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Interaction between Algorithmic Pricing & Data Policies

Two interrelated trends characterize digital markets:
I AI algorithms (AIAs) are increasingly used for pricing and other economic

decisions

I Public and private initiatives are changing data policies

Regulations in the EU and elsewhere are tackling both (especially the latter), but
separately → potentially problematic since data is the AIAs’ fuel!

Our research question: do digital platforms have the incentive to worsen the
type/quality of data released to businesses operating on the platform using the
AIAs?
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Setting: Sponsored Search Auctions for Digital Ads

Setting: auctions where digital ad space is sold, in particular Generalized
Second-Price (GSP) auctions used for sponsored search
I Sponsored search auctions: 40% of digital ad revenues
I One dominant platform as a seller (Google), and a few competitors (Bing,

Yandex, Seznam, Amazon, etc.) all using auctions
I Buyers increasingly use algorithms (often AIAs) to bid
I Regulation is about to have direct impacts on digital ad services:

Digital Markets Act (DMA) ‘core platform services’ include online ad services
(Digital Services Act (DSA) also targets them):
I more restrictions on targeted/micro-targeted ads (DMA Article 6(aa))
I more transparency toward advertisers (DMA Art. 6(g)) and final consumers

(DSA Art. 24)
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Method and Findings
Method: controlled experiments via computer simulations, as in most of
the literature (Calvano et al. (2020), Asker et al. (2021), Banchio and Skrzypacz
(2022))

Findings: the platform can have an incentive to obfuscate the data in order
to increase revenues

Specifically, we consider the incentive to go
I from a full information feedback: all bids revealed
I to no information feedback: no competitors’ bids revealed

Different information regimes imply the use of different AIAs, so that in our
benchmark case platform revenues increase substantially (by more than 20%)

The baseline result is robust to extensions about both AIAs and auction
mechanism
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GSP Auction Game



Method: GSP auction game
Series of simulated experiments in which bidders interact repeatedly in a
GSP auction for one keyword

Rules of the GSP auction:
I Bidder i submits a bid bi ∈ R+
I The s-th highest bid (bs) obtains slot s among several available slots for sale,

and pays a price per click equal to bs+1

Baseline Experiment (3 asymmetric bidders):
I An auction with two slots and three bidders i ∈ {1, 2, 3}
I Valuations (per click): v1 = 3, v2 = 2, v3 = 1
I Click-through-rates (CTRs): x1 = 5, x2 = 2
I Feasible bids B on the interval [Bmin,Bmax] = [0.2, 3]
I k = 15 possible bids

Competitive benchmark equilibrium (EOS) corresponds to:
I bids are equal to b1 > b2, b2 = 1.6, b3 = 1
I and the platform revenue is R = 10
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AI Algorithms



Design Features of the AIAs’ Auction Experiments: Main Ideas

I Bidders interact repeatedly in a GSP auction for one keyword

I Each of the bidders uses its own Q-learning algorithm: AIAs learn to bid by
trial and error in order to maximize the expected present value of the reward
stream

I The knowledge of each algorithm is represented by the Q-matrix: Qit(s, b),
the matrix of expected rewards from each possible bid b ∈ B in each
possible state of the game s ∈ S in each period t

I Updating rule: after choosing bid bit in state st , the algorithm observes r it as
well as st+1, and updates the Q-matrix
• Asynchronous (only for submitted bid) vs
• Synchronous (for all bids by calculating counterfactuals)

I Data usage:
• Stateful st = (bit−1, b

−i
t−1) vs Stateless st = ∅
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Data Policy: Obfuscation by the Platform examples

Both the update rule and the definition of the state (ı.e., data usage) are not a free
choice by the bidder but are a consequence of the platform data policy

Three information assumptions describing what the platform reveals about bids:

a. Full Information: In every period, the bidder observes not only the current
reward but also the bids of the other players submitted in the past period ⇒
Stateful Synchronous algorithms

b. Partial Information: In every period, the bidder observes not only the
current reward but also her bid submitted in the past period and price paid ⇒
Partial Asynchronous algorithms

c. No information: The only information that the bidder observes is the reward
she received after submitting a particular bid ⇒
Stateless Asynchronous algorithms



Results



Obfuscation Increases the Platform’s Revenues

Table: Limit Bids, Rewards, and Auctioneer Revenues

Bids Individual Rewards Revenue
Full Info: Stateful Synchronous (2.03, 1.2, 0.6) (9.0, 2.8, 0.0) 7.2

[7.03, 7.37]
No Info: Stateless Asynchronous (2.22, 1.51, 0.61) (7.46, 2.78, 0.0) 8.76

[8.39, 9.13]

The decision not to reveal competitor bids increases the platform’s average
revenues by 22% from 7.2 to 8.76. Evolution of Revenues, Bids, Rewards

I Platform revenue in competitive benchmark of the one-shot game is R = 10
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Comparison with Other Experimental Designs

Table: Limit Bids, Rewards, and Auctioneer Revenues under various Experimental Designs

Bids Individual Rewards Revenue

Full Info: Stateful Synchronous (2.03, 1.2, 0.6) (9.0, 2.8, 0.0) 7.2

[7.03, 7.37]
No Info: Stateless Asynchronous (2.22, 1.51, 0.61) (7.46, 2.78, 0.0) 8.76

[8.39, 9.13]

Partial Info: Partial Asynchronous (2.2, 1.36, 0.59) (7.74, 2.62, 0.13) 7.87

[7.35, 8.39]
Stateful Synchronous (δ = 0) (2.46, 1.47, 0.61) (7.64, 2.79, 0.0) 8.57

