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Abstract

Two homogeneous-good firms compete for a consumer’s unitary demand. The

consumer is rationally inattentive and pays entropy costs to process informa-

tion about firms’ offers. Compared to a collusion benchmark, competition

produces two effects. As in standard models, competition puts downward

pressure on prices. But, additionally, an attention effect arises: The consumer

engages in trade more often. This alleviates the commitment problem that

firms have when facing inattentive consumers and increases trade efficiency.

For high enough attention costs, the attention effect dominates the effect on

prices: Firms’ profits are higher under competition than under collusion.
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1 Introduction

Consumers’ ability to process information about prices is naturally at the heart
of the idea of competition. Standard models of Bertrand competition assume that
consumers can perfectly spot different firms’ offers and optimally choose the best
one. However, in many situations, finding the best offer requires costly attention.
Consider, for example, a consumer deciding which mortgage to apply for, where to
purchase life insurance, or which food delivery service to use. Even if all the infor-
mation needed for optimal decision-making is available, the consumer still has to
process this information. Mortgage and life insurance contracts can be challenging
to understand, and learning which delivery service offers the lowest fees or the best
promotions requires time and cognitive effort.

If information processing is costly, rational consumers must not only decide
which offer to accept but also how much attention to pay to each offer. Since firms’
price-setting decisions depend on how strongly consumers react to price changes,
understanding how consumers strategically allocate attention to offers is crucial.
In particular, consumers’ endogenous attention allocation can be a novel channel
through which changes in the market structure shape economic outcomes.

This paper studies the impact of competition in markets with costly information
processing. We show that increasing the level of competition has two effects. If
the consumer’s attention strategy remained unchanged, prices would be lower un-
der competition than under collusion. This pricing effect is the same as in standard
models with an exogenous downward-sloping demand curve. However, the con-
sumer’s optimal attention strategy is not fixed and depends on the prices she con-
jectures. Since the consumer correctly anticipates the pricing effect in equilibrium,
increasing the level of competition also changes the consumer’s optimal attention
allocation. This new attention effect causes the consumer to engage in trade more
often, effectively increasing her demand curve pointwise. For a parameter range of
information costs, we show that the attention effect dominates the pricing effect:
Firms’ equilibrium profits are higher when they compete than when they collude.

We introduce rational inattention to an otherwise standard Bertrand duopoly set-
ting. Our model consists of a representative consumer and two firms that sell a
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good of common quality.1 The firms make take-it-or-leave-it offers to the consumer
simultaneously. The consumer has unitary demand and chooses an information
structure to learn about the good’s quality and the firms’ prices. Following an ex-
tensive literature building on Sims (2003), we take the information processing cost,
or attention cost, to be proportional to the expected entropy reduction. After pro-
cessing the information, the consumer decides whether and from which firm to buy
the good.

Our model applies particularly well to markets where an offer is difficult to un-
derstand or compare across firms. Examples of this kind are complex loan contracts
and insurance contracts, as described above. More generally, our model captures
settings where consumers need to process information about offers, for example be-
cause they are comprised of several individual prices, fees, and discounts. Focusing
on information processing allows us to model consumers’ attention as a continu-
ous variable.2 In particular, rational inattention provides a tractable framework to
analyze the resulting trade-off between optimal decision-making and costly infor-
mation processing.

We characterize the firms’ and consumer’s behavior by using the solution concept
of Bayes Nash Equilibrium. To avoid an infinite multiplicity of equilibrium out-
comes, we impose a refinement that requires the consumer’s strategy to be robust to

vanishing perturbations (RVP). Because entropy costs ignore off-path events, ratio-
nal inattention does not place any restriction on the consumer’s behavior following
a firm’s deviation. RVP requires that for all possible deviations in the equilibrium
price-setting behavior of the firms, the consumer strategy must be optimal against
some vanishing belief perturbation consistent with the deviation.3 This means that
the consumer’s off-path behavior can be rationalized by some arbitrarily small per-
turbations in the firms’ strategies.

To isolate the effects of competition, we first establish a benchmark where the

1We extend our results to any number of firms in Section 4.3.
2Models with search costs (Stahl, 1989) or captive consumers (Varian, 1980) assume binary

price information: Consumers either observe the price or not. In contrast, the rational inattentive
consumer chooses information flexibly, allowing us to study the effects of subtle attention changes.

3RVP extends the notion of credible best response introduced by Ravid (2020) to a multi-firm
setting, and is similar in spirit but weaker than Selten’s (1975) trembling-hand perfection.
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firms collude. In this collusive setting, the unique RVP trading equilibrium out-
come is identical to the unique credible trading equilibrium outcome of Ravid’s
(2020) ultimatum bargaining game. Using this equivalence and Ravid’s results, it
follows that trade can be sustained under collusion if and only if the parameter k
that governs the consumer’s unit cost of information processing is below a threshold
kt. Moreover, trade under collusion is always inefficient as it occurs with a proba-
bility strictly lower than one. Efficient trade would require the consumer always to
purchase the good, which implies never paying costly attention to prices, since any
information is inconsequential to her purchase decision. However, colluding firms,
lacking commitment power, would overcharge a completely inattentive consumer.
This contradicts the optimality of the consumer’s purchasing decision.

In our model of competition, we are interested in RVP equilibria in which both
firms trade with positive probability, which we call competitive trading equilib-

rium.4 We show that such an equilibrium exists if and only if trade can be sustained
under collusion, i.e., if and only if k is below the trade-threshold kt. Moreover,
whenever a competitive trading equilibrium exists, it is unique.

The competitive trading equilibrium outcome depends on the unit cost of infor-
mation processing k. We show that there exists an efficiency-threshold ke ∈ (0, kt)
such that if k is lower than ke, then trade is efficient. This is in stark contrast
with the collusive benchmark where trade is always inefficient. The consumer buys
with probability one and disregards any information about the value of firms’ of-
fers relative to the no-purchase outside option. Since the consumer only processes
information about the difference between the firms’ prices, and not their absolute
value, colluding firms would exploit this situation and coordinate on overcharging
the consumer. In contrast, competing firms have incentives to undercut each other
since the consumer still pays attention to how offers compare. If k < ke, this at-
tention strategy is enough to sustain the efficient trade outcome. As k increases,
the level of detail with which the consumer processes information about price dif-
ferences decreases and, consequently, the firms charge higher prices. If k is above

4Competitive trading equilibria are the only equilibria in which competitive forces are present.
If one of the firms trades with probability zero, the active firm faces the same environment as a
monopolist.
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ke, these prices become too large for the consumer to always buy, so she needs to
make use of the no-trade outside option to discipline the firms further. In the re-
gion k ∈ (ke, kt), trade is therefore inefficient. When k is above kt, not even fully
resorting to the no-trade outside option sufficiently disciplines the firms’ pricing
behavior. As a result, trade cannot be sustained in equilibrium, irrespective of the
number of firms in the market and their incentives to compete.

Our analysis compares the competitive equilibrium outcome to the collusive one.
We find that competition always increases trading efficiency when a competitive
trading equilibrium exists. To see why, note that the consumer’s attention strategy
governs the demand the firms face. In particular, the attention strategy determines,
for any pair of prices the firms offer, how likely the consumer is to buy from each
of them. For a fixed attention strategy, the standard pricing effect of competition
implies that competing firms charge lower prices than colluding ones. In turn, since
the consumer correctly anticipates the firms’ pricing strategies in equilibrium, and
since her optimal attention strategy depends on these anticipated pricing strategies,
competition also produces an attention effect. Due to the firms’ better offers, the
consumer wants to engage in trade more often when the firms compete, leading to
a pointwise increase in the endogenous demand the firms face.5

Our main result shows that the increased trade efficiency of competitive markets
can lead to a higher producer surplus. In particular, a parameter region of relatively
high attention costs exists where firms achieve higher profits by competing than
by colluding. Intuitively, if k is close to kt, the consumer focuses on deciding
whether to buy and pays less attention to comparing the firms’ offers. This implies
that competing firms’ pricing behavior approximates that of colluding firms in this
parameter region. Nevertheless, competing firms face a more favorable demand,
leading to higher profits under competition than under collusion.6

A key insight behind our results is that competition alleviates the consequences of

5Demand changes also affect the firms’ equilibrium pricing. In particular, for a fixed market
structure, a firm’s optimal price is higher the more the consumer engages in trade. As a result, the
equilibrium effect of competition on prices is ambiguous: Prices decrease due to the pricing effect
but increase due to the attention effect.

6While the consumer’s trading probability goes to zero under both market structures, the ratio
between the two is always bounded away from one.
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firms’ lack of commitment power in markets with inattentive consumers. If collud-
ing firms could commit to charging a price equal to the good’s quality, they would
extract the full surplus. However, this pricing strategy does not align with firms’ in-
centives ex-post, as they would find it optimal to exploit the consumer’s inattention,
ultimately leading to trade inefficiency. Under competition, firms have incentives
to charge lower prices, alleviating the losses due to the lack of commitment power.
The resulting higher trade efficiency yields our main result.

Our findings contrast with those of standard models that ignore information pro-
cessing costs. Since the firms produce perfect substitutes, competition in friction-
less models keeps demand unchanged and only puts downward pressure on prices,
thus reducing firms’ profits. Instead, when the consumer is rationally inattentive,
we show that the attention effect of competition leads to an outward shift of demand,
dominating the pricing effect for attention costs close enough to the trade-threshold
kt.

In addition to the producers, consumers can also benefit from competition: There
exists a parameter range of attention costs, where competition simultaneously im-
proves the welfare of both sides of the market. Obtaining general results about
consumer surplus and total welfare is difficult as the consumer’s payoff includes
entropy-based information costs. However, we establish that the consumer bene-
fits from competition whenever trade is efficient or the attention costs are relatively
high. In the latter case, by our main result, producers may benefit as well.

Our analysis extends to competitive markets with any finite number of firms. The
trade-threshold kt is constant in the industry size. On the other hand, the parameter
range where efficient trade can be supported in equilibrium expands with the num-
ber of firms as both the pricing and attention effect become stronger. Similarly, a
region of sufficiently high attention costs always exists such that adding competing
firms increases the producer surplus.

Related Literature. Our findings contribute to a recent literature (Ravid 2020;
Denti, Marinacci, and Rustichini 2022; Wolitzky 2023) documenting inefficient
trade in monopoly markets featuring consumers unable to observe offers perfectly.
These works interpret inefficiency as a lack of monopolist’s commitment power,
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which cannot avoid overcharging the inattentive consumer. We contribute to this
literature by introducing the novel attention effect, which states that the demand
increases pointwise due to increased competition. Our results show that competition
alleviates the firms’ commitment problem, allowing for efficient trade even when
consumers are inattentive.7

Our modeling approach connects us to the literature studying rational inatten-
tion to uncertainty jointly controlled by nature and players, e.g., products’ quality
and prices. The issue of off-path unrestricted consumer behavior is central to this
literature, which addresses it following different approaches.8 We characterize the
consumer’s best response everywhere following Ravid (2020) by imposing robust-
ness to firms’ small mistakes. Instead, in a framework similar to ours, Matějka and
McKay (2012) solves this issue by restricting the set of attention of strategies avail-
able to the consumer. In a monopoly model, Matějka (2015) constrains off-path
behavior by subgame perfection, as the seller commits to a public price schedule.

We further relate to the literature on consumer search (Diamond 1971; Burdett
and Judd 1983; Stahl 1989; Cachon, Terwiesch, and Xu 2008). Apart from deliver-
ing different equilibrium predictions, we differ substantially from this literature in
how we regard consumers: Rational inattention models the consumer’s information
processing decision in a continuous manner, while this decision is binary in search
models.

Our work also connects with the behavioral literature that justifies frictions in the
observability of prices by bounded rationality (Varian 1980; Spiegler 2006; Gabaix
and Laibson 2006; Hefti 2018; Heidhues, Johnen, and Koszegi 2021). De Clippel,

7Board and Pycia (2014) find a similar effect in a Coasian framework. They show that com-
petition endogenously generates an outside option for consumers, allowing firms to avoid lowering
their prices as it would occur under the Coase conjecture. Our work differs in two ways. First, the
commitment problem stems from inattentive consumers rather than the possibility to make multiple
offers over time. Second, while in our setting an increase in trade efficiency is responsible for the
possibly larger profits, the mechanism works through increased prices in Board and Pycia (2014).

