above 40% in 30-years
- Represents almost 20% of nonfinancial firms' total assets

Data on U.S. publicly listed firms during the 2000-2018 period

• Proxies for risky and risk-free financial assets:

- Risky assets Long-term financial investments
- Risk-free assets Cash and cash equivalents
- Total savings = Risk-free + Risky

• • = • • = •

- Data on U.S. publicly listed firms during the 2000-2018 period
- Proxies for risky and risk-free financial assets:
 - Risky assets Long-term financial investments
 - Risk-free assets Cash and cash equivalents
 - Total savings = Risk-free + Risky

A = A = A = A = A = A = A

- Data on U.S. publicly listed firms during the 2000-2018 period
- Proxies for risky and risk-free financial assets:
 - Risky assets Long-term financial investments
 - Risk-free assets Cash and cash equivalents
 - Total savings = Risk-free + Risky

- Data on U.S. publicly listed firms during the 2000-2018 period
- Proxies for risky and risk-free financial assets:
 - Risky assets Long-term financial investments
 - Risk-free assets Cash and cash equivalents
 - Total savings = Risk-free + Risky

- Data on U.S. publicly listed firms during the 2000-2018 period
- Proxies for risky and risk-free financial assets:
 - Risky assets Long-term financial investments
 - Risk-free assets Cash and cash equivalents
 - Total savings = Risk-free + Risky

- Data on U.S. publicly listed firms during the 2000-2018 period
- Proxies for risky and risk-free financial assets:
 - Risky assets Long-term financial investments
 - Risk-free assets Cash and cash equivalents
 - Total savings = Risk-free + Risky

• Share of risky savings increasing in the size of the firm

Savings distribution

Back

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

= 200

- Dif and dif method to assess effect of portfolio composition on investment during the Great Recession
- Crisis dummy equal to one from 2008 to 2010
- Risky asset dummy, if share of risky assets above 70% in the period before the stock market crash Non parametric
- Coefficient of interest is the interaction between the two dummies

 $ln(Inv)_{ijt} = \gamma crisis_t + \alpha risky_{ij2008Q2} + \beta crisis_t \times risky_{ij2008Q2} + \lambda_i + \theta_{jt} + \epsilon_{ijt}$

- Dif and dif method to assess effect of portfolio composition on investment during the Great Recession
- Crisis dummy equal to one from 2008 to 2010
- Risky asset dummy, if share of risky assets above 70% in the period before the stock market crash Non parametric
- Coefficient of interest is the interaction between the two dummies

 $ln(Inv)_{ijt} = \gamma crisis_t + \alpha risky_{ij2008Q2} + \beta crisis_t \times risky_{ij2008Q2} + \lambda_i + \theta_{jt} + \epsilon_{ijt}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●|三 ◇◇◇

- Dif and dif method to assess effect of portfolio composition on investment during the Great Recession
- Crisis dummy equal to one from 2008 to 2010
- Risky asset dummy, if share of risky assets above 70% in the period before the stock market crash Non parametric
- Coefficient of interest is the interaction between the two dummies

 $ln(Inv)_{ijt} = \gamma crisis_t + \alpha risky_{ij2008Q2} + \beta crisis_t \times risky_{ij2008Q2} + \lambda_i + \theta_{jt} + \epsilon_{ijt}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●|三 ◇◇◇

- Dif and dif method to assess effect of portfolio composition on investment during the Great Recession
- Crisis dummy equal to one from 2008 to 2010
- Risky asset dummy, if share of risky assets above 70% in the period before the stock market crash Non parametric
- Coefficient of interest is the interaction between the two dummies

 $ln(Inv)_{ijt} = \gamma crisis_t + \alpha risky_{ij2008Q2} + \beta crisis_t \times risky_{ij2008Q2} + \lambda_i + \theta_{jt} + \epsilon_{ijt}$

5 / 63

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●|三 ◇◇◇

- Dif and dif method to assess effect of portfolio composition on investment during the Great Recession
- Crisis dummy equal to one from 2008 to 2010
- Risky asset dummy, if share of risky assets above 70% in the period before the stock market crash Non parametric
- Coefficient of interest is the interaction between the two dummies

 $In(Inv)_{ijt} = \gamma crisis_t + \alpha risky_{ij2008Q2} + \beta crisis_t \times risky_{ij2008Q2} + \lambda_i + \theta_{jt} + \epsilon_{ijt}$

5/63

Robustness test

1. Size: U.S. publicly listed firms not representative of universe of firms

- Quarterly Financial Report: Census data representative of the universe of U.S. firms
- Distribution of risky asset holdings qualitatively and quantitatively in line QFR

Back

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨヨ ののべ

Robustness test

- 1. Size: U.S. publicly listed firms not representative of universe of firms
 - Quarterly Financial Report: Census data representative of the universe of U.S. firms
 - Distribution of risky asset holdings qualitatively and quantitatively in line **QFR**

Back

Robustness test

1. Size: U.S. publicly listed firms not representative of universe of firms

- Quarterly Financial Report: Census data representative of the universe of U.S. firms
- Distribution of risky asset holdings qualitatively and quantitatively in line QFR

Back

(日本)

2. Long term financial investments just a proxy for risky assets

- Corporate debt holdings by publicly listed firms from firms' financial reports (2009-2018 period)
 - Web scraping code to collect corporate bond holdings from firms' financial reports. Aggregate holdings Firms' holdings Top 20 Distribution
 - Corporate bonds represent more than 50% of risky assets Share
 - Investment equally affected by corporate bond holdings (Results)

Assets histogram

Back

< ロ > < 同 > < 三 > < 三 > < 三 > < 三 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- 2. Long term financial investments just a proxy for risky assets
 - Corporate debt holdings by publicly listed firms from firms' financial reports (2009-2018 period)
 - Web scraping code to collect corporate bond holdings from firms' financial reports. Aggregate holdings Firms' holdings Top 20 Distribution

• Corporate bonds represent more than 50% of risky assets (Share)

Investment equally affected by corporate bond holdings
 Results

Assets histogram

Back

< ロ > < 同 > < 三 > < 三 > < 三 > < 三 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- 2. Long term financial investments just a proxy for risky assets
 - Corporate debt holdings by publicly listed firms from firms' financial reports (2009-2018 period)
 - Web scraping code to collect corporate bond holdings from firms' financial reports. Aggregate holdings Firms' holdings Top 20 Distribution

