Advances in Digital Technologies in Europe and their Local Labor Market Effects Christina Gathmann,¹ Felix Grimm ² ¹LISER, University of Luxembourg and CEPR ²LISER and University of Heidelberg Meeting of the European Economic Association August 29, 2023 #### Motivation - Rapid technological change and increasing capabilities in Al and robotics over the last 30 years - Impacts on the labor market ambiguous - Objectives: - Create new measures for AI and robotics using patent data - Use these measures to estimate labor market effects in Germany #### Motivation - Rapid technological change and increasing capabilities in Al and robotics over the last 30 years - Impacts on the labor market ambiguous - Objectives: - Create new measures for AI and robotics using patent data - Use these measures to estimate labor market effects in Germany #### **Research Questions:** How did patenting in Al and robotics develop between 1990 and 2018? What are the employment and wage effects of these advances in technology? #### Previous Literature #### Literature on measuring technological change: - Patents as proxies for TC (Griliches 1990, Jaffe 1993, Bessen & Hunt 2007) - New patent-based approaches (Mann & Püttmann 2018, Dechezlepretre 2019, Webb 2020) → text instead of metadata #### Previous Literature #### Literature on measuring technological change: - Patents as proxies for TC (Griliches 1990, Jaffe 1993, Bessen & Hunt 2007) - New patent-based approaches (Mann & Püttmann 2018, Dechezlepretre 2019, Webb 2020) → text instead of metadata #### Literature on LM effects of digitalisation: - Early papers on computerization and ICT (Autor et al. 1998, Autor et al. 2003) → focus on SBTC → routine-replacing effects - Impact of robots in manufacturing (Graetz & Michaels 2018, Acemoglu & Restrepo 2020, Dauth et al. 2021) \rightarrow ambiguous effects - Little on AI, mainly on occupational level and for the US (Brynjolfson 2018, Felten 2019, Webb 2020, Acemoglu et.al 2022) #### Our contributions - New patent-based measures of AI and robotics - Using NLP on patent text - Mapping to detailed 3-digit industry of use - Variation over time: yearly data from 1990 to 2018 #### Our contributions - New patent-based measures of AI and robotics - Using NLP on patent text - Mapping to detailed 3-digit industry of use - Variation over time: yearly data from 1990 to 2018 - Estimating employment and wage effects - Using high-quality administrative data from Germany - ullet Cover both services and manufacturing $+\ 2$ technologies - → measure broad impact - Estimate effects on plant and local labor market level # Identifying AI and robotics patents - Data: European Patent Office, 1990 to 2018 - Keyword-based classification using NLP - Use patent text (title & abstract) as input - NLP steps: remove stopwords & special characters, stemming, tokenization - Sample keywords: machin[e] learn[ing], neural network, bayes[ian] learn[ing], robot ## Identifying AI and robotics patents - Data: European Patent Office, 1990 to 2018 - Keyword-based classification using NLP - Use patent text (title & abstract) as input - NLP steps: remove stopwords & special characters, stemming, tokenization - Sample keywords: machin[e] learn[ing], neural network, bayes[ian] learn[ing], robot ### Results: Al and robotics patents • Development of Al and robotics patents between 1990 and 2018: ### Mapping patents to industries - Apply probabilistic mapping (Lybbert & Zolas 2014, 2019) - From patent CPC codes to ISIC industry codes ## Mapping patents to industries - Apply probabilistic mapping (Lybbert & Zolas 2014, 2019) - From patent CPC codes to ISIC industry codes #### **ALP Data Mining** # Mapping patents to industries - Apply **probabilistic mapping** (Lybbert & Zolas 2014, 2019) - From patent CPC codes to ISIC industry codes # Validation: Comparison to previous measures - AI: compare to ICT investment (EU KLEMS) - Robotics: compare to robot installations (IFR) # Patent Exposure Measure #### Industry-level patent measure: $$Pat_{i,t}^c = \sum_{s \in t} Log(1 + Pat_{i,s}^c)$$ with t subperiods 1990-1998, 1990-2005, 1990-2011, 1990-2018 - Patents as cumulative process of knowledge creation: Sum of patents until end of period - Log transformation due to large differences in number of patents - Defined for 4 subperiods #### Labor Market Data - IAB Establishment History Panel (BHP) for 1990-2018 - Main outcome variables: (log) number of employees, (log) median wages - At plant level or aggregated to districts - Control variables: workforce characteristics (skill, age, gender), industry employment shares, net exports, ICT investment, initial firm employment # **Estimation Strategy** #### Plant level: $$Y_{fit} = \beta_c Pat_{i,t}^c + \gamma initial emp_{ft} + \theta_f + \delta_t + \epsilon_{fit}$$, c= Al or robots # **Estimation Strategy** #### Plant level: $$Y_{fit} = \beta_c Pat_{i,t}^c + \gamma_{initialemp_{ft}} + \theta_f + \delta_t + \epsilon_{fit}$$, c= AI or robots #### District level: - Shift-Share design - Evolution of patents in industry → "shift" - ullet Industry structure of LLM in base year (1993) o "shares" - Exposure at the district level: $Exposure_{r,t}^c = \sum_{i=1}^{I} \left(\frac{Emp_{i,r}^{1993}}{Emp_r^{1993}} * Pat_{i,t}^c \right)$ $$Y_{r,t} = \beta \textit{Exposure}_{r,t} + \delta' X_{rt} + \gamma_1 \textit{Trade}_{r,t} + \gamma_2 \textit{ICT}_{r,t} + \theta_t + \alpha_r + \epsilon_{r,t}$$ # Results 1: Plant Level Employment Effects | Employment | overall
(1) | low-skill
(2) | medium-skill
(3) | high-skill
(4) | |--------------------|----------------------|------------------------------|------------------------------|------------------------| | AI Exposure | -0.003***
(0.001) | - 0.007***
(0.001) | - 0.002***
(0.001) | 0.000
(0.001) | | Robot Exposure | -0.001***
(0.000) | - 0.003***
(0.001) | 0.000
(0.000) | 0.001** (0.000) | | Firm FE | \checkmark | \checkmark | ✓ | ✓ | | Period FE | \checkmark | \checkmark | \checkmark | \checkmark | | Initial Employment | \checkmark | \checkmark | \checkmark | \checkmark | | Observations | 3349921 | 3349921 | 3349921 | 3349921 | Al Exposure \uparrow : overall emp. $\downarrow 1.1\%$, low skill emp. $\downarrow 2.7\%$ Robot Exposure \uparrow : overall emp. $\downarrow 0.7\%$., low skill emp. $\downarrow 2\%$ # Results 2: District Employment Effects | Employment changes | overall
(1) | low-skill
(2) | medium-skill
(3) | high-skill
(4) | |----------------------|----------------------|--------------------------------|------------------------|-----------------------| | AI Exposure | -0.013***
(0.003) | -0.0174***
(0.0055) | -0.0132***
(0.0027) | -0.0065
(0.0056) | | Robot Exposure | -0.006***
(0.001) | - 0.0112***
(0.0023) | -0.0057***
(0.0013) | -0.0052**