8This problem does not arise if attention is devoted to exogenous variables only, since the
almost-sure solution provided by Matějka and McKay (2015) suffices in this case. This framework
is used by a growing literature that investigates the market consequences of rational inattention to
exogenous variables (Martin 2017; Boyacı and Akçay 2018; Yang 2019; Ravid, Roesler, and Szentes
2022; Mensch and Ravid 2022; Thereze 2022a; Thereze 2022b; Wu 2022; Albrecht and Whitmeyer
2023). Instead, we focus mainly on rational inattention to endogenous equilibrium objects.
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Eliaz, and Rozen (2014) model attention as the number of markets consumers ex-
plore, finding that consumer welfare can be higher if the expected level of attention
is lower. Armstrong and Vickers (2022) show that firms’ entry may decrease con-
sumer and increase producer surplus when consideration sets are exogenous. Our
results are driven instead by endogenous attention allocation.9 Attention shapes de-
mand also in Bordalo, Gennaioli, and Shleifer (2016). The difference with our ap-
proach is that our rationally inattentive consumer allocates attention ex-ante, while
their salient thinker allocates attention based on which attribute is salient ex-post.

The literature on strategic price complexity provides a different rationale for con-
sumers’ mistakes by allowing firms to compete, besides prices, on the complexity
level of their price structure (Carlin 2009; Piccione and Spiegler 2012; Chioveanu
and Zhou 2013; Spiegler 2016). Instead, we take price complexity as given and
compare the consumer’s best response across different market structures.

2 Model

Two identical firms with zero marginal costs compete for a consumer’s unitary
demand. Product quality is common, stochastic, and perfectly observed by the
firms. After observing the product quality, each firm makes a simultaneous offer to
the consumer. The consumer does not directly observe the product quality or the
firms’ offers. Instead, she holds beliefs about their joint distribution and costly pro-
cesses information to improve her purchasing decision. We interpret the consumer’s
information processing decision as an attention problem and use these terms inter-
changeably in our analysis. Following the literature on rational inattention initiated
by Sims (2003), we call the consumer rationally inattentive, and we assume that
the attention cost is entropy-based, as described below.

9Consumers in Armstrong and Vickers (2022) always trade whenever they observe at least one
offer. Therefore, an increase in the producer surplus implies a decrease in the consumer surplus.
This implication is not valid in our framework, as competition expands the trading surplus of the
economy, allowing the coexistence of higher producer and consumer surplus. See Section 4.2 for
more results on consumer surplus.
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Game structure. The following timeline summarizes the game structure of our
model. We formalize each element below.

v ∼ λ

Nature

σ := (σi(·|v))i∈I

Firms

β := (βi)i∈I

Consumer

1. Product quality v is drawn according to a probability measure λ ∈ ∆(R). We
assume that λ has strictly positive finite support, i.e., suppλ =: V ⊆ (0,∞) is
finite.

2. After observing the product quality realization v, each firm i ∈ I := {1, 2}
makes a simultaneous offer to the consumer. We denote by σi : V → ∆(R+)
firm i’s strategy and by xi ∈ R+ the price firm i charges.

3. We refer to each profile of the exogenous product quality and the endogenous
firms’ prices (v, x1, x2) as a state. The consumer does not directly observe the
realized state. Rather, she holds beliefs and pays attention by selecting an infor-

mation structure to learn about it. The attention cost is proportional to the mutual
information between states and signals, which equals the expected entropy re-
duction between the consumer’s prior belief over states and her posterior beliefs
obtained via Bayesian updating. After a signal realizes, the consumer makes a
purchasing decision, and the game ends.
Without loss of generality, we restrict the consumer’s strategy space to recom-

mendation strategies, which we refer to as attention strategies.10 A recommen-
dation strategy β is a profile (β1, β2) such that βi : V × R2

+ → [0, 1] denotes the
conditional probability of accepting the offer of firm i ∈ I . That is, βi(v, x1, x2)
is the probability of receiving the recommendation “accept i’s offer" given the
realized state (v, x1, x2). Naturally, for every (v, x1, x2) ∈ V ×R2

+, it holds that∑
i∈I βi(v, x1, x2) ≤ 1; with the remaining probability, the consumer accepts no

offer.
Denote the consumer’s prior belief over states by µ ∈ ∆(V ×R2

+).11 Exploiting

10See Matějka and McKay (2015) for the optimality of recommendation strategies when the
consumer is restricted to pure strategies and Ravid (2019) for an extension to mixed strategies.

11We endow V × R2
+ with the product σ-algebra between the discrete σ-algebra on V and the
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the restriction to recommendation strategies, we write mutual information as

I(µ, β) := H(Eµ[β]) − Eµ[H(β)], (1)

where H(p) = −p1 log(p1) − p2 log(p2) − (1 − p1 − p2) log(1 − p1 − p2) is the
Shannon entropy associated with the probability measure (p1, p2, 1 − p1 − p2)
consistent with p = (p1, p2). Mutual information as formalized in equation (1)
asserts that attention costs are proportional to the difference in entropy between
the conditional and the unconditional distribution of playing each action. In
other words, I(µ, β) captures how much the uncertainty about a specified plan
of action decreases with information.12

Payoffs. Once firms make offers and the consumer selects a recommendation
strategy, payoffs are obtained. The consumer’s utility given product quality v ∈ V is

U :=
∑
i∈I

(v − xi)βi(v, x1, x2) − k · I(β, µ).

That is, the consumer’s utility equals her gains from trade net of the costs of process-
ing information. The parameter k > 0 is the consumer’s unit cost of information
processing and represents the cost assigned to each bit of processed information.

The payoff obtained by each firm i ∈ I equals

ΠC
i := βi(v, x1, x2) · xi,

where the superscript C stands for “Competition.” The competing firms in our
model adopt the standard profit-maximizing behavior. Since the consumer uses a
recommendation strategy, βi(v, x1, x2) represents the endogenous demand firm i

faces.

standard Borel σ-algebra on R2
+. We also endow both ∆(R2

+) and ∆(V × R2
+) with the topology

of strong convergence.
12Entropy-based information costs are tractable and allow us to make sharp economic predic-

tions. However, they are not necessary for our results. See Cusumano, Fabbri, and Pieroth (2022)
for further discussion.
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Discussion. In our framework, prices are not directly observable by the consumer.
Instead, she chooses an information structure that (stochastically) determines what
she learns about offers. As motivated in the Introduction and discussed also in
Ravid (2020), this assumption captures situations where offers entail complex con-
tracts or include multiple prices. Additionally, this assumption can be viewed as
modeling a consumer at a very early stage of the purchasing decision, when she
does not yet have access to prices. Consider, for example, the decision of where to
have dinner. While restaurant prices are perfectly observable, one has to physically
go to the restaurant or visit their website to actually access the menu. Either of these
processes involves costs in time and cognitive effort. If ex-post switching costs are
high,13 this leads to the same trade-off between optimal decision-making and costly
information processing studied in our model.

2.1 Equilibrium Refinement

We adopt Bayes Nash Equilibrium (BNE) as the solution concept for our duopoly
model with rational inattention. The assessment (µ, σ, β) is a BNE if (i) µ is con-

sistent with σ,14 (ii) β is a best response to µ, and (iii) for every i ∈ I , σi is a best
response to σ−i given β.

As discussed by Ravid (2020), standard BNE is too permissive to make sharp pre-
dictions about equilibrium outcomes in games with rational inattention directed to-
ward endogenous equilibrium quantities. As the consumer’s attention cost is prior-
dependent, it is unaffected by off-path contingencies. Therefore, despite the firms’
optimal behavior depending on the consumer’s reaction on and off-path, BNE does
not require the consumer’s off-path threats to be credible. As Ravid (2020) shows,
one can avoid this problem by allowing firms to make arbitrarily small mistakes
on-path. We follow this approach and refine BNE by imposing an additional prop-
erty on the consumer’s best response which we call robustness to vanishing per-

turbations (RVP). RVP requires the consumer’s strategy to be justified under some
arbitrarily small belief perturbations both on and off the conjectured path of play. It

13This must include costs for switching to the outside option, which in this example could be a
delayed dinner at home. We thank an anonymous referee for pointing this out.

14The belief µ ∈ ∆(V × R2
+) is consistent with the profile σ if for every v ∈ V , and for every

Borel measurable set E ⊆ R2
+, we have µ(v, E) = λ(v) ·

∫
E

1 dσ1(·|v) ⊗ σ2(·|v).
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implies that the consumer no longer considers perfectly informative off-path signals
to be costless.

Definition 1. Let µ be consistent with profile σ and let β be a best response to µ.

We say that β is robust to vanishing perturbations (RVP) if for every v∗ ∈ V and

x∗
1, x

∗
2 ≥ 0, there exists a sequence (µn, σ̃n) such that for all v ∈ V and n ∈ N

• σ̃n(·|v) ∈ ∆(R2
+) is a possibly correlated probability measure on R2

+,

• σ̃n(x∗
1, x

∗
2|v∗) > 0,

• σ̃n(·|v) → σ1(·|v) ⊗ σ2(·|v) strongly,

• µn is consistent with σ̃n,

• β is a best reply to µn.

Definition 2. (µ, σ, β) is an RVP equilibrium if it is a BNE and β is RVP.

RVP extends the notion of credible best response introduced by Ravid (2020) to a
multi-firm setting, and is similar in spirit, albeit considerably weaker than, Selten’s
(1975) trembling-hand perfection.15 Like Ravid, we allow belief perturbations to
vary with off-path deviations while trembling hand perfection does not. Moreover,
we allow for correlated off-path belief perturbations about the firms’ offers.16

We solve our duopoly model using RVP equilibrium (hereafter, just equilibrium).
Despite its weakness, this refinement is strong enough to obtain sharp predictions
regarding the offers accepted by the consumer on-path and the overall trade prob-
ability. These variables are sufficient to characterize the most important economic
statistics of our model: Trade efficiency, producers’ profits, and consumer surplus.

2.2 Consumer’s Best Response

In this subsection, we describe the consumer’s RVP best response. While it is
possible to characterize the consumer’s optimal attention strategy against arbitrary
beliefs, to analyze the equilibrium effect of competition, it is sufficient to restrict

15Formally, RVP requires that for every state, a sequence of vanishing belief perturbations exists
such that (i) the sequence puts a positive probability on that state, and (ii) β is a best reply to every
element of the sequence. Instead, trembling hand perfection requires that a sequence of vanishing
full-support belief perturbations exists such that β is a best reply to every element of the sequence.

16Allowing for off-path belief correlation has two advantages: It makes our refinement particu-
larly weak, and allows for cleaner proofs. Off-path belief correlation, however, is not necessary for
our analysis: Our results still hold if we impose independent beliefs instead.
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attention to symmetric assessments. We provide an informal explanation of this fact
after Lemma 1.

Definition 3. We say that: (i) β is symmetric if βi(v, x1, x2) = β−i(v, x2, x1) for all

v ∈ V , x1, x2 ≥ 0; (ii) σ = (σ1, σ2) is symmetric if σ1 = σ2; (iii) the assessment

(µ, σ, β) is symmetric if µ is consistent with σ, and both σ and β are symmetric.

Lemma 1. Let (µ, σ, β) be a symmetric assessment. Then, β is a RVP best response

to µ if and only if, for every v ∈ V and x1, x2 ≥ 0, we have

βi(v, x1, x2) = πi · e
v−xi

k∑
j=1,2 πj · e

v−xj
k + 1 − π1 − π2

(i ∈ I) (2)

where

(i) πi = Eµ [βi] for every i ∈ I ,

(ii) there exists π ∈ [0, 1/2] such that π1 = π2 = π.

Moreover, exactly one of the following statements is true:

(iii) π = 0 and Eµ

[
e

v−xi
k

]
≤ 1 for every i ∈ I ,

(iv) π = 1/2 and Eµ

[(
e

v−x1
k + e

v−x2
k

)−1]
≤ 1/2,

(v) π ∈ (0, 1/2), Eµ

[
e

v−xi
k

]
≥ 1 ∀i ∈ I , and Eµ

[(
e

v−x1
k + e

v−x2
k

)−1]
≥ 1/2.

To understand Lemma 1, recall that in a standard rational inattention framework,
a decision maker’s optimal behavior is characterized by a multinomial logit for-
mula µ-almost surely.17 Our refinement extends this feature: Lemma 1 shows that
β is a consumer’s symmetric RVP best response to µ if and only if it displays a
multinomial logit formula adjusted for the consumer’s prior beliefs everywhere.

More specifically, equation (2) identifies the entire class of RVP best responses
to µ. Point (i) is the standard optimality condition of rational inattention problems:
Each πi must be equal to the average probability of trade with that firm. Accord-
ingly, each πi represents the consumer’s trade engagement level with firm i ∈ I .
Since β is symmetric if and only if π1 = π2 = π, point (ii) imposes symmetry on β.
Finally, points (iii), (iv), and (v) characterize when the symmetric trade engage-
ment level π is optimal given that µ is consistent with a symmetric strategy profile

17See Csiszár (1974), Matějka and McKay (2015), and Denti, Marinacci, and Montruc-
chio (2020).
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of the firms.
To see why we can restrict the equilibrium analysis of competition to symmet-

ric assessments, consider the following argument.18 First, competition only plays a
role in equilibrium when both firms actively trade with the consumer. Otherwise,
the unique active firm behaves like a monopolist, making de facto inconsequential
the presence of the competitor. Furthermore, firms are ex-ante identical, so the con-
sumer cannot trade with them asymmetrically. Intuitively, if the consumer traded
with firm 1 more often, i.e., π1 > π2 > 0, firm 1 would charge higher equilibrium
prices. However, this would induce the consumer to trade less often with firm 1,
a contradiction. Thus, any equilibrium where firms actively compete must feature
a consumer’s symmetric recommendation strategy. In turn, this implies symmetric
equilibrium play from the firms.