• Corporate bonds represent more than 50% of risky assets Share

Investment equally affected by corporate bond holdings
 Results
 sets histogram

Back

< ロ > < 同 > < 三 > < 三 > < 三 > < 三 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- 2. Long term financial investments just a proxy for risky assets
 - Corporate debt holdings by publicly listed firms from firms' financial reports (2009-2018 period)
 - Web scraping code to collect corporate bond holdings from firms' financial reports. Aggregate holdings Firms' holdings Top 20 Distribution
 - Corporate bonds represent more than 50% of risky assets Share
 - Investment equally affected by corporate bond holdings Results

Assets histogram

Back

< ロ > < 同 > < 三 > < 三 > < 三 > < 三 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Static Model: Intra period firm's problem

Firm chooses k, a^{rf} and a^r to maximize expected profits, given z, b and e_0

$$\max_{k,a_r,a_{rf}} E_{z_2,r_r} \left[\Pi | (e, b, z_1) \right] = \int_{\underline{z}_2} \int_{\underline{r}_r} \left[z_1 z_2 k^{\alpha} + (1 + r^{rf}) a^r f + (1 + r^r) a^r - (1 + r^b) b \right] dF(z_2) dF(r^r) + \int_{\underline{z}_2} \int_{\underline{r}_r}^{\underline{r}_r} - D dF(z_2) dF(r^r) \text{s.t.: } k + a^r + a^{rf} = e + b$$

back

< ロ > < 同 > < 三 > < 三 > < 三 > < 三 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Static Model: Beginning of period firm's problem

Firm chooses *b* to maximize expect profits, given e_0 and optimal policies $k^*(b, z)$, $a^{rf^*}(b, z)$ and $a^{r^*}(b, z)$

$$\max_{b} E_{z_{1},z_{2},r^{r}} [\Pi|e] = \int_{z_{1}} \int_{\underline{z}_{2}} \left[z_{1}z_{2}k^{\alpha} + (1+r^{r})a^{r} + (1+r^{r})a^{r} - (1+r^{b})b \right] dF(z_{2})dF(z_{1}) + \int^{z_{1}} \int^{\underline{z}_{2}} -DdF(z_{2})dF(z_{1})$$

back

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ □ ● ○ ○ ○

- Continuum of potential entrants
- Potential entrants draw a signal for their productivity tomorrow ϵ_0
- Firms will decide to enter if value larger than entry cost

$$V_e(\epsilon_0, k_0, 0, S) = \max(0, V^1(\epsilon_0, k_0, 0, S) - f_e)$$

• Among feasible set of firms, a subset is randomly chosen to keep number of firms constant (Arellano et al. 2018)

back

Default regions

Firm defaults if

$$z < \underline{z} = \frac{C_f + b - (1 + r^{rf})\hat{a_f}^{rf} - (1 + r^r)\hat{a_f}^{r} - p_k^-(1 - \delta)\hat{k}}{\epsilon k^{\alpha}}$$
$$r^r < \underline{r}^r = \frac{C_f + b - (1 + r^{rf})\hat{a_f}^{rf} - p_k^-(1 - \delta)\hat{k} - y(z)}{\hat{l_f}} - 1$$

back

11/63

Real Frictions

• Convex adjustment costs

$$g(k',k) = \frac{p_k}{2} \left(\frac{k'-(1-\delta)k}{k}\right)^2 k$$

• Partial irreversibility

$$0 < p_k^- < p_k^+$$

• Firms distribute dividends if unconstrained

$$D = \kappa y^{\kappa_y} k^{\kappa_k}$$

Back

Real Frictions

• Convex adjustment costs

$$g(k',k) = \frac{p_k}{2} \left(\frac{k'-(1-\delta)k}{k}\right)^2 k$$

• Partial irreversibility

$$0 < p_k^- < p_k^+$$

• Firms distribute dividends if unconstrained

$$D = \kappa y^{\kappa_y} k^{\kappa_k}$$

Back

Real Frictions

• Convex adjustment costs

$$g(k',k) = \frac{p_k}{2} \left(\frac{k'-(1-\delta)k}{k}\right)^2 k$$

• Partial irreversibility

$$0 < p_k^- < p_k^+$$

• Firms distribute dividends if unconstrained

$$D = \kappa y^{\kappa_y} k^{\kappa_k}$$

Back

Within period timing

• Why this specific timing?

- 1 Empirical evidence suggests firms adjust more often the asset side than the liability side (Xiao, 2019)
- 2 Allows for gross and not net positions to play a role

ESEM

A B A A B A

ELE NOR

Within period timing

- Why this specific timing?
 - 1 Empirical evidence suggests firms adjust more often the asset side than the liability side (Xiao, 2019)
 - 2 Allows for gross and not net positions to play a role

ESEM

ELE SQC

Within period timing

- Why this specific timing?
 - 1 Empirical evidence suggests firms adjust more often the asset side than the liability side (Xiao, 2019)
 - 2 Allows for gross and not net positions to play a role

Liabilities side

- Firms issue one period bonds at a given interest rate $r^b = r^{rf} + \omega$
- If a firm fails to pay back its debt *b*, it will default and leave the market
- Default happens if either productivity or the return on risky assets fall below a given threshold <u>z</u> and <u>r</u>^r Default

Back

< ロ > < 同 > < 三 > < 三 > < 三 > < 三 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Firms issue one period bonds at a given interest rate $r^b = r^{rf} + \omega$
- If a firm fails to pay back its debt *b*, it will default and leave the market
- Default happens if either productivity or the return on risky assets fall below a given threshold <u>z</u> and <u>r</u>^r (Default)

Back

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨヨ ののべ

- Firms issue one period bonds at a given interest rate $r^b = r^{rf} + \omega$
- If a firm fails to pay back its debt *b*, it will default and leave the market
- Default happens if either productivity or the return on risky assets fall below a given threshold <u>z</u> and <u>r</u>^r <u>Default</u>

Back

< ロ > < 同 > < 三 > < 三 > < 三 > < 三 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• Firms use issued debt b and beginning of period cash x to invest in capital k to produce according to

$$y = z\epsilon k^{\alpha}$$

- Subject to two real frictions:
 - Convex adjustment costs
 - Partial irreversibility

Back

(日本)

14/63

• Firms use issued debt b and beginning of period cash x to invest in capital k to produce according to

$$y = z\epsilon k^{\alpha}$$

- Subject to two real frictions:
 - Convex adjustment costs
 - Partial irreversibility