[8.24, 8.9]
Stateless Synchronous (2.49, 1.49, 0.6) (7.55, 2.8, 0.0) 8.65

[8.31, 8.99]



Possible Driver: Implementation of Reward-punishment Schemes delta

Figure: Evolution of Bids in a Single Run of the Stateful Synchronous Algorithm when
Player v2 = 2 Deviates

I Forced deviation of Player v2 = 2 to raise his bid to 1.6 instead of his bid 1.2
at convergence of the Stateful Synchronous algorithm



Extensions

All of the extensions below lead to differences in the magnitude of the revenue
increase via obfuscation, but to the same qualitative outcomes:

I Variation to the GSP game: Milgrom and Mollner (2014) go

I Alternative auction format: VCG mechanism go

I Alternative AIAs: conservative & greedy AIAs via argmax choice; asymmetric
grids go



Conclusions

Results from this paper:
1. Data obfuscation by the platform can improve its revenues and hurt

advertisers using AIAs
2. Algorithmic bidding sustains low bids under the GSP relative to the

competitive benchmark

Broader research agenda:
I Competition between differentially informed AIAs: platform sponsored

AIAs bidding services accessing more/better data
I Other forms of data obfuscation: keyword (broad match) and click

attribution
I Assessment of DMA-DSA provisions on the interaction between data

obfuscation and AIAs bidding



Appendix



Data Policy: Obfuscation Strategies by the Platform back

Figure: Search Term Report



Data Policy: Obfuscation Strategies by the Platform back

Figure: Impacts of the Search Term Report Change



Data Policy: Obfuscation Strategies by the Platform back

Figure: Broad Match Modifiers



Data Policy: Obfuscation Strategies by the Platform back

Figure: Position Information



Data Policy: Obfuscation Strategies by the Platform back

Figure: Attribution



Data Policy: Obfuscation Strategies by the Platform back

Figure: Details on the Attribution Model



Evolution of Auctioneer’s Revenues back



Evolution of Bids and Bidder Rewards back

(a) Player v1 = 3 Bids (b) Player v2 = 2 Bids (c) Player v3 = 1 Bids

(a) Player v1 = 3 Rewards (b) Player v2 = 2 Rewards (c) Player v3 = 1 Rewards



Possible Driver: Implementation of Reward-punishment Schemes back

(a) Bids when δ = 0.95 (b) Bids when δ = 0

Figure: Evolution of Bids in a Single Run



Alternative AIAs: Conservative and Greedy via Argmax Selection back

I If in the exploration process, AIAs are conservative and choose the smallest b
among those leading to the highest value of the Q-matrix in a given s,
obfuscation leads to an increase in the platform’s average revenues by 23%
from 6.4 to 7.86

I In the case of greedy algorithms that choose the highest bid, the decision not
to reveal competitor bids increases the platform’s average revenues by 25%
from 8 to 10

Bids Individual Rewards Revenue
Stateful Synchronous (Conservative) (2.05, 1.2, 0.2) (9.0, 3.6, 0.0) 6.4

[6.4, 6.4]
Stateless Asynchronous (Conservative) (2.14, 1.49, 0.2) (7.49, 3.59, 0.0) 7.86

[7.56, 8.16]
Stateful Synchronous (Greedy) (2.0, 1.2, 1) (9.0, 2.0, 0.0) 8.0

[8.0, 8.0]
Stateless Asynchronous (Greedy) (2.21, 1.6, 1.0) (7.0, 2.0, 0.0) 10.0

[9.67, 10.33]



Alternative AIAs: Asymmetric Bid Grids back

Simulation Results in Case when Player v2 = 2 has a Grid of 20 Bids:

Bids Individual Rewards Revenue
Stateful Synchronous (2.03, 1.23, 0.66) (8.84, 2.67, 0.0) 7.49

[7.2, 7.78]
Stateless Asynchronous (2.17, 1.45, 0.61) (7.73, 2.78, 0.0) 8.49

[8.06, 8.91]



One Extra Example: Milgrom and Mollner (2014) back

I v1 = 15, v2 = 10, v3 = 5
I x1 = 100, x2 = 3, x3 = 1
I The set of feasible bids B on the interval [Bmin,Bmax] = [1, 15]
I k = 15 possible bids so that the step between the bids is 1
I The EOS equilibrium in this case is given by b1 > b2, b2 = 9.8, b3 = 3.3(3),

and leads to auctioneer revenue R = 990

Bids Individual Rewards Revenue
Stateful Synchronous (11.45, 4.22, 2.12) (1078.0, 23.63, 5.0) 428.36

[416.68, 440.05]
Stateless Asynchronous (13.36, 7.72, 2.01) (728.0, 23.96, 5.0) 778.04

[711.29, 844.8]

82% increase in auctioneer revenue



Alternative Auction Format: GSP vs VCG back

Table: Comparison of the GSP and VCG

GSP VCG
Bids Individual Rewards Revenue Bids Individual Rewards Revenue

Stateful Synchronous (2.03, 1.2, 0.6) (9.0, 2.8, 0.0) 7.2 (2.53, 1.21, 0.6) (10.18, 2.8, 0.0) 6.02

[7.03, 7.37] [5.66, 6.37]
Stateless Asynchronous (2.22, 1.51, 0.61) (7.46, 2.78, 0.0) 8.76 (2.79, 1.94, 0.62) (7.94, 2.76, 0.0) 8.3

[8.39, 9.13] [7.81, 8.79]

I Compared to the 22% increase for GSP, for the VCG, the decision not to
reveal competitor bids increases the platform’s average revenues by 38%

I Moreover, the auctioneer revenues under the VCG setting tend to be lower
than those under the GSP setting