We call (ψ, ξ) ∈ [0, 1]×RV
+ an equilibrium outcome whenever ψ = π1 +π2 is the

consumer’s overall trade engagement level, and (ξ(v))v∈V are the symmetric equi-
librium offers accepted by the consumer on-path. We say that two assessments are
outcome equivalent if they imply the same equilibrium outcome. Abusing notation,
the equilibrium outcome associated with a no-trade equilibrium is (0, ∅).

3 Benchmark: Collusion

To understand the equilibrium effects of competition, we formulate a benchmark
case where the firms collude. Under collusion, the firms perfectly internalize each
others’ profits and set prices jointly. For this reason, the producer surplus describes
the preferences of each colluding firm:

ΠM :=
∑
j∈I

βj(v, x1, x2) · xj,

whereM stands for “Monopoly.” All other aspects of the model remain unchanged.
Our model with collusion is outcome equivalent to the ultimatum bargaining

model of Ravid (2020), which we henceforth refer to as the monopoly model for
18See Cusumano, Fabbri, and Pieroth (2022) for a formal proof.
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simplicity of exposition.19 The intuition is as follows. If the consumer trades
with only one of the two firms in equilibrium, collusion is de facto equivalent to
a monopoly. On the other hand, if both firms are active, the consumer’s attention
strategy satisfies the multinomial logit of equation (2) adjusted for some π1, π2 > 0.
In the appendix, we show that in equilibrium, sellers’ offers under collusion are
symmetric and, more importantly, equal to the monopolist’s offer of Ravid’s (2020)
model when facing the aggregate demand. Intuitively, when firms perfectly in-
ternalize each other’s profits, they have no incentive to charge different prices.20

Moreover, if they charge the same price, they face the same aggregate demand
as a monopolist. As a result, they act as if they were serving the consumer in a
monopoly market, which implies that the analysis of Ravid (2020) applies verbatim
to our collusion benchmark.

Let kt > 0 be defined by
Eλ

[
ev/kt−1

]
= 1. (3)

The following result characterizes the main equilibrium predictions of the collusive
trading equilibrium, i.e., the equilibrium under collusion in which the consumer
trades with positive probability.

Proposition 1. [Theorem 1 and Corollary 1 of Ravid (2020)] A collusive trading

equilibrium outcome exists if and only if k < kt. If a collusive trading equilibrium

outcome exists, it is unique and equilibrium trade is inefficient. That is, π1+π2 < 1.

Proposition 1 emphasizes two main features of the analysis of Ravid (2020),
which extend to our collusion benchmark and will subsequently be used as a com-
parison point for our findings under competition. First, trade cannot be sustained as
an equilibrium outcome if attention costs are too high. Second, equilibrium trade is
never efficient: The consumer’s probability of buying the product is always smaller
than 1. The main force at play for both results is that the consumer does not process

19Since products are perfectly homogeneous, the equivalence between collusion and monopoly
is straightforward without rational inattention. However, in the presence of information processing
costs, colluding firms may use different prices to influence the consumer’s attention. Neverthe-
less, our analysis shows that this strategic manipulation of the consumer’s attention does not bite in
equilibrium.

20More concretely, if firm i charges a higher price, the consumer optimally shifts her demand
away from i, which makes it optimal for the cartel to lower i’s price, a contradiction.
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enough information to sustain efficient trade. If information costs are too high, the
consumer does not pay enough attention to prevent firms from overcharging, mak-
ing it sub-optimal for her to trade with positive probability. For lower information
costs, trade can be sustained in equilibrium, but it is always inefficiently low. To
understand why, suppose that the consumer trades with certainty. Always accept-
ing either offer is equivalent to never using the no-trade outside option, which, in
an RVP equilibrium, implies that the consumer disregards learning about prices in
absolute terms. As a result, colluding firms could coordinate on a simultaneous
price increase, making equilibrium offers too unappealing to sustain positive trade.

4 Competition

To study the impact of competition, we first identify equilibria in which compet-
itive forces are present. Robustness to vanishing perturbations implies that com-
petition delivers a finite multiplicity of equilibrium outcomes. First, there always
exists a trivial no-trade equilibrium outcome, where firms overcharge the consumer,
who consequently does not trade. Second, there is a class of equilibria where the
consumer only trades with one firm. This class is outcome equivalent to all collu-
sive trading equilibria. Finally, there is an equilibrium where the consumer trades
with both firms. Since this is the unique equilibrium class where firms actively
compete on-path, we call this equilibrium the competitive trading equilibrium. In
this section, we characterize its properties and describe the equilibrium effects of
competition.

4.1 The Competitive Trading Equilibrium

As argued in Section 2.2, every competitive trading equilibrium must be sym-
metric. Given the consumer’s best reply of Lemma 1, firms behave as if they are
facing a symmetric downward-sloping multinomial logit demand. The following
lemma characterizes the firms’ equilibrium strategies.

Lemma 2. Suppose (µ, σ, β) is a competitive trading equilibrium. For every v ∈ V ,
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each seller i ∈ I plays a symmetric pure strategy σi(·|v) = δxC(v) given by

xC(v) = k · (1 + ϕ(v)) (4)

where ϕ = ϕ(v) is the unique solution to

(
1 + eϕ · 1 − 2π

πe
v−k

k

)
ϕ = 1. (5)

Lemma 2 follows from the fact that firms are not facing a perfectly elastic de-
mand, even though their products are homogeneous. Notice that the consumer be-
haves as if products were differentiated because the information she gets is noisy. It
is too costly to process information about ex-post gains from trade perfectly and, as
a result, the consumer is not certain about the best offer and makes mistakes. This
mechanism explains why, according to equation (4), the firms can charge prices
above marginal costs in equilibrium.

The relationship between the consumer’s trade engagement level and firms’ of-
fers is central to our analysis. The function ϕ captures the price-setting incentives
of the firms. Note that for fixed product quality v and information cost k, equation
(5) shows that ϕ(v) is increasing in the consumer’s trade engagement level π. If
firms submit appealing offers to the consumer, the consumer chooses a high trade
engagement level, in line with Lemma 1. At the same time, if the consumer engages
more in trade, demand expands and elasticity declines. As a result, the firms submit
worse offers.

The following theorem characterizes the existence and uniqueness of the com-
petitive trading equilibrium by identifying the region of attention costs where com-
petition sustains trade in equilibrium. Recall from equation (3) that kt is defined as
the unique solution to Eλ

[
ev/kt−1

]
= 1.

Theorem 1. A competitive trading equilibrium exists if and only if k < kt. If a

competitive trading equilibrium exists, it is unique.

Competition cannot sustain trade when attention costs are too high. The con-
sumer is unwilling to process any information, implying that demand does not
change with firms’ offers. As a result, firms overcharge the consumer, leading
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to a breakdown of trade. Conversely, a competitive trading equilibrium exists if
attention costs are moderately low. The consumer is willing to process some in-
formation to find the best offer. Consequently, the firms face downward-sloping
demand curves and make appealing offers to the consumer.

The theorem also shows that whenever a competitive trading equilibrium exists,
it is unique. For instance, suppose there is a second competitive trading equilibrium
in which the consumer’s overall trade engagement level is higher. Due to this ex-
pansion in demand, firms’ marginal revenue is higher everywhere, prompting firms
to make less appealing offers compared to the original equilibrium. This induces
the consumer to reduce the overall trade engagement level, a contradiction.

An immediate implication of Theorem 1 is that competition cannot sustain trade
when collusion could not: In both cases, a trading equilibrium exists if and only if
k < kt. When the attention costs exceed kt, the consumer does not process any
information. Since this includes information about which offer is better, the down-
ward pressure on prices induced by competition vanishes when k > kt, implying
that competition cannot prevent a breakdown in trade.

4.2 Equilibrium Effects of Competition

We investigate the impact of competition in markets with rational inattention by
comparing the competitive and the collusive trading equilibrium outcomes.

The pricing effect. Lemma 1 implies that any symmetric RVP best response fol-
lows equation (2) and is thus pinned down by π, the trade engagement level with
each firm. The following lemma describes the pricing effect of competition: If
the consumer’s trade engagement level, and therefore attention strategy, were fixed
across market structures, competing firms would charge lower prices than colluding
firms.

Denote by xC(v; π) a competitive firm’s optimal price when the consumer’s sym-
metric trade engagement level with each firm equals π. Similarly, let xM(v; 2π) be
the optimal price of colluding firms facing an overall trade engagement level of 2π.

Lemma 3. For any fixed symmetric RVP consumer’s best response, competing firms

charge lower prices than colluding firms. Formally, for all π ∈ (0, 1/2) and v ∈ V ,
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we have xC(v; π) < xM(v; 2π).21

Recall that the trade engagement level determines the downward-sloping demand
the firms face. The pricing effect follows since, for any given demand, competing
firms may benefit from undercutting the competitor, while collusive firms do not.

The attention effect. Proposition 2 describes a novel effect of competition that
we name the attention effect: The consumer’s endogenous demand expands when
firms compete. In other words, for any level of attention cost, the overall trade
engagement level under competition is strictly higher than under collusion. Com-
petition thus alleviates the efficiency losses that occur under collusion, where trade
is always inefficient due to costly information processing. Formally, denote by
2πC := πC

1 + πC
2 and πM := πM

1 + πM
2 the overall trade engagement level under

competition and collusion, respectively.

Proposition 2. The consumer engages in trade more often under competition than

under collusion: For any k ∈ (0, kt), 0 < πM < 2πC ≤ 1.

The intuition is as follows. Suppose both competing firms face half the demand
faced by a monopolist. The resulting offers would be more favorable to the con-
sumer due to the pricing effect, i.e., the fact that competing firms have stronger
incentives to charge low prices since they do not internalize each other’s profits.
However, the consumer would trade more often at these lower prices. Therefore,
the resulting equilibrium trade probabilities have to satisfy πM < 2πC .

As a consequence of the attention effect, we show in Proposition 3 that an equi-
librium with efficient trade, which we call an efficient equilibrium, exists when the
consumer’s unit attention cost is relatively low. To see why, suppose trade is effi-
cient, i.e., the consumer trades with each firm with equal probability π = 0.5. By
Lemma 2, this implies that firms charge a price of x(v) = 2k for all v ∈ V . From
Lemma 1, we know that, under this configuration of prices, the consumer wants to
trade with certainty if and only if Eλ

[
e2−v/k

]
≤ 1. Thus, let ke > 0 be the unique

21For π = 0, all prices constitute a best response for the firms regardless of the market structure.
For π = 1/2, the colluding firms’ optimal pricing strategy is not well defined, since they would
always prefer to charge a higher price, while the competing firms optimally charge a finite price.
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solution to
Eλ

[
e2−v/ke

]
= 1.

Notice that ke is lower than the threshold characterizing the existence of a compet-
itive trading equilibrium, i.e., ke < kt.22

Proposition 3. Under competition, an efficient equilibrium exists if and only if k ≤
ke.

When trade is efficient, the consumer demand does not react to offers in absolute
terms but only to price differences.23 Under collusion, this attention strategy does
not prevent firms from submitting unreasonable offers. In contrast, as competing
firms have incentives to undercut the competitor’s offer, this strategy is effective
in disciplining prices under competition. Moreover, equilibrium prices strictly in-
crease with k. Intuitively, the higher the unit attention cost k, the less the consumer
reacts to price changes. This effect leads firms to charge a higher equilibrium price,
which explains the existence of the threshold ke > 0 that characterizes equilibrium
trade efficiency. If the consumer’s attention costs exceed ke, the constant equi-
librium price becomes too high relative to the expected quality, and buying with
certainty is not optimal for the consumer.

Observe that in an efficient equilibrium attention costs are equal to zero and,
therefore, the economy achieves first-best social welfare. When k ≤ ke, the con-
sumer uniformly randomizes between the firms’ offers and does not pay information
processing costs on path. As a result, the (ex-post) social welfare of the economy
is maximal and equals v. This prediction contrasts with the collusion benchmark:
When the firms collude, the consumer must resort to the no-trade outside option to
discipline firms’ pricing strategies, which results in welfare losses.

Figure 1 illustrates Propositions 2 and 3. It displays the equilibrium trade engage-
ment level under competition and collusion as a function of k ∈ (0, kt). For values
of k ≤ ke, the unique competitive trading equilibrium features efficient trade, i.e.,
2πC = 1. For k > ke, 2πC is decreasing in k, but as Proposition 2 shows, it is

22Eλ[e2−v/kt ] > Eλ[e1−v/kt ] = Eλ[ 1
ev/kt−1 ] ≥ 1

Eλ[ev/kt−1] = 1. Therefore, ke < kt.