Deal

(日本)

14/63

• Firms use issued debt b and beginning of period cash x to invest in capital k to produce according to

$$y = z\epsilon k^{\alpha}$$

- Subject to two real frictions:
 - Convex adjustment costs
 - Partial irreversibility

Back

(日本)

14/63

• Firms use issued debt b and beginning of period cash x to invest in capital k to produce according to

$$y = z\epsilon k^{\alpha}$$

- Subject to two real frictions:
 - Convex adjustment costs
 - Partial irreversibility

A B M A B M

ESEM

ELE SQC

14/63

Firms can save in

- 1. A risk free security a^{rf} that provides a guaranteed return r^{rf}
- 2. A corporate bond a^r , that provides an uncertain return r^r
- Corporate bonds riskiness arises from
 - Not idiosyncratic risk: Well diversified portfolio
 - Systemic risk: Default rate in each period determines the return
 - Defaults losses: In case of default, lender only recovers

Recovery rate Liquidation value of the firm

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨヨ ののべ

Firms can save in

- 1. A risk free security a^{rf} that provides a guaranteed return r^{rf}
- 2. A corporate bond *a*^r, that provides an uncertain return *r*^r

• Corporate bonds riskiness arises from

- Not idiosyncratic risk: Well diversified portfolio
- Systemic risk: Default rate in each period determines the return
- Defaults losses: In case of default, lender only recovers

Recovery rate Liquidation value of the firm

15/63

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨヨ ののべ

- Firms can save in
 - 1. A risk free security a^{rf} that provides a guaranteed return r^{rf}
 - 2. A corporate bond a^r , that provides an uncertain return r^r
- Corporate bonds riskiness arises from
 - Not idiosyncratic risk: Well diversified portfolio
 - Systemic risk: Default rate in each period determines the return
 - Defaults losses: In case of default, lender only recovers

Recovery rate Liquidation value of the firm

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨヨ ののべ

- Firms can save in
 - 1. A risk free security a^{rf} that provides a guaranteed return r^{rf}
 - 2. A corporate bond a^r , that provides an uncertain return r^r
- Corporate bonds riskiness arises from
 - Not idiosyncratic risk: Well diversified portfolio
 - Systemic risk: Default rate in each period determines the return
 - Defaults losses: In case of default, lender only recovers

Recovery rate Liquidation value of the firm

Back

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨヨ ののべ

- Firms can save in
 - 1. A risk free security a^{rf} that provides a guaranteed return r^{rf}
 - 2. A corporate bond a^r , that provides an uncertain return r^r
- Corporate bonds riskiness arises from
 - Not idiosyncratic risk: Well diversified portfolio
 - Systemic risk: Default rate in each period determines the return
 - Defaults losses: In case of default, lender only recovers

Recovery rate Liquidation value of the firm

- Firms can save in
 - 1. A risk free security a^{rf} that provides a guaranteed return r^{rf}
 - 2. A corporate bond a^r , that provides an uncertain return r^r
- Corporate bonds riskiness arises from
 - Not idiosyncratic risk: Well diversified portfolio
 - Systemic risk: Default rate in each period determines the return
 - Defaults losses: In case of default, lender only recovers

Recovery rate Liquidation value of the firm

Back

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨヨ ののべ

- Firms can save in
 - 1. A risk free security a^{rf} that provides a guaranteed return r^{rf}
 - 2. A corporate bond a^r , that provides an uncertain return r^r
- Corporate bonds riskiness arises from
 - Not idiosyncratic risk: Well diversified portfolio
 - Systemic risk: Default rate in each period determines the return
 - Defaults losses: In case of default, lender only recovers

$$\min(\underbrace{\chi}_{(x'+p_k^-(1-\delta)k')}, b)$$

Recovery rate Liquidation value of the firm

15 / 63

The return on bonds is given by

$1 + r^r = \frac{(1 + r^b)$ Non-defaulted debt + Defaulted debt recovered Total debt

Given the state of the economy today, firms form expectations on the

$$S' = \Gamma^{S'}(S)$$

$$E(r^{r'}) = \Lambda(S')$$

Miguel H. Ferreira

Corporate Lending by Nonfinancial Firms

ESEM

16/63

• The return on bonds is given by

$$1 + r^r = \frac{(1 + r^b)$$
Non-defaulted debt + Defaulted debt recovered
Total debt

• Given the state of the economy today, firms form expectations on the return according to

$$S' = \Gamma^{S'}(S)$$

 $E(r^{r'}) = \Lambda(S')$
cursive Competitive Equilibrium Algorithm Return on bonds
cu
Miguel H. Ferreira Corporate Lending by Nonfinancial Firms ESEM 16/63

• The return on bonds is given by

$$1 + r^r = \frac{(1 + r^b)$$
Non-defaulted debt + Defaulted debt recovered
Total debt

• Given the state of the economy today, firms form expectations on the return according to

$$S' = \Gamma^{S'}(S)$$
 $E(r^{r'}) = \Lambda(S')$ ilibrium Algorithm Return on bonds

< ロ > < 同 > < 三 > < 三 > < 三 > < 三 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Firm's problem

At the end of period, given $\epsilon, \hat{k}, \hat{x}$ and S firms choose $k', b', a'^{f'}, a'$ and D

$$V^{1}(\epsilon, \hat{k}, \hat{x}, S) = \max_{k', b', a^{rt'}, a^{r'}, D} \quad D + \beta E[\underbrace{\hat{V}^{0}(\epsilon', k', x', b', S)}_{\text{Intraperiod value function}}]$$

In the middle of the period firms are allowed to readjust assets

$$\hat{V^0}(\epsilon',k',x',b',S) = \max_{\hat{k}',\hat{a'}} \left[\int_{\underline{r}'_{-}} \int_{\underline{z}'} V^0(\epsilon',\hat{k'},\hat{x'},S') dF(z') dF(S') \right]$$

Where V^0 is given by

$$V^{0}(\epsilon', \hat{k'}, \hat{x'}, S') = (1 - \eta) V^{1}(\epsilon', \hat{k'}, \hat{x'}, S') + \eta(\hat{x'} + p_{k}^{-}(1 - \delta)\hat{k'})$$

Subject to adjustment costs, price of capital, aggregate law of motion, expected return on risk asset and the budget constraint Budget constraint

< ロ > < 同 > < 三 > < 三 > < 三 > < 三 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Firm's problem