(0.0023) | | District FE | \checkmark | \checkmark | \checkmark | ✓ | | Period FE | \checkmark | ✓ | ✓ | ✓ | | Demographic controls | \checkmark | \checkmark | ✓ | ✓ | | Industry shares | \checkmark | ✓ | ✓ | ✓ | | Net exports | \checkmark | \checkmark | ✓ | ✓ | | ICT investment | \checkmark | \checkmark | ✓ | ✓ | | Observations | 1604 | 1604 | 1604 | 1604 | Al Exposure \uparrow : overall emp. \downarrow 2.3%, low skill emp. \downarrow 3% Robot Exposure \uparrow : overall emp. \downarrow 2.5%., low skill emp. \downarrow 4.6% # Results 3: District Employment Manufacturing vs. Services | | | Manufa | Non-Manufacturing | | | | | | |----------------------|--------------------------------|------------------------|------------------------|-----------------------|---------------------------|------------------------|-----------------------|------------------------| | Employment changes | overall (1) | low
(2) | medium
(3) | high-skill
(4) | overall
(5) | low
(6) | medium
(7) | high-skill
(8) | | Al Exposure | - 0.0355***
(0.0105) | -0.0345***
(0.0133) | -0.0335***
(0.0095) | -0.0440**
(0.0184) | - 0.0018 (0.0029) | -0.0136**
(0.0053) | -0.0032
(0.0027) | 0.0093 (0.0059) | | Robot Exposure | - 0.0160***
(0.0052) | -0.0204***
(0.0056) | -0.0145***
(0.0046) | -0.0222**
(0.0094) | - 0.0025* (0.0014) | -0.0088***
(0.0023) | -0.0027**
(0.0013) | 0.0012 (0.0027) | | District FE | ✓ | ✓ | ✓ | ✓ | √ | ✓ | ✓ | ✓ | | Period FE | ✓ | ✓ | ✓ | ✓ | √ | ✓ | ✓ | ✓ | | Demographic controls | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | | Industry shares | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | | Net exports | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | | ICT investment | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | | Observations | 1604 | 1604 | 1604 | 1604 | 1604 | 1604 | 1604 | 1604 | #### Negative effects driven by manufacturing employment: Al Exposure \uparrow : manufacturing emp. \downarrow 6.3% Robot Exposure \uparrow : manufacturing emp. \downarrow 6.6%. #### Conclusion - Increasing patenting activity → high relevance of Al & robotics - Patents as important proxy for TC - Plant level: Negative employment effects concentrated on low-skill workers. - District level: Strong automation component for both technologies but varying by sector and skill level. - Al effects concentrated on low- and medium-skill workers. - Robot effects negative for all skill groups. - Strongest negative effects in Manufacturing sector. - Wage effects seem to be small; slightly positive at firm level. #### Thank you! Feel free to reach out: felix.grimm@liser.lu # Appendix # Robustness Check: Excluding German Patents | | | Manufac | turing | | | Non-Manu | Non-Manufacturing | | | |-------------------------|---------------------------|---------------------------------|-------------------------------|---------------------|-----------------------------|----------------------------------|-----------------------------|-----------------------|--| | Employment changes | overall
(1) | low-skill
(2) | med-skill
(3) | high-skill
(4) | overall
(5) | low-skill
(6) | med-skill
(7) | high-skill
(8) | | | ΔAI Exposure | - 0.0221* (0.0119) | 0.000688
(0.0171) | - 0.0226**
(0.0111) | -0.0232
(0.0219) | 0.00417
(0.00496) | 0.00187
(0.00882) | 0.00162
(0.00424) | 0.0165
(0.0108) | | | $\Delta Robot Exposure$ | -0.00951
(0.00639) | - 0.0204***
(0.00698) | -0.00767
(0.00574) | -0.0162
(0.0119) | - 0.00389* (0.00204) | - 0.00950***