23From equation (2), if π = 1/2, the consumer’s symmetric best response becomes

βi(v, x1, x2) = 1/(1 + e
xi−xj

k ) for every i ∈ I.
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Figure 1: Overall trade engagement level in the competitive and collusive trading
equilibrium with a binary quality distribution.

always strictly above πM .
The following corollary describes the consumer’s observable behavior under com-

petition.

Corollary 1. In a competitive trading equilibrium, the consumer’s attention strat-

egy satisfies

βi(v, xC(v), xC(v)) =

1/2 if k ≤ ke

1 − k/xC(v) if k ∈ (ke, kt)
for all v ∈ V.

When the cost of information processing is small, the equilibrium resembles the
standard Bertrand competition outcome. Figure 1 shows that the consumer buys
with certainty when k ∈ (0, ke) and Figure 2 shows that she does so at a price
that does not vary with quality. However, as the consumer’s information process-
ing costs grant the industry positive market power, firms successfully submit offers
above marginal cost. When k is above ke, we observe an equilibrium outcome re-
sembling Ravid’s (2020) analysis: Trade is inefficient and firms’ offers depend on
the product’s quality (see Figure 2). In the limit as k ↑ kt, the firms’ behavior is
identical in both settings because the consumer’s information processing about rel-
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Figure 2: Equilibrium prices in the competitive trading equilibrium with a binary
quality distribution.

ative prices vanishes.24 This explains why the range of attention costs that support
trade is the same under competition and collusion, as shown by Theorem 1.

Producer surplus. Propositions 2 and 3 show that trade efficiency increases with
competition, which implies that the sum of producer surplus and consumer trade
surplus, i.e., the consumer surplus without considering attention costs, increases.
The remainder of this section studies which side benefits from competition. Without
information processing costs, i.e., at k = 0, competition benefits the consumer at
the expense of the firms. Since the equilibrium outcomes are continuous in k, this
also holds for small information processing costs.

In contrast, Theorem 2 shows that when attention costs are high enough within
the range (0, kt), the aggregate producer surplus under competition is higher than
under collusion. For such costs, the result says that the positive effect that com-
petition has on demand dominates the negative pricing effect: The attention effect
prevails over the pricing effect.

24As the overall trade engagement level decreases, the likelihood that the consumer considers the
competitor’s offer vanishes, and the firms focus on prevailing over the no-trade outside option: Each
competing firm’s objective approximates the one of a colluding firm.
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Figure 3: producer surplus in the competitive and collusive trading equilibrium with
a binary quality distribution.

For every attention cost k ∈ (0, kt), let ΠM(k) and 2ΠC(k) be the aggregate pro-
ducer surplus in the collusive and the competitive trading equilibrium, respectively.

Theorem 2. There exists k̂ ∈ (0, kt) such that the producer surplus is higher un-

der competition than under collusion for all k between k̂ and kt, i.e., 2ΠC(k) >
ΠM(k) > 0 for all k ∈ (k̂, kt).

Figure 3 illustrates the content of the theorem for a specific distribution of v. The
sum of the competitors’ profits is larger than the collusive profits for information
costs in the interval (k̂, kt). Theorem 2 states that such a region exists for any
distribution of v.

The proof of Theorem 2 revolves around the use of L’Hopital’s rule to prove that

lim
k↑kt

πC(k)
πM(k) >

1
2 ,

even though trading probabilities under competition and collusion are both converg-
ing to zero as k ↑ kt. This fact implies that, as k grows large, (i) the behavior of
each firm in the competitive trading equilibrium approximates the equilibrium be-
havior of the colluding firms and, at the same time, (ii) each firm faces strictly more
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than half the aggregate equilibrium demand under collusion. As a consequence of
(i) and (ii), we conclude that for k close to kt, the firms’ total profits are strictly
higher under competition than under collusion, proving the statement.

Theorem 2 implies that competition can alleviate the commitment problem faced
by colluding firms. Colluding firms cannot extract the full surplus since they cannot
commit to a pricing strategy, and instead price according to their ex-post incentives.
When firms compete, these incentives change, which ultimately leads the consumer
to expand her demand due to the attention effect. The takeaway is that firms can
benefit from pricing competitively as this reduces the efficiency loss due to their
lack of commitment.

Consumer surplus. Under collusion, rational inattention allows the consumer to
obtain a positive utility in situations where costless information does not. Compe-
tition reverses this logic: When multiple firms are active, the consumer’s surplus is
smaller than the total surplus for any k > 0, which implies that it is smaller than the
surplus obtained in the frictionless benchmark (k = 0).

In general, characterizing how consumer surplus reacts to competition for a fixed
unit cost of information processing is difficult.25 Competition puts downward pres-
sure on prices for any given trade engagement level by the consumer, making her
better off. However, at the same time, the attention effect leads the consumer to
engage in trade more often, which increases the price the firms charge. The net
effect is therefore ambiguous. Moreover, whether competition makes information
processing less or more costly is ambiguous in equilibrium unless k ≤ ke.

Lemma 4 shows that if the consumer is uncertain about the quality of the product,
she always benefits from competition whenever expected market offers decrease.
Denote by Um the consumer surplus, i.e., the consumer’s expected gains from trade
minus her information processing costs, and by xm the firms’ offers when the mar-

25Consumer surplus is easy to characterize only when quality is commonly known, i.e., V is
a singleton. Suppose V = {vo} with vo > 0. Under collusion, offers equal vo, implying that
the consumer has no trading surplus. Under competition, Lemma 2 implies that offers equal vo if
k > ke = vo/2, and 2k ≤ vo otherwise. Additionally, since firms use pure strategies and quality
is known, the consumer does not incur any information processing costs on path in both cases.
Therefore, the consumer benefits strictly from competition when k < vo/2 and receives the same
surplus otherwise.
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ket structure is m ∈ {C,M}.

Lemma 4. If quality is uncertain, the consumer surplus is strictly higher under

competition whenever, in expectation, competitive prices are lower than under col-

lusion: If |V | > 1, then Eλ[xC(v)] ≤ Eλ[xM(v)] implies E[UC ] > E[UM ].
To prove Lemma 4, we show that competition implies a more dispersed distribu-

tion of the consumer’s gains from trade than collusion. Since rationally inattentive
agents enjoy risk in (ex-post) utils, we conclude the argument by invoking well-
established results in risk theory (Meyer, 1977).

We use Lemma 4 to identify two sufficient conditions under which competition
unambiguously helps the consumer: Efficient trade, k ≤ ke, and high information
processing costs, k ↑ kt. In light of Theorem 2, this last result implies that when
information processing costs are high enough, competition can (Pareto) improve the
economic situation of both sides of the market: Producers and consumer altogether.

Proposition 4. There exists k̄ ∈ [ke, kt) such that the expected consumer surplus

weakly increases with competition whenever k ∈ (0, ke] ∪ (k̄, kt). Moreover, if

max{k̄, k̂} < k < kt, competition increases surplus for both sides of the market.

4.3 More than Two Firms

In this subsection, we extend the analysis of Section 4.2 to the presence of more
than two firms.26 When firms perfectly internalize each other profits, they jointly
maximize the producer surplus, implying that each firm effectively behaves as if
facing the consumer in a monopoly market. As a result, the equilibrium predictions
under collusion are independent of the number of firms N ≥ 2.

The number of active firms matters under competition since it impacts the strength
of both the pricing and attention effect. We proceed to show that equilibrium trade
efficiency expands, implying that the region of attention costs where competition
sustains efficient trade becomes larger as more firms compete. Furthermore, the
attention effect still dominates the pricing effect when k grows large, ensuring that
Theorem 2 extends to an arbitrary number of firms.

26Since the results of Section 2.2 naturally extend to N ≥ 2 firms, we omit to discuss the con-
sumer’s optimal behavior. In particular, RVP characterizes the consumer’s best response everywhere
in the state space V × RN

+ by a multinomial logit formula adjusted for the parameters (π1, ..., πN ).
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We say that a trading equilibrium is competitive if all firms are active. First, we
characterize the firms’ optimal behavior in equilibrium.

Lemma 5. Suppose (µ, σ, β) is a competitive trading equilibrium with N ≥ 2
firms. For every v ∈ V , each seller i ∈ I plays a symmetric pure strategy σi(·|v) =
δxC(v,N) given by

xC(v,N) = k · (1 + ϕ(v,N))

where ϕ = ϕ(v,N) is the unique solution to

(
(N − 1) + eϕ · 1 −NπN

πNe
v−k

k

)
ϕ = 1. (6)

Equation (6) is the counterpart to equation (5) with N ≥ 2 firms, where πN ∈
(0, 1/N ] represents the symmetric trade engagement level of the consumer with
each firm in equilibrium.27 It shows that for any fixed overall trade engagement
level π̄ of the consumer, the firm’s undercutting incentives intensify as the number
of active firms increases: The pricing effect becomes stronger as N gets large.28

The following result describes the properties of the competitive trading equilibria
with more than two firms. Let ke(N) > 0 be defined by E

[
e

N
N−1 −v/ke(N)

]
= 1,

and denote by ΠC(N) the expected profit of each firm in the competitive trading
equilibrium with N active firms.

Proposition 5. Suppose there are N ≥ 2 firms.

(i) A competitive trading equilibrium exists if and only if k < kt. If a competitive

trading equilibrium exists, it is unique.

(ii) The consumer’s overall trade engagement level in the competitive trading

equilibrium increases with N .

(iii) Under competition, an efficient equilibrium exists if and only if k ≤ ke(N).
Furthermore, ke(N) strictly increases in N.

(iv) For any market size, a region of attention costs exists such that adding com-

peting firms increases producer surplus. Formally, there exists k̂ ∈ (ke(N), kt)
such that (N + 1) · ΠC(N + 1) > N · ΠC(N) for all k ∈ (k̂, kt).

27As in the duopoly case, a competitive trading equilibrium with N ≥ 2 firms must be symmetric.
28To see why, fix N1, N2 ≥ 2 and suppose that N1πN1 = N2πN2 = π̄ ∈ (0, 1]. Equation (6)

implies that ϕ(v, N1) < ϕ(v, N2) if and only if N1 > N2.
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The existence and uniqueness properties of the competitive trading equilibria do
not change with the number of active firms. For every N , by Lemma 5, the function
ϕ(v,N) strictly increases with π, which implies that at most one competitive trading
equilibrium exists.29 Moreover, as π ↓ 0, the function ϕ(v,N) converges to 0,
irrespective of the value of N . This implies that the pricing effect vanishes when it
becomes prohibitively costly for the consumer to process information about offers.
As a result, competition with N ≥ 2 firms supports equilibrium trade only when
k < kt, like under collusion.

Although the number of N ≥ 2 firms is inconsequential for the existence and
uniqueness of competitive trading equilibria, varying the number of active firms
affects trade efficiency. The intuition behind parts (ii) and (iii) of Proposition 5
follows the one of Propositions 2 and 3. AsN grows, firms have stronger incentives
to undercut their competitors’ offers. Anticipating this, the consumer engages in
trade more often, implying that the overall trade engagement level increases withN .
In other words, the attention effect becomes stronger as the number of active firms
increases. For analogous reasons, ke(N) strictly increases with N , and efficient
trade becomes easier to sustain whenN grows. This feature implies that introducing
an additional competing firm restores trade efficiency for a range of attention costs.

Nevertheless, as the number of firms grows, i.e., N ↑ ∞, competition does not
guarantee efficient trade if the quality of the product is uncertain. If prices exceed
average quality, the consumer is not willing to buy with certainty. When quality
is uncertain, this would be the case in an efficient equilibrium for k close to kt,
regardless of the number of competitors. Thus, there always remains a parameter
region where trade is inefficient. The following corollary summarizes this point.

Corollary 2. If quality is stochastic, a region with inefficient trade always exists,

i.e., if |V | > 1, limN↑∞ ke(N) := ke(∞) < kt.

In Section 4.2, we showed that the attention effect of competition can be large
enough to increase the producer surplus as we move from collusion to competition.
Part (iv) of Proposition 5 adds to this by showing that for any number N ≥ 2 of
firms, there exists a parameter region of information costs, such that adding another

29Otherwise, the equilibrium where the consumer engages in trade more often is the one where,
on-path, the terms of trade are worse for the consumer, a contradiction.
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firm increases the producers’ combined profits. Adding a firm strengthens both the
pricing and the attention effect. For information cost k close to kt, the intuition of
our main result extends: The additional attention effect dominates the additional
pricing effect and total profits increase in the number of firms.
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Appendix – For Online Publication

Proof of Lemma 1

Proof. (“Only if” direction.) As a first step, we show that any RVP best response of
the consumer must display an adjusted multinomial logit formulation everywhere.