At the end of period, given $\epsilon, \hat{k}, \hat{x}$ and S firms choose $k', b', a'^{f'}, a'$ and D

$$V^{1}(\epsilon, \hat{k}, \hat{x}, S) = \max_{k', b', a^{r'}, a^{r'}, D} \quad D + \beta E[\underbrace{\hat{V}^{0}(\epsilon', k', x', b', S)}_{\text{Intraperiod value function}}]$$

In the middle of the period firms are allowed to readjust assets

$$\hat{V^{0}}(\epsilon',k',x',b',S) = \max_{\hat{k}',\hat{a't'},\hat{a''}} \left[\int_{\underline{r'}} \int_{\underline{z'}} V^{0}(\epsilon',\hat{k'},\hat{x'},S') dF(z') dF(S') \right]$$

Where V⁰ is given by

$$V^{0}(\epsilon', \hat{k'}, \hat{x'}, S') = (1 - \eta) V^{1}(\epsilon', \hat{k'}, \hat{x'}, S') + \eta(\hat{x'} + p_{k}^{-}(1 - \delta)\hat{k'})$$

Subject to adjustment costs, price of capital, aggregate law of motion, expected return on risk asset and the budget constraint Budget constraint

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨヨ ののべ

Firm's problem

At the end of period, given $\epsilon, \hat{k}, \hat{x}$ and S firms choose $k', b', a'^{f'}, a'$ and D

$$V^{1}(\epsilon, \hat{k}, \hat{x}, S) = \max_{k', b', a^{rt'}, a^{r'}, D} \quad D + \beta E[\underbrace{\hat{V}^{0}(\epsilon', k', x', b', S)}_{\text{Intraperiod value function}}]$$

In the middle of the period firms are allowed to readjust assets

$$\hat{V^{0}}(\epsilon',k',x',b',S) = \max_{\hat{k}',\hat{a't'},\hat{a''}} \left[\int_{\underline{r'}} \int_{\underline{z'}} V^{0}(\epsilon',\hat{k'},\hat{x'},S') dF(z') dF(S') \right]$$

Where V^0 is given by

$$V^0(\epsilon', \hat{k'}, \hat{x'}, S') = (1 - \eta) V^1(\epsilon', \hat{k'}, \hat{x'}, S') + \eta(\hat{x'} + p_k^-(1 - \delta)\hat{k'})$$

Subject to adjustment costs, price of capital, aggregate law of motion, expected return on risk asset and the budget constraint Budget constraint

17 / 63

Recursive Competitive Equilibrium

- i. Firm value and policy functions solve its optimization problem
- ii. Financier value and policy functions solve the financier problem
- iii. Debt price satisfies equation

$$q^r = q^{rf} - \omega$$

and return on debt satisfies equation

$$1 + r^{r} = (1 + r^{b}) \frac{\int_{nd} b_{nd} d\mu}{\int b d\mu} + \frac{\int_{d} \min(b_{d}, \chi((\hat{x}_{d} + p_{k}^{-} \hat{k}_{d}))) d\mu}{\int b d\mu}$$

iv. The measure of firms evolves according to

$$\mu' = \eta \int (1 - 1_{default}(z, k, x, S)) \phi d[z imes k imes x] + \mu_e$$

back

18 / 63

Algorithm

I. Start by guessing specification coefficients and initialize the forecast rules

$$\begin{bmatrix} \log B^{f'} \\ \log K' \\ r_r \end{bmatrix} = A + B \begin{bmatrix} \log B^f \\ \log K \end{bmatrix} + C \log(z)$$
(1)

- II. Solve both the incumbent and potential entrant problems for different $E(r^r)$ using the Howard's improvement step and multivariate splines.
- III. Simulate the economy for T=2000.
- IV. Check if the guess for specification (1) coefficients converged. If not, update and go back to ii.

back

A I > A I > A I > I = A I < O Q O</p>

ESEM

19/63

The return on bonds is given by

back

< ロ > < 同 > < 三 > < 三 > < 三 > < 三 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

20 / 63

Budget constraint

At the end of period, firm has the following amount of cash

$$\hat{x} = y - C_f - b + (1 + r^{rf})\hat{a^{rf}} + (1 + r^r)\hat{a^r}$$

Subject to adjustment costs, price of capital, aggregate law of motion, expected return on risk asset and the following budget constraint

$$x' = \hat{x} + b' - D - g(k', \hat{k}) \ge 0$$

In the middle of the period, the firm is subject to the following budget constraint

$$\hat{a''} + \hat{a'f'} + g(\hat{k'}, k') \le x'$$

Back

・ 同 ト ・ ヨ ト ・ ヨ ト

Budget constraint

At the end of period, firm has the following amount of cash

$$\hat{x} = y - C_f - b + (1 + r^{rf})\hat{a^{rf}} + (1 + r^r)\hat{a^r}$$

Subject to adjustment costs, price of capital, aggregate law of motion, expected return on risk asset and the following budget constraint

$$x'=\hat{x}+b'-D-g(k',\hat{k})\geq 0$$

$$\hat{a^{r'}} + \hat{a^{rf'}} + g(\hat{k'}, k') \le x'$$

Budget constraint

At the end of period, firm has the following amount of cash

$$\hat{x} = y - C_f - b + (1 + r^{rf})\hat{a^{rf}} + (1 + r^r)\hat{a^r}$$

Subject to adjustment costs, price of capital, aggregate law of motion, expected return on risk asset and the following budget constraint

$$x'=\hat{x}+b'-D-g(k',\hat{k})\geq 0$$

In the middle of the period, the firm is subject to the following budget constraint

$$\hat{a^{r'}} + \hat{a^{rf'}} + g(\hat{k'}, k') \le x'$$

Back

A = A = A = A = A = A

Parameters

Value 8.006	Description
8 006	
0.000	Fixed cost of production
2.414	Entry cost
0.01	Risk premium
0.15	Volatility of idiosyncratic shock
0.074	Volatility of aggregate shock
0.949	Persistence of aggregate shock
	0.074

