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What role can suppliers of oil and gas potentially play in global climate change mitigation?

Overriding motivation:

I We must explore more options for unilateral and multilateral actions to mitigate climate
change.

Specific motivation for the model:

I It is not clear what a coalition of oil/gas suppliers should or would do.

I Restrict supply to encourage green investments?

I Flow the market to crowd out coal?
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Preview of key findings

I Formation of a climate-motivated supply-side coalition of oil suppliers may play a role in
mitigating climate change.

I The key role: speed up development of renewable energy technologies and production capacities.

I Formation of a climate-motivated coalition of oil suppliers may, however, also increase
emissions and decrease welfare.

I The coalition may face a time-inconsistency problem that leads them to slow down renewables
development and production instead of speeding it up.

I Reducing investment in search and exploration may (partly) alleviate the time-inconsistency
problem.
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The basic model

I Two time periods: t = 0, 1. Common discount factor, β.

I Representative energy consumer: u(et)

I Renewables, coal and oil (gas) are perfect substitutes.

I Representative coal producer: cc(xct)

I Representative oil producer: co(xot )

I Representative renewables producer/investor:

I Capacity R0 available in period 0

I Invests in capacity period 0: cr(r0).

I Capacity R1 = δR0 + r0 in period 1.
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Time dimension for production decisions

I Coal supply:

I Large production capacity is already in place globally.

I The technology is well known.

I ⇒ Elasticity is large in the short run.

I Renewables supply:

I Production capacity must be built to increase production.

I There is current investment in new technology.

I ⇒ Elasticity is small in the short run, but large in the long run.

xc1, x
o
1, R1 = δR0 + r0

t = 1

xc0, x
o
0, R0, r0

t = 0
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The basic model, continued

I Two time periods: t = 0, 1. Common discount factor, β.

I Representative energy consumer: u(et)

I Renewables, coal and oil (gas) are perfect substitutes.

I Representative coal producer: cc(xct)

I Representative oil producer: co(xot )

I Representative renewables producer/investor: R0, R1 = δR0 + r0, cr(r0).

I Resource constraint: et = xct +Rt + xot

I Climate damage: Dt = doxot + dcxct

I do per unit of oil consumed.

I dc > do per unit of coal consumed.

I Welfare: Wt = u(et)− co(xot )− cc(xct)− cr(rt)−Dt
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Potential role of oil in the green transition

FB : u′(eFBt ) =


1
β
cr ′(rFBt−1)

co′(xo,FBt ) + do

cc′(xc,FBt ) + dc

Laissez-faire equilibrium:

I Energy consumption is too high: eLFt > eFBt .

I Coal production is too high: xc,LFt > xc,FBt .

I Renewables production is too low: rLFt < rFBt .

Potential roles of a climate coalition of oil producers:

I Take supply down to induce higher investments in renewables.

I Take supply up to crowd out coal.
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Supply-side agreement

I A share m ∈ [0, 1] of the oil producing countries form a coalition.

I The coalition strategically sets a common tax on its own oil supply, τt.

I A representative oil supplier in the coalition countries sets its supply, xmt .

I The coalition weighs two concerns:

I Profits within the coalition.

I Global climate damages.

I The coalition solves:

max
τ0,τ1

profits − α
(

global climate damages
)

I Questions:

I What will the coalition do?

I How will formation of the coalition affect welfare?
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Supply-side agreement: Two cases

Case 1: The coalition can commit to its period-1 policy in period 0:

xm1 , x
c
1, x

o
1, R1 = δR0 + r0

t = 1

Stage 1: τ0, τ1

Stage 2: xm0 , x
c
0, x

o
0, R0, r0

t = 0

Case 2: The coalition cannot commit to its policy in advance:

Stage 1: τ1

Stage 2: xm1 , x
c
1, x

o
1, R1 = δR0 + r0

t = 1

Stage 1: τ0

Stage 2: xm0 , x
c
0, x

o
0, R0, r0

t = 0
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Equilibrium coalition supply

Given:

βr0′ >
dc−do
do

xc′ + |e′| > 0

I r′ is sufficiently large (in the long run)

I xc′ is sufficiently large (in the short run)

With commitment:

I A sufficiently climate-motivated coalition will tax production to induce renewables
investments: τ1 > 0.

I Formation of a climate-motivated coalition will decrease emissions: Dequ
1 < DLF

1 .

Without commitment:

I A sufficiently climate-motivated coalition will subsidize production to crowd out coal: τ1 < 0.

I Formation of a climate-motivated coalition will increase emissions: Dequ
1 > DLF

1 .

I The increase in emissions will be larger the more climate-motivated the coalition is.

I The increase in emissions will be larger the more countries join the coalition.
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Extension of the model: Search and exploration activity

Extension of the model:

I The coalition can strategically tax or subsidize search and exploration.

I Changes in search and exploration can constitute a commitment mechanism.
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Extension of the basic model

I Representative energy consumer: u(et)

I Representative coal producer: cc(xct)

I Representative renewables producer/investor: cr(r0), R1 = δR0 + r0.

I Investment in search and exploration for the representative oil producer: I(sot ).
St = ρSt−1 + st−1.

I Cost of oil production: k(xot , S
o
t )

I ∂k/∂Sot < 0

I ∂2k/∂xot∂S
o
t < 0

I Coalition sets:

I Production tax (for each period) as before: τ0, τ1.

I Tax on search and exploration (in period 0): ψ.
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The two cases

Case 1: The coalition can commit to its period-1 policy in period 0:

xm1 , x
c
1, x

o
1, R1 = δR0 + r0

t = 1

Stage 1: ψ, τ0, τ1

Stage 2: xm0 , x
c
0, x

o
0, R0, r0

t = 0

Case 2: The coalition cannot commit to its policy in advance:

Stage 1: τ1

Stage 2: xm1 , x
c
1, x

o
1, R1 = δR0 + r0

t = 1

Stage 1: ψ, τ0

Stage 2: xm0 , x
c
0, x

o
0, R0, r0

t = 0
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Equilibrium coalition supply

Given: βr0′ >
dc−do
do

xc′ + |e′| > 0

I r′ is sufficiently large (in the long run)

I xc′ is sufficiently large (in the short run)

With commitment:

I The coalition will not change search and exploration activity: ψ = 0.
(no need for a commitment device)

Without commitment:

I A sufficiently climate-motivated coalition will tax search and exploration: ψ > 0.

I The tax on search and exploration will partly alleviate the commitment problem.

I The coalition will increase its production subsidy in the second period: dτ1/dψ < 0.
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Without commitment:

I A sufficiently climate-motivated coalition will tax search and exploration: ψ > 0.

I The tax on search and exploration will partly alleviate the commitment problem.

I The coalition will increase its production subsidy in the second period: dτ1/dψ < 0.
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Summary

I With commitment, the coalition can decrease emissions by taxing extraction.

I Without commitment, the coalition may subsidize extraction and by that end up increasing
emissions.

I Without commitment, the coalition may want to tax search and exploration activity to signal
lower future extraction.

I Extension: If the oil resource is exhaustible, the coalition may want to extract even more in
the first period, to signal lower future extraction.

I Extension: The coalition may want to invest in renewables to signal lower future extraction.
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