Claim 1. Suppose β is a RVP best response to µ. Then, for every w ∈ V and

y1, y2 ≥ 0, it holds that

βi(w, y1, y2) = πi · e
w−yi

k∑
j=1,2 πj · e

w−yj
k + 1 − π1 − π2

, (i ∈ I) (7)

where (π1, π2) is a solution to problem

max
π′

1,π′
2≥0

Eµ

[
log

(
π′

1 · e
v−x1

k + π′
2 · e

v−x2
k + (1 − π′

1 − π′
2)
)]

s.t. π′
1 + π′

2 ≤ 1. (8)

In particular, for every i ∈ I , it holds that

πi = Eµ[βi]. (9)

Proof of Claim 1. Let µ be consistent with a strategy profile σ of the sellers. Sup-
pose that β is a best response to µ and that it is RVP. Since β is a best response to
µ, known results show that30 (7) holds µ-almost surely, where (π1, π2) is a solution
to problem (8). Now, fix v ∈ V and x1, x2 ≥ 0 arbitrarily. Since β is RVP, there
exists a sequence (µn, σ̃n) with the desired properties such that β is a best response
to µn for every n ∈ N. Once again, we know that β must take the following logit
functional form in (7) µn-a.s. for every n ∈ N, where each (π1, π2) is replaced by
(πn

1 , π
n
2 ), which is a solution to

max
π′

1,π′
2≥0

Eµn

[
log

(
π′

1 · e
v−x1

k + π′
2 · e

v−x2
k + (1 − π′

1 − π′
2)
)]

subject to π′
1+π′

2 ≤ 1.

Since β is a best reply to all µn, and µn(v, x1, x2) > 0 for all n by assumption, it

30See Matějka and McKay (2015), and Denti, Marinacci, and Montrucchio (2020).
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must be that (πn
1 , π

n
2 ) = (π̄1, π̄2) for some π̄1, π̄2 ∈ [0, 1].

Now, let (v′, x′
1, x

′
2) be a generic element in the support of µ. Since σ̃n → σ im-

plies µn → µ in the topology of strong convergence, we have that µn(Supp(µ)) > 0
for large n. Because β has to be a best response at all n, we know that

βi(v′, x′
1, x

′
2) = π̄i · e

v′−x′
i

k∑
j=1,2 π̄j · e

v′−x′
j

k + 1 − π̄1 − π̄2

= πi · e
v′−x′

i
k∑

j=1,2 πj · e
v′−x′

j
k + 1 − π1 − π2

,

for all i ∈ I . Therefore, π̄i = πi for all i ∈ I . Lastly, that equation (9) holds follows
from standard results. See, e.g., Matějka and McKay (2015), Corollary 2.

Note that Claim 1 did not use symmetry. We now impose symmetry to prove
points (ii), ..., (v) of Lemma 1, thus concluding the “only if” direction.31 Suppose σ
is symmetric, and let µ be consistent with σ. It is easy to see that µ is symmetric, i.e.,
µ(A) = µ(Asym) for every measurable A ⊆ V ×R2

+, where Asym := ⋃{(v, x1, x2) :
(v, x2, x1) ∈ A} is the symmetric conjugate of A. Given the concavity of the
objective function, it is without loss to focus on solutions (π1, π2) to (8) such that
π1 = π2.32 This proves point (ii) of Lemma 1. Points (iii), (iv) and (v) now follow
from a standard analysis of problem (8), once the constraint π′

1 = π′
2 is imposed.

We omit the details.

(“If” direction.) Let β = (β1, β2) be given by (2) and satisfy points (i), ..., (v).
Clearly, β is symmetric. Furthermore, given the symmetry of µ, we know that β
is a best response to µ. Fix v ∈ V and x1, x2 ≥ 0 arbitrarily. To prove that β
is indeed RVP, we distinguish three cases. For each case, we define a symmetric
perturbation σ̃′(·|·) ∈ ∆(R2

+)V such that σ̃′(x1, x2|v) > 0 . Then, for each n ∈ N,
we let σ̃n = n−1

n
σ + 1

n
σ̃′. By construction, σ̃n → σ strongly and σ̃n(x1, x2|v) > 0

for every n ∈ N. Let µn be consistent with σ̃n. It remains to define σ̃′(·|·) and to
show that β is indeed a best response to µn for each n ∈ N in each case.

Case 1. Suppose π = Eµ [βi] ∈ (0, 1/2). At the end of this proof, Lemma 6
shows that the other conditions displayed in point (v) of Lemma 1 are redundant.

31That equation (2) and point (i) of Lemma 1 hold follows already from Claim 1.
32If (π1, π2) solves (8) with π1 ̸= π2, symmetry of µ implies (π2, π1) is a distinct solution.

Because of concavity, 1
2 (π1, π2) + 1

2 (π2, π1) is then a symmetric solution, proving the assertion.
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Let A := 1
2β1(v, x1, x2) + 1

2β1(v, x2, x1) > 0. Note that A = 1
2β2(v, x1, x2) +

1
2β2(v, x2, x1) due to symmetry. Also, βi(v, x, x) is strictly decreasing in x ≥ 0,
and that βi(v, v, v) = π. There are two possibilities:

1) SupposeA < π. Then, there exists α ∈ (0, 1) and ε > 0 such that (i) v−ε ≥ 0
and (ii) αA+ (1 − α)βi(v, v − ε, v − ε) = π for each i ∈ I . Let σ̃′(·|·) ∈ ∆(R2

+)V

be such that σ̃′(·|v′) = δ(v′,v′) if v′ ̸= v, and σ̃′(·|v′) = α
(

1
2δ(x1,x2) + 1

2δ(x2,x1)
)

+
(1 − α)δ(v−ε,v−ε) when v′ = v. Since Eµn [βi] = π for each i ∈ I , β is a best
response to µn for each n ∈ N by Lemma 6 below and Corollary 2 of Matějka and
McKay (2015).

2) Suppose A ≥ π. Then, there exists α ∈ (0, 1) and ε ≥ 0 such that αA +
(1 − α)βi(v, v + ε, v + ε) = π for each i ∈ I . Let σ̃′(·|·) ∈ ∆(R2

+)V be such
that σ̃′(·|v′) = δ(v′,v′) if v′ ̸= v, and σ̃′(·|v′) = α

(
1
2δ(x1,x2) + 1

2δ(x2,x1)
)

+ (1 −
α)δ(v+ε,v+ε) when v′ = v. Like before, Eµn [βi] = π for each i ∈ I implies that β is
a best response to µn for each n ∈ N as required.

Case 2. Suppose π = 0, so that β1 = β2 = 0. Let A := 1
2e

v−x1
k + 1

2e
v−x2

k > 0.
There are two possibilities:

1) If A ≤ 1, let σ̃′(·|·) ∈ ∆(R2
+)V be such that σ̃′(·|v′) = δ(v′,v′) if v′ ̸= v, and

σ̃′(·|v′) = 1
2δ(x1,x2) + 1

2δ(x2,x1) when v′ = v. By construction, for every n ∈ N, we
have Eµn

[
e

v−xi
k

]
≤ 1 for each i ∈ I . This implies that β is a best reply to µn for all

n ∈ N as required.

2) If A > 1, there exists α ∈ (0, 1) and ε > 0 such that αA+ (1 − α)e−ε/k ≤ 1.
Let σ̃′(·|·) ∈ ∆(R2

+)V be such that σ̃′(·|v′) = δ(v′,v′) if v′ ̸= v, and σ̃′(·|v′) =
α
(

1
2δ(x1,x2) + 1

2δ(x2,x1)
)

+ (1 − α)δ(v+ε,v+ε) when v′ = v. For all n ∈ N, we have

Eµn

[
e

v−xi
k

]
≤ 1 for all i ∈ I . This implies that β is a best reply to µn for all n ∈ N

as required.

Case 3. The proof for the case π = 1/2 is similar to the one for π = 0 (see Case 2).
We omit the details.

Lemma 6. Let µ be symmetric, and β be given by (2). If π = Eµ[βi] ∈ (0, 1/2) for

all i ∈ I , then Eµ

[
e

v−xi
k

]
≥ 1 for all i ∈ I , and Eµ

[(
e

v−x1
k + e

v−x2
k

)−1]
≥ 1/2.
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Proof. For every y > 0 and γ ∈ (0, 1/2), let

g(y, γ) = 1 − 2γ
γy + (1 − 2γ) and h(y, γ) = γ

γ + (1 − 2γ)y .

Note that g and h are strictly decreasing and convex in y > 0 for every γ ∈ (0, 1/2).
Moreover, g(y, γ) = 1 − 2γ iff y = 2, and h(y, γ) = 2γ iff y = 1/2.

From Jensen’s inequality, we have

2π = Eµ[β1+β2] = Eµ

[
h

((
e

v−x1
k + e

v−x2
k

)−1
, π

)]
≥ h

(
Eµ

[(
e

v−x1
k + e

v−x2
k

)−1
]
, π

)
,

which implies that Eµ

[(
e

v−x1
k + e

v−x2
k

)−1]
≥ 1/2. Similarly,

1−2π = 1−Eµ[β1+β2] = Eµ

[
g
(
e

v−x1
k + e

v−x2
k , π

)]
≥ g

(
Eµ

[
e

v−x1
k + e

v−x2
k

]
, π
)
,

which implies that Eµ

[
e

v−x1
k + e

v−x2
k

]
≥ 2. Since µ is symmetric, it holds that

Eµ

[
e

v−x1
k

]
= Eµ

[
e

v−x2
k

]
. Therefore, Eµ

[
e

v−xi
k

]
≥ 1 for every i ∈ I .

Proof of Proposition 1

Proof. We show that colluding firms offer the same price as a monopolist facing
the aggregate trade engagement level. Since the functional form of the monop-
olist’s best response is enough to characterize the unique trading equilibrium in
Ravid (2020), this proves that monopoly and collusion are equilibrium outcome-
equivalent. Given this fact, the proposition follows from Theorem 1 and Corollary
1 in Ravid (2020).

Fix v ∈ V . Suppose firms face individual demands given by

Qi(x1, x2) := πi · e
v−xi

k∑
j=1,2 πj · e

v−xj
k + 1 − π1 − π2

(i ∈ I).

Colluding firms solve the problem (P): maxx1,x2≥0 ΠM(x1, x2), where ΠM(x1, x2) :=∑
i=1,2 Q

i(x1, x2) · xi. If 0 = πi < πj for some i ∈ I , the problem (P) is identical to
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the problem solved by the monopolist in Ravid (2020). The equilibrium outcome
equivalence between monopoly and collusion is, therefore, immediate. Thus, sup-
pose πi > 0 for all i ∈ I , and let D := ∑

j=1,2 πj · e
v−xj

k + 1 − π1 − π2 > 0. The
FOCs associated to problem (P):

D = πje
v−xj

k

k
· (xi − xj) + xi

k
(1 − πi − πj), ∀i ∈ I. (10)

An interior solution exists,33 and is characterized by the FOCs. Combing equations
(10) across i ∈ I yields x1−x2

k
·D = 0, which is true iff x1 = x2. Let x1 = x2 = x.

Equation (10) becomes D = x
k
(1 − π1 − π2), and admits unique solution x∗ given

by
x∗ = k

(
1 +W

(
π1 + π2

1 − π1 − π2
e

v−k
k

))
, (11)

where y 7→ W (y) is the Lambert function.34 Equation (11) is identical to equa-
tion (6) in Ravid (2020), characterizing the monopolist optimal equilibrium pricing
when the consumer’s overall trade engagement level is π1 + π2 = πM . Thus,
monopoly and collusion models are equilibrium outcome-equivalent, as required.

Proof of Lemma 2

Proof. A profile (µ, β, σ) is a competitive trading equilibrium if and only if it is
symmetric trading equilibrium. That is, (a) µ is consistent with σ, (b) β is given by
(2) with π > 0, and (c) σ is symmetric and σi is a best response to σ−i given β.

We focus on the equilibrium behavior of the firms. Fix v ∈ V arbitrarily. From
Milgrom and Roberts (1990), for fixed symmetric logit demand β of the consumer,
the unique NE of the pricing game played by the firms is pure and symmetric. To
characterize it, suppose (b) holds and let σi(·|v) = δxi(v) for all i ∈ I . Then, taking
π ∈ (0, 1/2] and −i’s offer x−i(v) = x−i as given, firm i solves:

33For all xj ≥ 0, if xi = 0, the LHS of (10) is strictly greater than the RHS. This implies that
any solution to (P) (if it exists) must be interior. Conversely, there exists a x̄i > 0 such that, for all
xi ≥ x̄i, the RHS of (10) is strictly greater than the LHS for all xj ≥ 0. This means that ΠM (xi, xj)
is eventually decreasing in xi for all xj ≥ 0, implying that a bounded solution exists.