Table: Endogenous Parameters

back

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Parameters

Parameter	Value	Description	Source
Preferences			
β	0.96	Household discount factor	Literature
Production			
α	0.66	Return on capital	Literature
p_k^-	0.57	Price of sold capital	Bloom (2009)
δ	0.06	Depreciation rate	Literature
k ₀	0.171	Entrants share of incumbents average capital	Compustat
η	0.065	Exogenous probability of exit	LBD
Financial intermediary			
χ	0.64	Recovery rate of defaulted debt	Xiao (2018)
Idiosyncratic productivity			
ρ_{ϵ}	0.6	Persistence of the idiosyncratic shock	Khan and Thomas (2013)
Dividend Policy			
κ	0.727	Constant	Compustat
κ_k	0.070	Dividend sensitivity to capital	Compustat
κ_y	0.479	Dividend sensitivity to sales	Compustat

Table: Exogenous Parameters

ESEM

23 / 63

Firm distribution

24 / 63

Regressions Fit

VARIABLES	Log(Debt)	Log(Capital)	Risky Return		
_					
В	-0.743***	1.053***	0.623***		
С	0.627***	0.049***	0.099***		
D	-0.379***	0.058***	0.130***		
R-squared	0.980	0.978	0.853		
*** p<0.01, ** p<0.05, * p<0.1					

back

(日)

Real Interest Rate

back

ESEM

26 / 63

三日 のへの

Risk premium

back

ESEM

イロン イヨン イヨン

27 / 63

三日 のへで

IRF: Productivity and Financial shock

back

ESEM

< 回 > < 三 > < 三 >

28 / 63

三日 のへの

Corporate debt holdings

back

≣ ► < ≣ ► ESEM

29 / 63

EL SQA

Log total assets histogram

Log investment histogram

Log cash histogram

Leverage histogram

Small vs large firms savings portfolio

Back

Corporate Lending by Nonfinancial Firms

ESEM

| = ୬ ৭ ে 34 / 63

Investment during Great Recession

back

ESEM

・ 同 ト ・ ヨ ト ・ ヨ ト

35 / 63

三日 のへの

Aggregate corporate bond holdings by industry

Fama-French Industry	Amount (M\$)	% Total Assets	% Cash and Cash Equivalents	% Cash
Total	254,273.8	5.0	31.9	63.7
Consumer	17,669.82	1.5	12.6	19.2
Manufacturing	15,423.42	0.9	13.4	16.5
High Tech	172,265.10	9.8	37.5	95.4
Health	83,491.78	9.5	46.5	94.1
Others	32,903.31	2.7	24.0	31.0

back

◆□▶ ◆母▶ ◆ヨ▶ ◆ヨ▶ ヨヨ のなべ **ESEM**

Firm corporate bond holdings by industry

Fama-French Industry	Amount (M\$)	% Total Assets	% Cash and Cash Equivalents	% Cash
Total	704.20	7.9	94.0	259.7
Consumer	253.32	2.2	123.3	148.1
Manufacturing	221.06	2.0	18.0	26.7
High Tech	1,059.12	9.1	28.9	72.7
Health	847.30	17.6	269.8	885.8
Others	772.18	2.7	48.6	167.5

back

<□> <同> <同> < 回> < 回> < 回> < 回> < 回> < 回< の< ○ **ESEM**

Top 20 firms corporate bond holdings

Name	Amount (M\$)	Name	% Total Assets
APPLE INC	60998	INTERCEPT PHARMA INC	69.8
AMERICAN SCIENCE ENGINEERING	42229	TONIX PHARMACEUTICALS HLDG	66.2
GENERAL ELECTRIC CO	27686	ALPINE IMMUNE SCIENCES INC	62.6
ALPHABET INC	15555	XENOPORT INC	60.1
CISCO SYSTEMS INC	14318	ACHAOGEN INC	57.6
SPECTRUM BRND HLDG INC	10933	PTC THERAPEUTICS INC	55.6
AMGEN INC	9390	ENANTA PHARMACEUTICALS INC	53.4
QUALCOMM INC	9108	OVASCIENCE INC	51.0
AUTOMATIC DATA PROCESSING	7558	REGULUS THERAPEUTICS INC	48.8
PFIZER INC	6775	KYTHERA BIOPHARMA INC	48.5
GENERAL MOTORS CO	6699	CHIASMA INC	47.7
MICROSOFT CORP	6643	ZAFGEN INC	47.4
MERCK & CO	6249	SYNDAX PHARMACEUTICALS INC	45.8
BOEING CO	5344	PULSE BIOSCIENCES INC	44.8
MEDTRONIC PLC	5150	ADAPTIMMUNE THERAPEUTICS	44.8
FACEBOOK INC	5141	MITEK SYSTEMS INC	44.2
EBAY INC	4514	DYNAVAX TECHNOLOGIES CORP	43.7
GILEAD SCIENCES INC	4504	CERES INC	43.5
PAYPAL HOLDINGS INC	4168	XENCOR INC	43.2
INTEL CORP	3834	NEKTAR THERAPEUTICS	43.0

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ **ESEM**

Composition of risky savings

- Corporate bonds represented more than 60% of risky assets in 2017
- Different risk profile. Risk-weight of 100% vs 50% of municipal bonds (second most held asset Darmouni and Mota 2020)

Miguel H. Ferreira

ESEM

39 / 63

-

Savings distribution

Small firms save more than large firms, despite saving mainly in the risk-free securities.

EL SQA

40 / 63

• • = • • = •

Empirical Analysis: Great Recession

back

≣ ► < ≣ ► ESEM । = ∽ ९ ୯ 41 / 63

Stylized fact 3

	(1)	(2)	(3)
β	-0.071*** (0.023)	-0.055*** (0.023)	-0.089*** (0.027)
Firm FE	Yes	Yes	Yes
Sector-Time FE	Yes	No	Yes
Sector-Crisis dummy	No	Yes	No
Time FE	No	Yes	No
<i>ln(asset)_{ijt-1}</i>	-	-	(+)
$ln(revenues)_{ijt-1}$	-	-	(+)
$ln(cash)_{ijt-1}$	-	-	(+)
leverage _{ijt-1}	-	-	(-)
	ndard errors i	n narenthese	×

Robust standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1

$$ln(lnv)_{ijt+h} = \gamma S \& P_{-}vol_{t-1} + \alpha risky_{ijt-1} + \beta S \& P_{-}vol_{t-1} * risky_{ijt-1} + \lambda_i + \theta_j + \epsilon_{ij} +$$