(0.00352) | - 0.00338* (0.00182) | -0.00414
(0.00405) | | | District FE | ✓ | ✓ | ✓ | ✓ | √ | ✓ | ✓ | ✓ | | | Period FE | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | | | Demographic controls | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | | | Industry shares | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | | | Net exports | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | | | ICT investment | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | | | Observations | 1604 | 1604 | 1604 | 1604 | 1604 | 1604 | 1604 | 1604 | | ## Results 1: Long Difference Employment and Wage Effects | Panel A: Employment Changes | | | | | | |--|-----------------------|--|------------------------|------------------------|------------------------------------| | | (1) | (2) | (3) | (4) | (5) | | | | | | | | | Δ Al Exposure Δ Robot Exposure | 0.0104**
(0.00452) | 0.0105** (0.00452) | 0.000929 | 0.000905 | 0.0155***
(0.00572)
-0.00351 | | Zirobot Exposure | | | (0.00205) | (0.00204) | (0.00258) | | Δ Net exports | No | Yes | No | Yes | Yes | | Δ ICT investment | No | Yes | No | Yes | Yes | | Demographic controls | Yes | Yes | Yes | Yes | Yes | | Industry shares | Yes | Yes | Yes | Yes | Yes | | Region dummies | Yes | Yes | Yes | Yes | Yes | | Observations | 401 | 401 | 401 | 401 | 401 | | Panel B: Wage Changes | | | | | | | | (1) | (2) | (3) | (4) | (5) | | ΔAI Exposure | 0.000162
(0.00169) | 0.000175
(0.00168) | | | - 0.000837 (0.00232) | | ΔRobot Exposure | (, | (* * * * * * * * * * * * * * * * * * * | 0.000482
(0.000811) | 0.000471
(0.000806) | 0.000709 (0.00108) | | Δ Net exports | No | Yes | No | Yes | Yes | | Δ ICT investment | No | Yes | No | Yes | Yes | | Demographic controls | Yes | Yes | Yes | Yes | Yes | | Industry shares | Yes | Yes | Yes | Yes | Yes | | Region dummies | Yes | Yes | Yes | Yes | Yes | | Observations | 401 | 401 | 401 | 401 | 401 | | | | | | | | Al Exposure ↑ Employment change ↑ 3% # Robustness Check: Long Difference Employment and Wage Effects excluding German patents | Panel A: Employment Changes | (1) | (2) | (3) | (4) | (5) | |------------------------------|-----------------------|---------------------------|------------------------|------------------------|-----------------------------------| | | (1) | (-) | (0) | (.) | (0) | | ΔAI Exposure ΔRobot Exposure | 0.0110**
(0.00495) | 0.0114** (0.00493) | 0.00120 | 0.00125 | 0.0155**
(0.00634)
-0.00272 | | AROBOT Exposure | | | (0.00120 | (0.00125 | (0.00272 | | △ Net exports | No | Yes | No | Yes | Yes | | Δ ICT investment | No | Yes | No | Yes | Yes | | Demographic controls | Yes | Yes | Yes | Yes | Yes | | Industry shares | Yes | Yes | Yes | Yes | Yes | | Region dummies | Yes | Yes | Yes | Yes | Yes | | Observations | 401 | 401 | 401 | 401 | 401 | | Panel B: Wage Changes | | | | | | | | (1) | (2) | (3) | (4) | (5) | | ΔAI Exposure | 0.00169
(0.00244) | 0.00176
(0.00239) | | | 0.00192 (0.00291) | | ΔRobot Exposure | , , | , , | 0.000364
(0.000938) | 0.000390
(0.000920) | - 0.0001 (0.00113) | | Δ Net exports | No | Yes | No | Yes | Yes | | Δ ICT investment | No | Yes | No | Yes | Yes | | Demographic controls | Yes | Yes | Yes | Yes | Yes | | Industry shares | Yes | Yes | Yes | Yes | Yes | | Region dummies | Yes | Yes | Yes | Yes | Yes | | Observations | 401 | 401 | 401 | 401 | 401 | # Robustness Check: Period Employment and Wage Effects excluding German patents | Panel A: Employment Change | s | | | | | | |---------------------------------|--------------------------|------------------------|--|-------------------------|--------------------------|---| | | (1) | (2) | (3) | (4) | (5) | (6) | | ΔAI Exposure