34The Lambert function is defined as the inverse of z 7→ zez .
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max
xi≥0

xi · πe
v−xi

k

π ·
(
e

v−xi
k + e

v−x−i
k

)
+ 1 − 2π

The first-order condition can be written as

dΠC
i (v, x1, x2)
dxi

= βi(v, x1, x2)
(

1 − xi

k
· [1 − βi(v, x1, x2)]

)
= 0. (12)

Note that βi > 0 for all xi ≥ 0 and limxi→∞ βi = 0. Therefore, xi 7→ dΠC
i (v,x1,x2)

dxi

crosses zero exactly once from above. It follows that xi 7→ ΠC
i (v, xi, x−i) admits

a unique (interior) global maximum characterized by the FOC. We rearrange (12)
and use symmetry to see that, in equilibrium, xi(v) = x−i(v) =: xC(v) satisfies:

xC(v; π) = k ·

1 + πe
v−xC (v;π)

k

πe
v−xC (v;π)

k + 1 − 2π

 .

Define ϕ(v; π) := πe
v−xC (v;π)

k /
(
πe

v−xC (v;π)
k + 1 − 2π

)
. Then, the equilibrium firm

behavior is given by xC(v; π) = k · [1 + ϕ(v; π)] , where optimality requires that

(
1 + eϕ(v;π) 1 − 2π

πe
v−k

k

)
ϕ(v; π) = 1.

The above equation uniquely pins down ϕ(v; π) > 0 for fixed π ∈ (0, 1/2]: The
LHS is continuously increasing in ϕ, it goes to 0 as ϕ ↓ 0 and goes to ∞ as ϕ ↑ ∞.
This concludes the proof of the lemma.

Proof of Theorem 1

Proof. We start with the proof of the if and only if statement. The necessity proof
is as follows. As we argued in Lemma 2, in any competitive trading equilibrium,
the sellers charge a price xi(v) = xC(v) strictly above k for each v ∈ V . Now,
suppose by way of contradiction that a trading equilibrium exists but k ≥ kt, i.e.,
Eλ

[
ev/k−1

]
≤ 1. In equilibrium, we would have Eµ

[
e

v−x(v)
k

]
< Eλ

[
ev/k−1

]
≤ 1.
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This is in contradiction with our hypothesis of on-path equilibrium trade.35 Thus,
k < kt is necessary for the existence of a competitive trading equilibrium.

We now turn to the sufficiency direction. We split the proof in two parts. First,
we restrict attention to values of k for which trade occurs with probability 1. We
then consider the remaining parameter values. To this end, we need to introduce
some further notation. Let ke be the unique solution to Eλ

[
e2−v/ke

]
= 1. Notice

that
Eλ

[
e2−v/kt

]
> Eλ

[
e1−v/kt

]
= Eλ

[ 1
ev/kt−1

]
≥ 1

Eλ [ev/kt−1] = 1.

Thus, 0 < ke < kt.
Suppose first that k ≤ ke. Take xC(v) = 2k for all v ∈ V . Observe that this

configuration of prices is an equilibrium of the pricing game played by the firms
when they face a symmetric logit demand with π = 1/2. At the same time, from
Lemma 1, a symmetric trade engagement level π = 1/2 is consistent with this
configuration of prices if and only if Eλ

[
e2−v/k

]
≤ 1, or equivalently, k ≤ ke.

Therefore, a symmetric efficient equilibrium exists. Since a symmetric efficient
equilibrium is indeed a competitive trading equilibrium, we are done.

Now, consider the case where k ∈ (ke, kt), or equivalently, Eλ

[
e2−v/k

]
> 1 and

Eλ

[
ev/k−1

]
> 1. Define the functions ϕ = ϕ(v; p) and x = xC(v; p) as in Lemma

2 with π replaced by p. Let F = F (p) be defined as

F (p) := Eλ

 e
v−k

k · e−ϕ

2p · e v−k
k · e−ϕ + (1 − 2p)

 . (13)

Since the function F (·) satisfies F (p) = 1
p
E[βi(v, xC(v; p), xC(v; p))] for every

i ∈ I , a symmetric RVP trading equilibrium where trade occurs with probability
strictly between 0 and 1 exists if F (p∗) = 1 for some p∗ ∈ (0, 1/2).36 We prove
this by relying on the Intermediate Value Theorem, hence exploiting the continuity
of F (·) in p ∈ (0, 1/2]. In particular, we show that there exists 0 < p0 < p1 < 1/2
such that for all p ∈ (0, p0), we have F (p) > 1, and for all p ∈ (p1, 1/2), we have
F (p) < 1.

35From Lemma 1, the consumer’s trade engagement level with each firm would equal zero.
36See Lemma 6 above.

36



Existence of 0 < p1 < 1/2: We exploit the fact that F (·) is continuously dif-
ferentiable. This follows from the Implicit Function Theorem that guarantees that
ϕ(v; p) is continuously differentiable in p ∈ (0, 1/2] for all v ∈ V .37 Given that V
is finite and ϕ(v; p) ↑ 1 as p ↑ 1/2, for every ε > 0 there exists a p̄1 ∈ (0, 1/2) such
that ϕ(v; p) > 1 − ε for all v ∈ V and p ∈ (p̄1, 1/2). Fix ε > 0 and δ > 0 small
enough so that Eλ

[
e2−ε−v/k

]
− δ > 1, and let p̄1 be the p-threshold corresponding

to ε.38 For every v ∈ V , define

A(v) := max
p∈[p̄1,1/2]

e1−v/k+ϕ(v;p) · ∂
∂p
ϕ(v; p) · Dmax(p)

Dmin(p)

where
Dmax(p) := max

v∈V

(
2p+ (1 − 2p) · eϕ(v;p)+1−v/k

)2
> 0

Dmin(p) := min
v∈V

(
2p+ (1 − 2p) · eϕ(v;p)+1−v/k

)2
> 0.

We make two observations.
Obs. 1: Each A(v) is a well-defined real number since it is the maximum value
of a continuous function on a compact support. Again by the finiteness of V , there
exists p̄2 ∈ (0, 1/2) such that (1 − 2p) · A(v) ≤ δ for all v ∈ V and p ∈ (p̄2, 1/2).

Obs. 2: SinceDmax(p), Dmin(p) → 1 as p ↑ 1/2, we have thatDmax(p)/Dmin(p) →
1 as p ↑ 1/2. Therefore, there exists p̄3 ∈ (0, 1/2) such that Dmax(p)/Dmin(p) ≤
1 + δ/2 for all p ∈ (p̄3, 1/2).

Now, let p̄ = max{p̄1, p̄2, p̄3} < 1/2. For all p ∈ (p̄, 1/2), we have:

F ′(p) = Eλ

2 ·
(
e1+ϕ(v;p)−v/k − 1

)
− (1 − 2p) · eϕ(v;p)+1−v/k · ∂

∂p
ϕ(v; p)

(2p+ (1 − 2p) · eϕ(v;p)+1−v/k)2


37More formally, for ϕ ∈ (0, ∞), v ∈ V , and p ∈ (0, 1/2 + τ), let

G(p, ϕ, v) := ϕ ·
(

1 + eϕ · (1 − 2p)/
[
p · e

v−k
k

])
− 1.

For τ > 0 small enough, the assumptions of the Implicit Function Theorem are satisfied by G. Thus,
there exists continuously differentiable ϕ̄(v; p) on (0, 1/2 + τ) × V such that G(p, ϕ̄(v; p), v) = 0
for all v ∈ V and p ∈ (0, 1/2 + τ). Let ϕ̄(v; p) = ϕ(v; p) on V × (0, 1/2].

38Such ε, δ > 0 exist because Eλ

[
e2−v/k

]
> 1 by assumption.
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≥ Eλ

[
2

Dmax(p) · e1+ϕ(v;p)−v/k − 2
Dmin(p) − (1 − 2p) · e

ϕ(v;p)+1−v/k

Dmin(p) · ∂
∂p
ϕ(v; p)

]

= 1
Dmax(p) · Eλ

[
2 · e1+ϕ(v;p)−v/k − Dmax(p)

Dmin(p)

(
2 + (1 − 2p) · eϕ(v;p)+1−v/k · ∂

∂p
ϕ(v; p)

)]

≥ 1
Dmax(p) · Eλ

[
2 · e1+ϕ(v;p)−v/k − 2 · Dmax(p)

Dmin(p) − (1 − 2p) · A(v)
]

≥ 2
Dmax(p) · Eλ

[
e1+ϕ(v;p)−v/k − 1 − δ

]
≥ 2
Dmax(p) · Eλ

[
e2−ε−v/k − 1 − δ

]
> 0,

where the first inequality comes from the fact that ∂
∂p
ϕ(v; p) ≥ 0.39 Since F (1/2) =

1 and F ′(p) > 0 for all p ∈ (0, 1/2) close to 1/2, the existence of p1 follows.
Existence of 0 < p0 < p1 < 1/2: Given that V is finite, ϕ(v; p) ↓ 0 and

2p · e v−k
k · e−ϕ + (1 − 2p) → 1 as p ↓ 0, for every ε > 0 there exists a p ∈ (0, 1/2)

such that ϕ(v; p) < ε and 2p · e v−k
k · e−ϕ + (1 − 2p) < 1 + ε for all v ∈ V and

p ∈ (0, p). Let ε > 0 be small enough so that Eλ

[
ev/k−1−ε

]
/(1 + ε) > 1. Such an

ε > 0 exists because Eλ

[
ev/k−1

]
> 1. For all p ∈ (0, p), we have:

F (p) = Eλ

 e
v−k

k · e−ϕ

2p · e v−k
k · e−ϕ + (1 − 2p)

 ≥
Eλ

[
e

v−k
k · e−ϕ

]
1 + ε

≥
Eλ

[
ev/k−1−ε

]
1 + ε

> 1.

Thus, a p0 ∈ (0, p1) with the desired properties exists. This concludes the proof
of existence of a competitive equilibrium.

Uniqueness: Once again, we distinguish between two cases. First, suppose k ≤
ke, or equivalently, E

[
e2−v/k

]
≤ 1. From the proof of existence, we know that a

competitive efficient equilibrium exists. We want to show that no other symmetric
trading equilibrium can exist. For each p ∈ (0, 1/2] and v ∈ V , let ϕ = ϕ(v; p),
x = xC(v; p), and F = F (p) be defined as above. Note that F (1/2) = 1. To
prove that no other symmetric trading equilibrium exists, it is sufficient to show
that F (p) ̸= 1 for all p ∈ (0, 1/2). With this goal in mind, first note that ϕ(v; p) is
strictly increasing in p ∈ (0, 1/2] for every v ∈ V , and that ϕ(v; 1/2) = 1. Thus,
given that V is finite, when p is strictly below 1/2, there exists ε > 0 small enough
such that ϕ(v; p) < 1 − ε for all v ∈ V . Second, observe that E

[
e2−c−v/k

]
< 1 for

39See the proof of Lemma 8.
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any constant c > 0. Now, fix p ∈ (0, 1/2) and its corresponding ε > 0. We have

F (p) = Eλ

 e
v−k

k · e−ϕ

2p · e v−k
k · e−ϕ + (1 − 2p)

 = Eλ

[
1

2p+ (1 − 2p) · eϕ+1−v/k

]

> Eλ

[
1

2p+ (1 − 2p) · e2−ε−v/k

]
≥ 1

2p+ (1 − 2p) · Eλ [e2−ε−v/k] > 1.

where the first strict inequality comes from ϕ = ϕ(v; p) < 1 − ε for all v ∈ V , the
weak inequality is an application of Jensen’s inequality, and the last inequality is
implied by Eλ

[
e2−ε−v/k

]
< 1. Hence, F (p) ̸= 1 for all p < 1/2 as required.

Now, consider the case where k ∈ (ke, kt). Suppose towards a contradiction that
there exist 0 < p∗ < p∗∗ < 1/2 such that F (p∗) = F (p∗∗) = 1. Define γ ∈ (0, 1)
implicitly by p∗∗ = γp∗ + (1 − γ)1/2. We have

F (p∗∗) = Eλ

[
1

2p∗∗ + (1 − 2p∗∗) · eϕ(v;p∗∗)+1−v/k

]

= Eλ

[
1

2γp∗ + 1 − γ + γ(1 − 2p∗) · eϕ(v;p∗∗)+1−v/k

]

< Eλ

[
1

1 − γ + γ (2p∗ + (1 − 2p∗) · eϕ(v;p∗)+1−v/k)

]
≤ 1.