Share corporate securities>0.1

back

ESEM

A B K A B K

44 / 63

ELE NOR

Share corporate securities>0.2

back

ESEM

- ∢ ⊒ →

45 / 63

EL SQA

Share corporate securities>0.3

back

★ ≣ ► < ≣ ► ESEM

46 / 63

EL SQA

Mechanism validation: Bond and cash holdings

	(1)	(2)		
VARIABLES	Bond holdings	Cash		
β_1	0.141***	-0.029**		
	(0.020)	(0.012)		
β_2	0.054***	0.072***		
	(0.011)	(0.007)		
Observations	4,769	4,730		
R-squared	0.955	0.910		
Standard errors in parentheses				
*** p<0.01. ** p<0.05. * p<0.1				

$$Y_{ijt} = \beta_1 Revt_{ijt-1} + \beta_2 Debt_{ijt-1} + X_{ijt-1} + \alpha_i + \lambda_{jt} + \epsilon$$

- Debt associated with cash savings precautionary savings
- Increase in revenues associated with accumulations of corporate bonds

Miguel H. Ferreira

ESEM

• Real frictions important determinant of portfolio composition

• Firms in inaction region save to finance future investment

Moment	Inaction	Action
% of firms	35.3%	64.7%
Savings to capital ratio	29.2%	4.89%
Share of risky savings	38.2%	16.3%

Back

< ロ > < 同 > < 三 > < 三 > < 三 > < 三 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Real frictions important determinant of portfolio composition
 - Firms in inaction region save to finance future investment

Moment	Inaction	Action
% of firms	35.3%	64.7%
Savings to capital ratio	29.2%	4.89%
Share of risky savings	38.2%	16.3%

Back

48 / 63

- Real frictions important determinant of portfolio composition
 - Firms in inaction region save to finance future investment

Moment	Inaction	Action
% of firms	35.3%	64.7%
Savings to capital ratio	29.2%	4.89%
Share of risky savings	38.2%	16.3%

Back

48 / 63

- Real frictions important determinant of portfolio composition
 - Firms in inaction region save to finance future investment

Moment	Inaction	Action
% of firms	35.3%	64.7%
Savings to capital ratio	29.2%	4.89%
Share of risky savings	38.2%	16.3%

Back

48 / 63

- Real frictions important determinant of portfolio composition
 - Firms in inaction region save to finance future investment

Moment	Inaction	Action
% of firms	35.3%	64.7%
Savings to capital ratio	29.2%	4.89%
Share of risky savings	38.2%	16.3%

Back

ESEM

1 - Portfolio determinants: Size

- Calibrated model replicates empirical distribution
- Probability of default decreasing on the size of the firm
- Large firms more willing to expose themselves to the extra risk looking to maximize return on savings

Size mechanism

49 / 63

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

1 - Portfolio determinants: Size

- Calibrated model replicates empirical distribution
- Probability of default decreasing on the size of the firm
- Large firms more willing to expose themselves to the extra risk looking to maximize return on savings

Size mechanism

49 / 63

★ Ξ >

1 - Portfolio determinants: Size

- Calibrated model replicates empirical distribution
- Probability of default decreasing on the size of the firm
- Large firms more willing to expose themselves to the extra risk looking to maximize return on savings

Size mechanism

49 / 63

• Decrease in real interest rate fully accounts for increase in risky asset holdings

- I calibrate the model to match the share of risky asset holdings in 1989
- I use the risk-free interest rate in that same year
- I then feed into the model the interest rate in 2017, keeping all the other parameters constant

Back

50 / 63

< 回 > < 回 > < 回 >

- Decrease in real interest rate fully accounts for increase in risky asset holdings
- I calibrate the model to match the share of risky asset holdings in 1989
- I use the risk-free interest rate in that same year
- I then feed into the model the interest rate in 2017, keeping all the other parameters constant

Back

50 / 63

▲□ ▲ □ ▲ ■ ▲ ■ ■ ■ ● ● ●

- Decrease in real interest rate fully accounts for increase in risky asset holdings
- I calibrate the model to match the share of risky asset holdings in 1989
- I use the risk-free interest rate in that same year
- I then feed into the model the interest rate in 2017, keeping all the other parameters constant

Back

50 / 63

- Decrease in real interest rate fully accounts for increase in risky asset holdings
- I calibrate the model to match the share of risky asset holdings in 1989
- I use the risk-free interest rate in that same year
- I then feed into the model the interest rate in 2017, keeping all the other parameters constant

Back

 Moment
 1989
 2017
 Variation

 Share risky savings - Data
 29.18%
 41.89%
 12.71 p.p.

 Share risky savings - Model
 29.25%
 42.36%
 13.11 p.p.

- Decrease in real interest rate fully accounts for share of risky savings increase
- Lower cost of debt shifts firm size distribution to the right Distribution
 - Direct impact: Large firms hold more risky assets accounts for 13.2% of the increase
 - Indirect impact: Share defaulted debt ↓ → Risky asset excess returns ↑ (Model: 0.32p.p. vs Observed: 0.44p.p.) - accounts for 86.8% of the increase Contributions

51/63

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨヨ ののべ

Moment	1989	2017	Variation
Share risky savings - Data	29.18%	41.89%	12.71 p.p.
Share risky savings - Model	29.25%	42.36%	13.11 р.р.

- Decrease in real interest rate fully accounts for share of risky savings increase
- Lower cost of debt shifts firm size distribution to the right Distribution
 - Direct impact: Large firms hold more risky assets accounts for 13.2% of the increase
 - Indirect impact: Share defaulted debt ↓ → Risky asset excess returns ↑ (Model: 0.32p.p. vs Observed: 0.44p.p.) - accounts for 86.8% of the increase Contributions

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨヨ ののべ

Moment	1989	2017	Variation
Share risky savings - Data	29.18%	41.89%	12.71 p.p.
Share risky savings - Model	29.25%	42.36%	13.11 p.p.

Decrease in real interest rate fully accounts for share of risky savings increase

- Lower cost of debt shifts firm size distribution to the right Distribution
 - Direct impact: Large firms hold more risky assets accounts for 13.2% of the increase
 - Indirect impact: Share defaulted debt ↓ → Risky asset excess returns ↑ (Model: 0.32p.p. vs Observed: 0.44p.p.) - accounts for 86.8% of the increase Contributions

< ロ > < 同 > < 三 > < 三 > < 三 > < 三 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

ESEM

2 - Determinants of increase in risky savings

Moment	1989	2017	Variation
Share risky savings - Data	29.18%	41.89%	12.71 p.p.
Share risky savings - Model	29.25%	42.36%	13.11 p.p.