ΔRobot Exposure | -0.000286
(0.00175) | -0.00135
(0.000889) | 0.00338
(0.00231)
-0.00229*
(0.00118) | -0.0139***
(0.00330) | -0.00639***
(0.00147) | -0.00529
(0.00382)
-0.00485***
(0.00178) | | District FE | No | No | No | Yes | Yes | Yes | | Period FE | Yes | Yes | Yes | Yes | Yes | Yes | | Demographic controls | Yes | Yes | Yes | Yes | Yes | Yes | | Industry employment shares | Yes | Yes | Yes | Yes | Yes | Yes | | △ Net exports | Yes | Yes | Yes | Yes | Yes | Yes | | △ ICT investment | Yes | Yes | Yes | Yes | Yes | Yes | | Observations | 1604 | 1604 | 1604 | 1604 | 1604 | 1604 | | Panel B: Wage Changes | | | | | | | | | (1) | (2) | (3) | (4) | (5) | (6) | | ΔAI Exposure | -0.00000182
(0.00105) | | -0.000657
(0.00128) | 0.000568
(0.00227) | | 0.00444*
(0.00254) | | ∆Robot Exposure | | 0.000226
(0.000512) | 0.000410
(0.000633) | | -0.000875
(0.000913) | -0.00217**
(0.00105) | | District FE | No | No | No | Yes | Yes | Yes | | Period FE | Yes | Yes | Yes | Yes | Yes | Yes | | Demographic controls | Yes | Yes | Yes | Yes | Yes | Yes | | Industry employment shares | Yes | Yes | Yes | Yes | Yes | Yes | | △ Net exports | Yes | Yes | Yes | Yes | Yes | Yes | | △ ICT investment | Yes | Yes | Yes | Yes | Yes | Yes | | Observations | 1604 | 1604 | 1604 | 1604 | 1604 | 1604 | # Results 4: Wages Manufacturing vs. Services | Panel A: Manufacturing Wages | | | | | | | |----------------------------------|-------------------------|------------------------|--------------------------|------------------------|-------------------------|----------------------| | | (1) | (2) | (3) | (4) | (5) | (6) | | ΔAI Exposure | -0.0000814
(0.00141) | | -0.000509
(0.00172) | -0.00586*
(0.00326) | | -0.00401
(0.00422 | | △Robot Exposure | | 0.000129
(0.000674) | 0.000285
(0.000839) | | -0.00249
(0.000170) | -0.00115
(0.00224 | | District FE | No | No | No | Yes | Yes | Yes | | Period FE | Yes | Yes | Yes | Yes | Yes | Yes | | Demographic controls | Yes | Yes | Yes | Yes | Yes | Yes | | Industry employment shares | Yes | Yes | Yes | Yes | Yes | Yes | | △ Net exports | Yes | Yes | Yes | Yes | Yes | Yes | | △ ICT investment | Yes | Yes | Yes | Yes | Yes | Yes | | Observations | 1604 | 1604 | 1604 | 1604 | 1604 | 1604 | | Panel B: Non-Manufacturing Wages | | | | | | | | | (1) | (2) | (3) | (4) | (5) | (6) | | ΔAI Exposure | -0.000926
(0.000817) | | -0.00268**
(0.00105) | -0.00220
(0.00153) | | -0.00188
(0.00215 | | ΔRobot Exposure | , , | 0.000348
(0.000335) | 0.00118***
(0.000436) | | -0.000829
(0.000731) | -0.00020
(0.00103 | | District FE | No | No | No | Yes | Yes | Yes | | Period FE | Yes | Yes | Yes | Yes | Yes | Yes | | Demographic controls | Yes | Yes | Yes | Yes | Yes | Yes | | Industry employment shares | Yes | Yes | Yes | Yes | Yes | Yes | | △ Net exports | Yes | Yes | Yes | Yes | Yes | Yes | | △ ICT investment | Yes | Yes | Yes | Yes | Yes | Yes | | Observations | 1604 | 1604 | 1604 | 1604 | 1604 | 1604 | # Correlations of patents, ICT and IFR - AI: compare to ICT investment (KLEMS database) - Robotics: compare to robot installations (IFR database) - Account for diffusion with 3-year time lag ▶ go back # Correlation of Al patents and job vacancies