The first inequality follows from the fact that p∗∗ > p∗ and that ϕ(v; p) is strictly
increasing in p ∈ (0, 1/2) for all v ∈ V . In order to prove the second inequality,

we define g(γ) := Eλ

[
1

1−γ+γ(2p∗+(1−2p∗)·eϕ(v;p∗)+1−v/k)

]
. Note that g(0) = 1 and

g(1) = F (p∗) = 1. It remains to show that g(γ) is convex for all γ ∈ [0, 1]. Taking
the second derivative, we get

g′′(γ) = Eλ

 2
(
2p∗ + (1 − 2p∗) · eϕ(v;p∗)+1−v/k − 1

)2

(1 − γ + γ (2p∗ + (1 − 2p∗) · eϕ(v;p∗)+1−v/k))3

 ≥ 0.

Thus, we reached the contradiction that F (p∗∗) < 1. We conclude that there is at
most one p ∈ (0, 1/2) such that F (p) = 1, and the proof of uniqueness.
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Proof of Lemma 3

Proof. From Lemma 2, we know that the firms price according to xC(v; πC) =
k · (1 + ϕ(v; πC)). Under collusion,40 for every v ∈ V , each active firm plays
a strategy σM(·|v) = δxM (v) such that xM(v; πM) = k ·

(
1 +W

(
πM

1−πM e
v/k−1

))
,

and W (·) is the Lambert function. Compared to the equilibrium price formula of
the competition model, we note that the only difference is that W

(
πM

1−πM e
v/k−1

)
is

replaced by ϕ(v; πC). Fix p ∈ (0, 1/2) arbitrarily. According to Lemma 2, ϕ(v; p)
is the unique solution to equation (5), where π is replaced by p. Note that (5) is
equivalent to p

1−2p
ev/k−1 = ϕ · p

1−2p
ev/k−1 + ϕeϕ. Therefore

2p
1 − 2pe

v/k−1 >
p

1 − 2pe
v/k−1 = ϕ(v; p)

(
p

1 − 2pe
v/k−1 + eϕ(v;p)

)
> ϕ(v; p)eϕ(v;p).

Applying the Lambert function on both sides yields ϕ(v; p) < W
(

2p
1−2p

ev/k−1
)
,

which implies the result.

Proof of Proposition 2

Proof. Fix k ∈ (0, kt), and let (µM , σM , βM) and (µC , βC , σC) be the unique sym-
metric equilibrium under collusion and competition respectively associated with the
cost parameter k. Set πM = EµM [βM

1 + βM
2 ] and πC = EµC [βC

i ] for each i ∈ I .
If k ≤ ke, the result follows from Proposition 3 and Corollary 1 of Ravid (2020).

In words, while an efficient equilibrium cannot exist under collusion, it is the only
competitive trading equilibrium outcome. Hence, 0 < πM < 1 = 2πC , as required.

Now assume that k ∈ (ke, kt). Let W (v; 2p) := W
(

2p
1−2p

ev/k−1
)

for all v ∈ V

and p ∈ (0, 1/2). From Lemma 3, we know ϕ(v; p) < W (v; 2p). Following the
proof of Theorem 1 in Ravid (2020), the overall equilibrium engagement level in
the collusion benchmark is given by πM = 2pM , where pM the unique solution in
(0, 1/2) to the equation:

G(2p) := Eλ

 e
v−k

k · e−W (v;2p)

2p · e v−k
k · e−W (v;2p) + (1 − 2p)

 = 1. (14)

40See the proof of Proposition 1, and Proposition 2 in Ravid (2020).
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Let F be defined as in the proof of Theorem 1. We have

1 = G(2pM) = Eλ

[
1

2pM + (1 − 2pM) · eW (v;2pM )+1−v/k

]

< Eλ

[
1

2pM + (1 − 2pM) · eϕ(v;pM )+1−v/k

]
= F (pM),

where the strict inequality follows from Lemma 3. From the proof of Theorem 1,
we conclude that pM < πC . This is equivalent to πM < 2πC .

Proof of Proposition 3

Proof. Follows directly from the proof of Theorem 1.

Proof of Corollary 1

Proof. Follows directly from the proof of Lemma 2.

Proof of Theorem 2

Preliminary analysis for the collusion benchmark. For each k ∈ (0, kt], let
FM

k : [0, 1) → R+ be defined as FM
k (p) := Eλ

[
1

p+(1−p)·eW (p,v,k)+1−v/k

]
. Again, we

abuse notation and writeW (p, v, k) forW
(

p
1−p

ev/k−1
)
, whereW (·) is the Lambert

function. We are interested in the solution pM(k) to FM
k (p) = 1. By the Implicit

Function Theorem,41 we know that whenever this solution exists, it is continuously
differentiable. In his Theorem 1, Ravid (2020) shows that pM(k) exists uniquely
in (0, 1) whenever k ∈ (0, kt). The following Lemma characterizes additional
properties that pM(k) satisfies as k ranges in (0, kt).

Lemma 7. We have:

(i) limk↑kt pM(k) = 0.

(ii) limk↑kt
∂

∂k
pM(k) = −Eλ

[
v

(kt)2 · ev/kt−1
]
/Eλ

[
2−e1−v/kt

e2·(1−v/kt)

]
.

41More precisely, one can show that there exists τk, τp > 0 small enough so that the assumptions
of the Implicit Function Theorem are satisfied once the domain of F M

k (·) is extended to let k range
in (0, kt + τk) and p range in (−τp, 1).
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Proof. (i): Recall from Ravid (2020) that FM
k (·) crosses the line y = 1 only once

from above.42 Therefore, it is sufficient to show that (#): for every p ∈ (0, 1), there
exists kp ∈ (0, kt) such that for all k strictly between kp and kt, FM

k (p) < 1.
Since the Lambert function W (·) is strictly increasing, W (p, v, k) is strictly de-

creasing in k for every p ∈ (0, 1) and v ∈ V . It further satisfies W (p, v, k) > 0 for
all p ∈ (0, 1), v ∈ V and k > 0. Fix p ∈ (0, 1) arbitrarily. Given the finiteness
of V , there exists cp > 0 such that W (p, v, k) > cp for all v ∈ V and k ∈ (0, kt).
Since Eλ

[
ev/kt−1

]
= 1, we have Eλ

[
ev/kt−1−cp

]
< 1. Therefore, continuity im-

plies that there exists kp strictly between 0 and kt so that Eλ

[
ev/k−1−cp

]
< 1 for all

k ∈ (kp, k
t). Fix any such k. We have:

FM
k (p) = Eλ

[
1

2p+ (1 − 2p) · eW (p,v,k)+1−v/k

]
≤ Eλ

[
1

2p+ (1 − 2p) · ecp+1−v/k

]
≤ 2p+ (1 − 2p) · Eλ

[
ev/k−1−cp

]
< 1.

Thus, (#) holds.
(ii): For each k ∈ (0, kt), we totally differentiate the equation FM

k (p(k)) = 1 to
obtain:43

∂

∂k
pM(k) = −AM

BM

(15)

where

AM = Eλ

[
v · (1 − pM(k)) · eW (pM (k),v,k)+1−v/k

k2 ·D2
M · (1 +W (pM(k), v, k))

]
,

BM = Eλ

 1
D2

M

·

1 − eW (pM (k),v,k)+1−v/k + (1 − pM(k)) ·
eW (pM (k),v,k) ·W ′

(
pM (k)

1−pM (k)e
v/k−1

)
(1 − pM(k))2


 ,

and
DM = pM(k) + (1 − pM(k)) · eW (pM (k),v,k)+1−v/k.

As k ↑ kt, we know from (i) that pM(k) → 0. Therefore,AM → Eλ

[
v

(kt)2 · ev/kt−1
]

and BM → Eλ

[
2−e1−v/kt

e2·(1−v/kt)

]
.44 This concludes the proof of Lemma 7.

42This is shown by Ravid (2020) in the proof of Theorem 1.
43To derive equation (18), we used the fact that W ′(x) = W (x)

x·(1+W (x)) for all x > 0.
44Here, we used the fact that W ′(x) = 1 as x ↓ 0.
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Preliminary analysis for the competition model. For each k ∈ (ke, kt], we
define FC

k : [0, 1/2) → R+ as FC
k (p) := Eλ

[
1

2p+(1−2p)·eϕ(v;p,k)+1−v/k

]
, where for

p > 0, we let ϕ(v; p, k) be defined as the unique solution to equation (5), and we
set ϕ(v; 0, k) := 0 for all v ∈ V and k ∈ (ke, kt]. Let pC(k) be a solution to
FC

k (p) = 1. From Theorem 1, we know that pC(k) exists and is unique for all
k ∈ (ke, kt). Again, by the Implicit Function theorem we know that pC(k) is con-
tinuously differentiable on (ke, kt). The next Lemma provides additional properties
that pC(k) satisfies.

Lemma 8. We have:

(i) limk↑kt pC(k) = 0.

(ii) limk↑kt
∂

∂k
pC(k) = −Eλ

[
v

(kt)2 · ev/kt−1
]
/Eλ

[
2(1−e1−v/kt )+1

e2·(1−v/kt)

]
.

Proof. (i): We show that (#): for every p ∈ (0, 1/2), there exists kp ∈ (ke, kt) such
that for all k strictly between kp and kt, FC

k (p) < 1. Given our proof of Theorem 1,
(#) implies that for all k sufficiently close to kt, pC(k) < p, proving the statement.

From equation (5), ϕ(v; p, k) is strictly decreasing in k for every p ∈ (0, 1/2)
and v ∈ V , and satisfies ϕ(v; p, k) > 0 for all p ∈ (0, 1/2), v ∈ V and k > 0.
Fix p ∈ (0, 1/2) arbitrarily. Given the finiteness of V , there exists cp > 0 such
that ϕ(v; p, k) > cp for all v ∈ V and k ∈ (ke, kt]. Since Eλ

[
ev/kt−1

]
= 1, we

have Eλ

[
ev/kt−1−cp

]
< 1. Therefore, continuity implies that there exists kp strictly

between ke and kt so that Eλ

[
ev/k−1−cp

]
< 1 for all k ∈ (kp, k

t). Fix any such k.
We have:

FC
k (p) = Eλ

[
1

2p+ (1 − 2p) · eϕ(v;p,k)+1−v/k

]
≤ Eλ

[
1

2p+ (1 − 2p) · ecp+1−v/k

]
≤ 2p+ (1 − 2p) · Eλ

[
ev/k−1−cp

]
< 1.

Thus, (#) holds.
(ii): We first totally differentiate equation (5) to find the partial derivatives of ϕ
with respect to p and k. That is, ϕp(v; p, k) := ∂

∂p
ϕ(v; p, k) and ϕk(v; p, k) :=
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∂
∂k
ϕ(v; p, k). After some algebra, one can show that

ϕp(v; p, k) = 1 − ϕ(v; p, k)
(1 − 2p) ·

(
p+ eϕ(v;p,k) · (1 + ϕ(v; p, k)) 1−2p

ev/k−1

) ≥ 0, (16)

ϕk(v; p, k) = − v

k2 · ϕ(v; p, k)eϕ(v;p,k)

p
1−2p

ev/k−1 + eϕ(v;p,k)(1 + ϕ(v; p, k)) ≤ 0. (17)

Note that, as k ↑ kt and, therefore, p → 0, we have ϕ → 0. Therefore, ϕp → ev/kt−1

and ϕk → 0 as k ↑ kt.
Next, we totally differentiate the equation FC

k (pB(k)) = 1 with respect to k > ke.
One can show that

∂

∂k
pC(k) = −AC

BC

(18)

where

AC = Eλ

[
1
D2

C

·
(

(1 − 2pC(k))eϕ(v;pC(k),k)+1−v/k ·
(
v

k2 + ϕk(v; pC(k), k)
))]

,

BC = Eλ

[
1
D2

C

·
(
2(1 − eϕ(v;pC(k),k)+1−v/k) + (1 − 2pC(k)) · eϕ(v;pC(k),k)+1−v/k · ϕp(v; pC(k), k)

)]
,

and
DC = 2pC(k) + (1 − 2pC(k)) · eϕ(v;pC(k),k)+1−v/k.

Letting k ↑ kt, we conclude that

∂

∂k
pC(k) → −Eλ

[
v

(kt)2 · ev/kt−1
]
/Eλ

[
2(1 − e1−v/kt) + 1

e2·(1−v/kt)

]

as required.

Concluding the proof of Theorem 2. We use L’Hopital’s rule to show that as
k ↑ kt, the ratio pB(k)/pM(k) is bounded above 1/2 strictly. Formally:
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Lemma 9. There exists Θ > 0 such that

lim
k↑kt

pC(k)
pM(k) >

1
2 + Θ.

Proof. Note that limk↑kt
∂

∂k
pM(k) exists and is different from 0. Therefore, by

L’Hopital’s rule

lim
k↑kt

pC(k)
pM(k) = lim

k↑kt

∂
∂k
pC(k)

∂
∂k
pM(k)

=
Eλ

[
2−e1−v/kt

e2·(1−v/kt)

]
Eλ

[
2(1−e1−v/kt )+1

e2·(1−v/kt)

] = 1

2 − Eλ[e2(v/kt−1)]
2Eλ[e2(v/kt−1)]−1

.