Decrease in real interest rate fully accounts for share of risky savings increase

- Lower cost of debt shifts firm size distribution to the right Distribution
 - Direct impact: Large firms hold more risky assets accounts for 13.2% of the increase
 - Indirect impact: Share defaulted debt ↓ → Risky asset excess returns ↑ (Model: 0.32p.p. vs Observed: 0.44p.p.) - accounts for 86.8% of the increase Contributions

51/63

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨヨ ののべ

2 - Determinants of increase in risky savings

Moment	1989	2017	Variation
Share risky savings - Data	29.18%	41.89%	12.71 p.p.
Share risky savings - Model	29.25%	42.36%	13.11 p.p.

- Decrease in real interest rate fully accounts for share of risky savings increase
- Lower cost of debt shifts firm size distribution to the right Distribution
 - $\bullet\,$ Direct impact: Large firms hold more risky assets accounts for 13.2% of the increase
 - Indirect impact: Share defaulted debt ↓ → Risky asset excess returns ↑ (Model: 0.32p.p. vs Observed: 0.44p.p.) - accounts for 86.8% of the increase Contributions

51/63

< ロ > < 同 > < 三 > < 三 > < 三 > < 三 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

2 - Determinants of increase in risky savings

Moment	1989	2017	Variation
Share risky savings - Data	29.18%	41.89%	12.71 p.p.
Share risky savings - Model	29.25%	42.36%	13.11 р.р.

- Decrease in real interest rate fully accounts for share of risky savings increase
- Lower cost of debt shifts firm size distribution to the right Distribution
 - Direct impact: Large firms hold more risky assets accounts for 13.2% of the increase
 - Indirect impact: Share defaulted debt ↓ → Risky asset excess returns ↑ (Model: 0.32p.p. vs Observed: 0.44p.p.) - accounts for 86.8% of the increase Contributions

ESEM

000 EIE 4E 4E 4000

51/63

Investment and default both affected by portfolio composition

- I compare the same firms while holding different shares of risky assets to scenario where firms only hold risk-free securities
- Check investment and default rate in periods when $r^r < r^{rf}$

52 / 63

< ロ > < 同 > < 三 > < 三 > < 三 > < 三 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Investment and default both affected by portfolio composition
- I compare the same firms while holding different shares of risky assets to scenario where firms only hold risk-free securities

• Check investment and default rate in periods when $r^r < r^{rf}$

A I > A I > A I > I = A I < O Q O</p>

- Investment and default both affected by portfolio composition
- I compare the same firms while holding different shares of risky assets to scenario where firms only hold risk-free securities
- Check investment and default rate in periods when $r^r < r^{rf}$

• The larger the share of risky assets, the more firms' investment and default react to $r^{\rm r}$

(4) (3) (4) (4) (4)

• Aggregating the micro effects generates large macro non-linearities

- Small and large shocks produce qualitatively and quantitatively different results
- Small shock is a 1% drop in aggregate productivity
- Large shock is calibrated to match the decrease in investment during the Great Recession in the U.S.

Back

- Aggregating the micro effects generates large macro non-linearities
- Small and large shocks produce qualitatively and quantitatively different results
- Small shock is a 1% drop in aggregate productivity
- Large shock is calibrated to match the decrease in investment during the Great Recession in the U.S.

Back

- Aggregating the micro effects generates large macro non-linearities
- Small and large shocks produce qualitatively and quantitatively different results
- Small shock is a 1% drop in aggregate productivity
- Large shock is calibrated to match the decrease in investment during the Great Recession in the U.S.

Back

- Aggregating the micro effects generates large macro non-linearities
- Small and large shocks produce qualitatively and quantitatively different results
- Small shock is a 1% drop in aggregate productivity
- Large shock is calibrated to match the decrease in investment during the Great Recession in the U.S.

Back

3 - Macro outcomes

Moment	Small negative		
	Risk-free	Risky	
Investment	-0.22%	-0.14%	
Capital	-0.07%	-0.06%	
Default rate	6.21%	6.21%	
r ^r -r ^{rf}	-	0.92p.p.	

• For small shocks, return on risky assets is still above the risk-free rate

55 / 63

< ロ > < 同 > < 三 > < 三 > < 三 > < 三 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

3 - Macro outcomes

Moment	Small negative		Large negative	
	Risk-free	Risky	Risk-free	Risky
Investment	-0.22%	-0.14%	-8.58%	-13.01%
Capital	-0.07%	-0.06%	-2.71%	-3.53%
Default rate	6.21%	6.21%	9.12%	10.19%
r ^r -r ^{rf}	-	0.92p.p.	-	-3.85p.p.

- For small shocks, return on risky assets is still above the risk-free rate
- Identified micro mechanism is only triggered in large recessions

< ロ > < 同 > < 三 > < 三 > < 三 > < 三 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Two different policies:

- Market liquidity provision policy:
 - In the spirit of Secondary Market Corporate Credit Facility by the Fed
 - Limit losses on risky savings in large recessions: $r^r \ge r^{rf}$
 - Limits propagation of the negative shock from defaulting borrowers to lending firms
 - Smaller decrease of investment and capital IRF
- Financial sector regulations:
 - Capital requirements share of risky savings lower than 94%
 - Counter-cyclical buffers during downturns the maximum share of risky savings is 2.5 p.p. lower
 - No significant aggregate differences, as constraints are only binding for large firms

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Two different policies:

• Market liquidity provision policy:

- In the spirit of Secondary Market Corporate Credit Facility by the Fed
- Limit losses on risky savings in large recessions: $r^r \ge r^{rf}$
- Limits propagation of the negative shock from defaulting borrowers to lending firms
- Smaller decrease of investment and capital IRF
- Financial sector regulations:
 - Capital requirements share of risky savings lower than 94%
 - Counter-cyclical buffers during downturns the maximum share of risky savings is 2.5 p.p. lower
 - No significant aggregate differences, as constraints are only binding for large firms

56 / 63

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨヨ ののべ

Two different policies:

- Market liquidity provision policy:
 - In the spirit of Secondary Market Corporate Credit Facility by the Fed
 - Limit losses on risky savings in large recessions: $r^r \ge r^{rf}$
 - Limits propagation of the negative shock from defaulting borrowers to lending firms
 - Smaller decrease of investment and capital IRF
- Financial sector regulations:
 - Capital requirements share of risky savings lower than 94%
 - Counter-cyclical buffers during downturns the maximum share of risky savings is 2.5 p.p. lower
 - No significant aggregate differences, as constraints are only binding for large firms

56 / 63

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨヨ ののべ

Two different policies:

- Market liquidity provision policy:
 - In the spirit of Secondary Market Corporate Credit Facility by the Fed
 - Limit losses on risky savings in large recessions: $r^r \ge r^{rf}$
 - Limits propagation of the negative shock from defaulting borrowers to lending firms
 - Smaller decrease of investment and capital IRF
- Financial sector regulations:
 - Capital requirements share of risky savings lower than 94%
 - Counter-cyclical buffers during downturns the maximum share of risky savings is 2.5 p.p. lower
 - No significant aggregate differences, as constraints are only binding for large firms

56 / 63

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨヨ ののべ

Two different policies:

- Market liquidity provision policy:
 - In the spirit of Secondary Market Corporate Credit Facility by the Fed
 - Limit losses on risky savings in large recessions: $r^r \ge r^{rf}$
 - Limits propagation of the negative shock from defaulting borrowers to lending firms
 - Smaller decrease of investment and capital IRF
- Financial sector regulations:
 - Capital requirements share of risky savings lower than 94%
 - Counter-cyclical buffers during downturns the maximum share of risky savings is 2.5 p.p. lower
 - No significant aggregate differences, as constraints are only binding for large firms

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨヨ ののべ

Two different policies:

- Market liquidity provision policy:
 - In the spirit of Secondary Market Corporate Credit Facility by the Fed
 - Limit losses on risky savings in large recessions: $r^r \ge r^{rf}$
 - Limits propagation of the negative shock from defaulting borrowers to lending firms
 - Smaller decrease of investment and capital IRF
- Financial sector regulations:
 - Capital requirements share of risky savings lower than 94%
 - Counter-cyclical buffers during downturns the maximum share of risky savings is 2.5 p.p. lower
 - No significant aggregate differences, as constraints are only binding for large firms

56 / 63

Two different policies:

- Market liquidity provision policy:
 - In the spirit of Secondary Market Corporate Credit Facility by the Fed
 - Limit losses on risky savings in large recessions: $r^r \ge r^{rf}$
 - Limits propagation of the negative shock from defaulting borrowers to lending firms
 - Smaller decrease of investment and capital IRF
- Financial sector regulations:
 - Capital requirements share of risky savings lower than 94%
 - Counter-cyclical buffers during downturns the maximum share of risky savings is 2.5 p.p. lower
 - No significant aggregate differences, as constraints are only binding for large firms

56 / 63

Two different policies:

- Market liquidity provision policy:
 - In the spirit of Secondary Market Corporate Credit Facility by the Fed
 - Limit losses on risky savings in large recessions: $r^r \ge r^{rf}$
 - Limits propagation of the negative shock from defaulting borrowers to lending firms
 - Smaller decrease of investment and capital IRF
- Financial sector regulations:
 - Capital requirements share of risky savings lower than 94%
 - Counter-cyclical buffers during downturns the maximum share of risky savings is 2.5 p.p. lower
 - No significant aggregate differences, as constraints are only binding for large firms

56 / 63

Two different policies:

- Market liquidity provision policy:
 - In the spirit of Secondary Market Corporate Credit Facility by the Fed
 - Limit losses on risky savings in large recessions: $r^r \ge r^{rf}$
 - Limits propagation of the negative shock from defaulting borrowers to lending firms
 - Smaller decrease of investment and capital IRF
- Financial sector regulations:
 - Capital requirements share of risky savings lower than 94%
 - Counter-cyclical buffers during downturns the maximum share of risky savings is 2.5 p.p. lower
 - No significant aggregate differences, as constraints are only binding for large firms

56 / 63

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Two different policies:

- Market liquidity provision policy:
 - In the spirit of Secondary Market Corporate Credit Facility by the Fed
 - Limit losses on risky savings in large recessions: $r^r \ge r^{rf}$
 - Limits propagation of the negative shock from defaulting borrowers to lending firms
 - Smaller decrease of investment and capital <a>[RF]
- Financial sector regulations:
 - Capital requirements share of risky savings lower than 94%
 - Counter-cyclical buffers during downturns the maximum share of risky savings is 2.5 p.p. lower
 - No significant aggregate differences, as constraints are only binding for large firms

ESEM

56 / 63

Investment and risky holdings

• Effect stronger when considering periods with $r^r < 0$

Miguel H. Ferreira

ESEM

(4) (5) (4) (5)

| = ୬ ୯.୯ 57 / 63

Default and risky holdings

• Default rates also change with the exposure to corporate bonds

ESEM

E SQA

58 / 63

- To focus exclusively on the size effect, I simplify some model assumptions
 - Static: Firms start with a given endowment and choose capital to produce at the end of the period
 - No real frictions
 - Same timing

Static Model

Back

59 / 63

< ロ > < 同 > < 三 > < 三 > < 三 > < 三 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- To focus exclusively on the size effect, I simplify some model assumptions
 - Static: Firms start with a given endowment and choose capital to produce at the end of the period
 - No real frictions
 - Same timing

- To focus exclusively on the size effect, I simplify some model assumptions
 - Static: Firms start with a given endowment and choose capital to produce at the end of the period
 - No real frictions

Back

59 / 63

(日本)

- To focus exclusively on the size effect, I simplify some model assumptions
 - Static: Firms start with a given endowment and choose capital to produce at the end of the period
 - No real frictions
 - Same timing

Static Model

Back

ELE SOC

59 / 63

A B > A B >

- Small firms invest in capital and save in the risk free asset
 - Precautionary savings

Miguel H. Ferreira

• As firms grow, probability of default decreases and share of risky asset holdings increase

Corporate Lending by Nonfinancial Firms

≡ •ી લ. ભ 60 / 63

3 1 4 3

Mechanisms: Distribution

Size Distribution

• More firms at the top of the distribution

ESEM

→ Ξ →

61/63

ELE DOG

Determinants of increase in risky assets

Moment	Variation	Contribution
Excess return	0.32p.p.	86.8p.p.
Distribution		13.2р.р.

Mechanism: $\downarrow r \rightarrow$ Share defaulted debt $\downarrow \rightarrow$ Risky asset excess returns \uparrow (Model: 0.32p.p. vs Observed: 0.44p.p.) \rightarrow Risky savings \uparrow Interest rate Risk Premium

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

IRF: Productivity and Financial shock

ESEM

A (10) × (10) × (10)

63 / 63

EL SQA