Since
2Eλ

[
e2(v/kt−1)

]
− 1 > Eλ

[
e2(v/kt−1)

]
− 1 ≥ 0

because of Jensen inequality, the conclusion of the lemma follows.

As the last step, note that as k ↑ kt, pM(k), pC(k) → 0. It follows that xM
k (v), xC

k (v) →
kt for all v ∈ V . Now, fix ε > 0 so small that 1 + 2(Θ − ε) > (kt + ε)/(kt − ε),
and let k̂ ∈ (ke, kt) be such that pC(k)/pM(k) > 1/2 + Θ − ε and xm

k (v) ∈
(kt − ε, kt + ε) for all k > k̂, v ∈ V , and m ∈ {C,M}. For all k > 0, we have that
2pC(k)(kt − ε) > pM(k)(kt + ε) if and only if

2 · p
C(k)
pM(k) >

kt + ε

kt − ε
. (19)

Notice that (19) holds by assumption as long as k ∈ (k̂, kt). Since by construction
we have ΠC(k) ≥ pC(k)(kt − ε) and pM(k)(k + ε) ≥ ΠM(k), we conclude that
2ΠC(k) > ΠM(k) for all k ∈ (k̂, kt) as required. Q.E.D.

Proof of Lemma 4

Proof. The proof of Lemma 4 relies on the following lemma.

Lemma 10. There exists threshold v∗ > 0 such that xM(v) > xC(v) iff v ≥ v∗.

Proof of Lemma 10. Let πM be the overall equilibrium engagement level of the
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consumer when the firms collude, and 2πC be the overall engagement level of the
consumer in the competitive trading equilibrium. For every v ∈ V , let WM(v) =
W
(

πM

1−πM e
v/k−1

)
and ϕC(v) = ϕ(v; πC) solving (5). Since xM(v) = k(1+WM(v))

and xC(v) = k(1 +ϕC(v)), it follows that xM(v) > xC(v) if and only if WM(v) >
ϕC(v). By the definition of the Lambert function, WM(v)eW M (v) = πM

1−πM e
v/k−1.

Moreover, x 7→ xex is a strictly increasing function of x > 0. Therefore, WM(v) >
ϕC(v) if and only if

πM

1 − πM
ev/k−1 > ϕC(v)eϕC(v). (20)

From equation (5), we know that ϕC(v)eϕC(v) = 1−ϕC(v)
2 · 2πC

1−2πC e
v/k−1. Therefore,

(20) is equivalent to

1 − ϕC(v)
2 <

πM

1 − πM
· 1 − 2πC

2πC
. (21)

Because ϕC(v) is strictly increasing in v, the conclusion of the lemma follows.

Known results in rational inattention show that, in equilibrium,45

E[UM ] = max
π∈[0,1/2]

k · EµM

[
ln
(
2π · e

v−x
k + 1 − 2π

)]

E[UC ] = max
π∈[0,1/2]

k · EµC

[
ln
(
2π · e

v−x
k + 1 − 2π

)]
.

Consider the random variables Y C and Y M defined by Y C(v) := v − xC(v) and
Y M(v) = v − xM(v). Let GC and GM be the CDF of Y C and Y M respectively,
and define ω := Eλ[xM(v)] − Eλ[xC(v)]. By assumption, ω ≥ 0. Finally, denote
with u1 and u0 the maximal and minimal element in the support of Y C respectively.
From Lemma 10, we know that u0 ≤ Y M ≤ u1 with probability 1. Furthermore,
one can verify that ω ≥ 0 together with Lemma 10 imply

∫ ū

u
GC(y)dy ≤

∫ ū

u
GM(y)dy for all u ∈ [u0, u1].

This means that any expected utility maximizer with an increasing and convex
45See, e.g., Lemma 2 in Matějka and McKay (2015). See also Denti, Marinacci, and Montruc-

chio (2020).
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Bernoulli utility function w : [u0, u1] → R would prefer the lottery Y C over Y M

(see Theorem 4 in Meyer (1977)). Observe that for every π ∈ [0, 1/2], we have

k · EµM

[
ln
(
2π · e

v−x
k + 1 − 2π

)]
= k · E

[
ln
(

2π · e
Y M

k + 1 − 2π
)]
,

k · EµC

[
ln
(
2π · e

v−x
k + 1 − 2π

)]
= k · E

[
ln
(

2π · e
Y C

k + 1 − 2π
)]
.

Furthermore, the function y ∈ (0,+∞) 7→ ln
(
2π · ey/k + 1 − 2π

)
is strictly in-

creasing and strictly convex in y > 0 whenever π ∈ (0, 1/2). Therefore,

E[UM ] = max
π∈[0,1/2]

k · EµM

[
ln
(
2π · e

v−x
k + 1 − 2π

)]
= k · EµM

[
ln
(
πM · e

v−x
k + 1 − πM

)]
= k · E

[
ln
(
πM · e

Y M

k + 1 − πM
)]

≤ k · E
[
ln
(
πM · e

Y C

k + 1 − πM
)]

= k · EµC

[
ln
(
πM · e

v−x
k + 1 − πM

)]
< max

π∈[0,1/2]
k · EµC

[
ln
(
2π · e

v−x
k + 1 − 2π

)]
= E[UC ].

where the first inequality is implied by πM ∈ (0, 1), while the last strict inequality
is implied by the fact that the overall engagement level πM is not a best response to
µC . We conclude that E[UC ] > E[UM ] as required.

Proof of Proposition 4

Proof. First, we show that the threshold k̄ ≥ ke exists. To this goal, we use equation
(21) introduced earlier. Specifically, the proof of Theorem 2 shows that while both
πC and πM converge to 0 as k ↑ kt, we have limk↑kt

πC(k)
πM (k) = 1

2−
Eλ[e2(v/kt−1)]

2Eλ[e2(v/kt−1)]−1

.

Such limit is strictly less than 1 because Eλ

[
e2(v/kt−1)

]
>
(
Eλ

[
ev/kt−1

])2
due to

Jensen inequality. (Recall that Eλ

[
ev/kt−1

]
= 1 by definition.) Therefore, while

the LHS of equation (21) converges to 1
2 because ϕC(v) ↓ 0 as k ↑ kt, the RHS

of (21) is converging to a limit strictly greater than 1/2. As a result, equation (21)
is satisfied eventually (i.e., as k approaches kt from below) for all v ∈ V . The
existence of the threshold k̄ follows immediately from this observation.
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We now show that Eλ[xM(v)] ≥ Eλ[xC(v)] for all k ∈ (0, ke]. To this goal, we
begin by showing that the aggregate engagement level under collusion is weakly
larger than the engagement level each competitive firm experience in the efficient
equilibrium. Formally:

Lemma 11. Suppose k ≤ ke. Then, πM ≥ 1/2.

Proof. Ravid (2020) shows that the function FM(·) defined in the proof of Theorem
2 is strictly convex when k < kt, and satisfies FM(0) > 1 > FM(1−). This implies
that, if πM ∈ (0, 1) is the unique solution to FM(πM) = 1, we have FM(π) ≥ 1 if
and only if πM ≥ π. Therefore, it is sufficient to show that:46

1
2F

M(1/2) = Eλ

[
W (1/2, v)

W (1/2, v) + 1

]
≥ 1/2 (22)

whenever
Eλ

[
e1−v/k

]
≤ 1/e, (23)

where W (π, v) = W
(

π
1−π

ev/k−1
)
. Observe that we can interpret (22) as an ob-

jective function and (23) as a constraint set on the distribution over quality levels
λ ∈ ∆(R+). To simplify the problem, change variable from v to y = e1−v/k.

That is, let F := {F ∈ ∆(R+) : F is finitely supported}. We need to show that
V ∗ ≥ 1/2, where

V ∗ := inf
F ∈F

EF

[
W (1/y)

W (1/y) + 1

]
subject to EF [y] ≤ 1/e.

The function y 7→ H(y) := W (1/y)
W (1/y)+1 is strictly decreasing and strictly convex in

y ≥ 0. Therefore, V ∗ is achieved by the degenerate distribution F = δ1/e. Plugging
in y = 1/e in H(·), we get H(1/e) = 1/2, that is (22) holds. This shows that
πM ≥ 1/2, as required.

Given equations (4), the monopolist’s equilibrium pricing strategy, and the fact
that ϕC(v) = 1 for all v ∈ V when competitive trade is efficient, to complete the
proof of Proposition 4, it is sufficient to show that Eλ[W (πM , v)] ≥ 1, for all k ≤

46Observe that k ≤ ke if and only if (23) holds.
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ke. To this goal, we use the optimization approach introduced earlier once again.
Formally, define F := {F ∈ ∆(R+) : F is finitely supported}. Since πM ≥ 1/2
(Lemma 11), it is enough to argue that V ∗∗ ≥ 1, where

V ∗∗ := inf
F ∈F

EF [W (1/y)] subject to EF [y] ≤ 1/e.

The function y 7→ G(y) := W (1/y) is strictly decreasing and strictly convex.
Therefore, V ∗∗ is achieved at F = δ1/e. Since, G(1/e) = 1, we are done.

Proof of Lemma 5 (sketch)

Proof. Suppose (µ, σ, β) is a competitive trading equilibrium with N ≥ 2 firms.
That such equilibrium assessment must be symmetric follows from the same argu-
ments used for the duopoly model. From Milgrom and Roberts (1990), we know
that for every v ∈ V , each firm i ∈ I uses a pure strategy σi(·|v) = δx(v,N) that
solves

max
xi≥0

πe
v−xi

k

π
(
e

v−xi
k +∑

j ̸=i e
v−x(v,N)

k

)
+ 1 −Nπ

· xi

The result follows from a re-arranging of the FOCs. See the proof of Lemma 2.

Proof of Proposition 5 (sketch)

Proof. Part (i): Follows from a simple extension of the proof of Theorem 1.

Part (ii): Follows from a straightforward extension of the proof of Proposition 2.
Here, we show how the instrumental first step is extended.

Lemma 12 (Pricing effect for an arbitrary number of firms). Fix N1 > N2 ≥ 2
arbitrarily, and for every j ∈ {1, 2}, let ϕj > 0 be the unique solution to

ϕj

(
Nj − 1 + eϕj

1 −Njπ
j

πjev/k−1

)
, (24)

where πj ∈ (0, 1/Nj]. If N1π
1 = N2π

2, then ϕ2 > ϕ1.
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Proof. Equation (24) can be equivalently re-written as

πjev/k−1 = ϕj(Nj − 1)πjev/k−1 + (1 −Njπ
j)ϕje

ϕj .

Suppose by way of contradiction that ϕ2 ≤ ϕ1. Then, ϕ2e
ϕ2 ≤ ϕ1e

ϕ1 which, given
our assumption N1π

1 = N2π
2, implies π2(1 − ϕ2(N2 − 1)) ≤ π1(1 − ϕ1(N1 − 1)).

This is equivalent to N1
N2

(1 − ϕ2(N2 − 1)) ≤ 1 − ϕ1(N1 − 1) which, in turn, implies
ϕ2 ≥ N1−1

N2−1ϕ1 + (N1
N2

− 1) > ϕ2, a contradiction.

Part (iii): WithN ≥ 2 firms, the maximal price that can be sustained in a symmet-
ric equilibrium is x(v,N) = k · N

N−1 .47 Therefore, an efficient equilibrium exists if
and only if k ≤ ke(N), where ke(N) is the unique solution to Eλ

[
e

N
N−1 −v/k

]
= 1.

Part (iv): Fix N ≥ 2 arbitrarily and let k ∈ (ke(N), kt). For each p ∈ [0, 1/N),
define FC,N

k (p) as FC,N
k (p) := Eλ

[
1

Np+(1−Np)·eϕ(p,v,k,N)+1−v/k

]
where, for p > 0,

we let ϕ(p, v, k,N) be defined as the unique solution to equation (6), and we set
ϕ(0, v, k,N) := 0 for all v ∈ V and k ∈ (ke(N), kt). For fixed k, the consumer
trade engagement level with each firm in the competitive trading equilibrium is
given by the unique solution to FC,N

k (p) = 1. Denote with pC,N(k) such solution.
Because as k ↑ kt, offers are converging to kt irrespective of N , the crucial step to
prove (iv) is to show that, for N1 > N2 ≥ 2,

lim
k↑kt

pC,N1(k)
pC,N2(k) >

N2

N1
+ Θ, (25)

for some Θ > 0. Using the same arguments as in the proof of Theorem 2, one
obtains

lim
k↑kt

pC,N1(k)
pC,N2(k) =

Eλ

N2

(
1−e1−v/kt

)
+1

e2(1−v/kt)


Eλ

[
N1(1−e1−v/kt)+1

e2(1−v/kt)

] ,
which implies that (25) is satisfied.

47This price corresponds to π = 1/N , which generalizes the case π = 1/2 of the duopoly setting.
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